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The Finite Element Method with Penalty 

By Ivo Babuska* 

Abstract. An application of the penalty method to the finite element method is analyzed. 
For a model Poisson equation with homogeneous Dirichlet boundary conditions, a varia- 
tional principle with penalty is discussed. This principle leads to the solution of the Poisson 
equation by using functions that do not satisfy the boundary condition. The rate of con- 
vergence is discussed. 

1. Introduction. The finite element method in all of its versions has become the 
subject of current practical and theoretical study. A particular problem associated 
with the finite element method has recently attracted considerable interest. Specifically, 
this problem is the application of variational principles to spaces of functions in which 
the boundary conditions need not be satisfied. See for example references [1] to [7]. 

In references [5] and [6], this author has studied the penalty method approach to 
this problem. This approach consists in the use of a "penalty" parameter which 
depends on the smoothness of the original problem. The selection of the penalty 
parameter is, in some sense, arbitrary. Moreover, the solution of the original problem 
may be quite sensitive to this parameter. 

This paper studies the model Poisson problem - Au = f with homogeneous 
boundary conditions of Dirichlet type. A variational principle for this model problem 
on spaces of functions not satisfying the boundary conditions is studied and, based 
on this principle, a variant of the finite element method is given. This new scheme 
has a rate of convergence that is arbitrarily close to the optimal rate found by using 
the usual finite element method with elements satisfying the boundary conditions. 
The analysis also shows that the finite element method with penalty is not overly 
sensitive to the choice of the penalty parameter. 

2. Some Principal Notions. Let Rn be an n-dimensional Euclidian space. For 
x = (x,, , x.) C R., we define IIxH2 = Jn= x2 and dx = dx ... dxn. 

Let Q be a bounded domain in Rn with boundary IF C C'. 
Let Hm(Rn), Hm(Q) and Hm(F), m > 0 m not necessarily an integer, be the fractional 

Sobolev spaces of order m on Rn, Q and F, respectively. We will designate the respec- 
tive norms of these Sobolev spaces by | | I- (RnX| ( ) and |HH (r). Recall 
that Hm(Q) and Hm(T) are sometimes also denoted by W'(Q) and W'(F), respectively, 
and that H1(Q) = L2(Q) and H0(F) = L2(F). Let the spaces Ho'(Q) be the closure in 
the Hm(Q) norm of the functions in Hm(Q) which have compact support in Q. 
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Throughout the entire paper, C will denote a generic constant with different 
values in different places. Similarly, E will denote an arbitrary positive real number 
with different values in different places. 

Now let us introduce the notion of a (t, k)-regular system of functions. Let 0 < 
h 1 and 0 ? k < t. A linear system of functions g C Hk(Rm) will be called (t, k)- 
regular and will be denoted by 7y, k(Rm) if and only if 

(i) for every h and every w C H'(Rm), there exists a function g C 7y"' R(R) such 
that, for any s < 1, 0 < s < k, 

(2.1) 1 w - g|IH-(R.) <- Ch' IIWIIHl(R.), 

where C is independent of s, h and w and where ,u = min (1 - s, t - s); and 
(ii) if w E H'(Rn) has a compact support S, then g in the inequality (2.1) has a 

compact support Sh such that 

Sh C {x C Rn I d(x, S) < Xh}, 

where d(x, S) is the distance from x to S and X is a positive real number independent 
of S, s, h and w. 

By Cas k(Q), we denote the set of all g E 7y, k(Rn) being restricted to Q. 
In [9], a special (t, k)-regular system was studied. This system is defined as the 

totality of all functions of the form 

(2.2) E c(p, j)wi(x/h -p), 
il p 

where p -(pi, p, p), pi is an integer and the co i E Hk(Rn) are fixed functions with 
compact support which satisfy certain conditions as explained in [9]. 

As a model problem, in this paper we will be interested in solving Poisson's 
equation 

(2.3) -Au= f on Q, 

with the homogeneous Dirichlet boundary condition 

(2.4) u= 0 on r. 

We will seek a weak solution to the problem, i.e. a function u E Ho(Q) such that, 
for every v E Ho(U) 

(2.5) B(u, v) (fv), 

where 

(2.6) B(u, v) = f (I--) dx 
i=1 (9xi (9xi 

and 

(2.7) (f, v) fv dx. 

It is well known that for f E L2(Q) there exists exactly one weak solution of the 
problem. Furthermore, it is known (see [8, p. 203]) that f E Hm(Q) implies u E Hm+ 2(Q) 

and IJU(Hm+2(1) < C 1fliHm(l), where C does not depend on f. 
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Let us remark that the solution u of (2.5) coincides with the function which 
minimizes the quadratic functional 

(2.8) F(v) = B(v, v) - 2(f, v) 

over Ho(Q). 

3. The Finite Element Method With Penalty. Error estimates in H1(Q). In 
expression (2.8), it is crucial that we minimize F(v) not over H'(Q), but only over 
H(Q), i.e. over the space of functions in H'(Q) which vanish on r. The penalty 
method avoids this restriction. This is important from the computational point of 
view since the construction of functions vanishing on r is often technically com- 
plicated. 

Let u0 be the weak solution of our Poisson problem (2.3) and (2.4). Let us construct 
an approximate solution vA C z{k(2), k > 1, with j^k(2) the closure of 7h * in 
H1(Q) such that the function VA minimizes the quadratic functional 

(3.1) F,(v) = B(v, v) + h ?(v, v) - 2(f, v), a > 0, 

over v E lyek(A),** where we denote 

(v,v)= ; v2 ds 

and B(v, v) and (f, v) are defined by expressions (2.6) and (2.7). The function Vh is 
uniquely determined and, clearly, depends on the choice of the parameter a (and, 
of course, on 7yk(0)). To emphasize this fact, we will write V ,h instead of Vh. In [5] 
and [6], the author proved the following theorem.*** 

THEOREM 3.1. Let f E H'(Q), I > 0. Let u0 be the solution of the problem (2.3), 
(2.4) and let v,,h E C7'k(0)) k > 1, be the approximate solution introduced above. Then 

(3.2) | IUO - VTh|IIH2(0) ? C(e)hM- I If I IHI(0, 

where E > 0 is arbitrary, C(E) is independent of f and h, and 

(3.3) ,u = minU + 1, 1 + la ff f, t - 1, t-12f 

Let us discuss the theorem. It can be shown that the first of the four terms in (3.3) 
cannot be improved.t Taking t > I + 2 and choosing an optimal o-, namely o. = 1+ 32 

we obtain a rate of convergence i = II + 3. This rate is substantially less than the 
maximally possible one, namely I + 1. The second important disadvantage is that 
overestimating the parameter o- with respect to I may endanger the convergence. 
This behavior implies that the penalty method will very likely be sensitive to the 
choice of the parameter o-. 

Some numerical experiments have suggested that the method actually behaves 
better than this theorem indicates. Let us now show that the theorem may be sub- 
stantially improved. 

We first prove a lemma. 

** Let us remark that the expression B(u, u) + h- (u, u) is equivalent to I lul 12. 
*** Theorem 3.1 is stated in more general form in [6]. A very similar theorem is proved in [3]. 
t See reference [10]. 
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LEMMA 3.1. Let w E H'(12), where I is an integer, 1 _ 2, and let w = 0 on r. 
Then there exists a function g C ' t > 1, k _ 1, such that, for o- > 0, 

(3.4) 11W - g11H (q + h- h + g < C(E)h HI (|Wll0(n, 
(9nl HO (r) 

= 

where E > 0 is arbitrary, C(E) depends only on E and not on w and h, and 

- X. 31 
(3.5) ji = min X _ (I- 1), 0a , + 1- - 

with x = max (1, (o + 1)/2). 
Proof. (1) By assumption, w E H'(Q), 1 > 2. Therefore, dw/dn C Hz 32(r) 

andtt 

(3.6) | Hdw/dn I |HI-3/2(r) <- C ||W|HI(Q). 

Define v = awlan on P. Then there exists a harmonic function V C H1- (Q) such 
that V = v on F and such thatttt 

(3.7) jj VjjIHi-1(Q) C jIVIIHI- 3/2(r) 

? C |IWjjH1(9) 

(2) Using Theorem 3.1 of [11], there exists a function p C y' k(Q), t > k > s, 
/I- 1 > s > 0, such that 

(3.8) | V - 0|IIH8Th ? ChM jj V|IHI1-(Q), 

where = min [t - s, -1- s]. Combining inequalities (3.7) and (3.8), we obtain 

(3.9) 11 V - (PI IH8(Q) < ChM ItfIjIH(Q). 

Given E > 0, taking s = + E and using the embedding theorem, we obtain 

(3.10) 11 V - (PIIiHi(r) < C(E)h 1-3/2-e jfIH(Q). 

(3) By Theorem 4.4 of [11], for t > 1, k > 1, there exists t C zyk(Q) such that 

(3 .1 1 ) |w11W - J1IH1 (Q) + h I | I IIH? (r) _ C(E)h | IIWIIHI(Q), 

where E > 0 is arbitrary, 

(3.12) K = t 1X ) 

and 

(3.13) x = max(l, 2 + 2f). 

(4) For t > I > 2 and k > 1, taking g = - hp C zYh k(Q) and using inequalities 
(3.10) and (3.11), we obtain 

tt For a proof of this, see Theorem 9.4 of [8]. 
ttt See [8, p. 203]. 
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||W 
- 

gjjHl 

(Q) + h 
onw 

ha + 
g2 

| 

= 11w - i + Vh` - h`(V- - () 

(3.14) + h-2 |9 he Vh + h V + HO r 

? C[IW - _IH(Q) + I2 || V _ I( 1 12 

+ h2a Vj I l(2 + I? I1IIH? o(r) + h/ 11 V - IHo (r)] 

< C(E)h 2T-,-IIWI12(Q 

where E > 0 is arbitrary and 

(3.15) r = min (I1), at- 1 + o, I-2 + I I- 3 j 

with 

(3.16) x = max(l, '(a + 1)). 

Recalling the assumption that t > I > 2, we obtain inequality (3.4) and the proof of 
the lemma is complete. 

We can now prove the improved version of Theorem 3.1. 
THEOREM 3.2. Let f E H1(Q), where I is a nonnegative integer. Let u0 be the weak 

solution of the problem (2.3), (2.4) and let v ,,h E 'k(2), k > 1, t _ I + 2, a > 0, 
be the approximate solution of the problem. Then 

(3.17) jjuo - VahIHIl(Q) < C(E)h- IifIHI(Q) 

where E > 0 is arbitrary, C(E) is independent of f and h and 

(3.18) .= min +2 + 1, + 1) 
\' 2 + t 1(+ 

with 

(3.19) x = max(1, 2'(a + 1)). 

Proof. Let us define a quadratic functional R,(v), v C H1(Q), similar to ex- 
pression (3.1): 

(3.20) Re(v) = B(uo - v, uo - v) + Far3) h? + v, a ? ha + v) 'S~~n '~On / 

Taking into account that uo is the weak solution of the problem (2.3), (2.4), it is 
easy to show that 

(3.21) R,(v) = K.(uo) + Fj(v), 

where F,(v) is defined by expression (3.1) and 

(3.22) K,(uo) = B(uo, uo) + hf(ou/O/n, ouo/On). 
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Since f E HI(Q), I > 0, then uo C H"+2(Q) and we have Ou/O1n C H 11/2(r). There- 
fore, expressions (3.20) and (3.22) both make sense. The functional K,(uo) does not 
depend upon v. Therefore, the minimizations of expression (3.1) and expression (3.20) 
both lead to the same element v,,,. 

Using Lemma 3.1, we see that there exists a function g CE ah*(Q) such that 

(3.23) R,(g) ? C(E)h2,I- 1 If 12 

where E > 0, C(E) is independent of h and f, and 

(3.24) A = min[ ( + 1), aj+ +4] 

From inequality (3.23) and the definition of V, h, we obtain 

(3.25) R,(v,, h) ? C(E)h 2 | |f IHI(Q), 

where ;u is given by expression (3.24). Therefore, 

(3.26) B(uo - Van h, UO - Ve, h) < C(E)h i {fIHan) 

and 

(3.27) HvIhv ,) < Ch2'+ IlfIIz(s) + Ch2 (9n / ?) 

< C[h2A + -f+ h2o] I If 112 

From 

IUo - VaohllH1(Q) < C[B(uo - Vth, Uo - V,,h) + (Vo,h, Va,h)] 

we obtain 

(3.28) |lo - Vo,hIIH.(Q) < Ch I IfI IH'(Q), 
where 

K= minka,, A]= . 

This completes the proof of Theorem 3.2 for I a nonnegative integer and t > I + 2. 
By using basic theorems about interpolated Sobolev spaces, we can easily generalize 

the theorem to cover the case of I being any nonnegative real number. 
Let us now compare Theorem 3.1 to Theorem 3.2. The advantages of Theorem 3.2 

over 3.1 are as follows: 
(i) For a < t, convergence is independent of the value of 1. 
(ii) For t sufficiently large, we can select a so that ,u = I + 1- e. 
(iii) From (i), we see that the error is not too sensitive to the changes in a. 

4. The Error Estimate in L2(Q). Let us now derive the error estimate in the 
space L2(Q). The main idea of the proof is similar to the proof of the error bounds 
in the finite element method without penalty. 

THEOREM 4.1. Let f C H'(Q), where I is a nonnegative integer, and let uO be the 
weak solution of the problem (2.3), (2.4). Let a >? 0. For t > I + 2 and k > 1, let 
Ve,h C -yVk(Q) be the approximate solution introduced in Section 3. Then 

(4.1) jjuo - V,7,hIIL2(() < C(E)h'- IIfIIH102), 
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where E > 0, C(E) does not depend on h and f and 

(4.2) r = min[ + ,u, K + 2a, U + 21a, a] 

with , given by expression (3.18), and K given by 

(4.3) K =t-1 and x = max(l,+2 ) 

Proof. (1) Let us denote the error by Eh = Uo - u,,. In Theorem 3.2, we proved 
that 

| |(h | H1(Q) _ C(E)h"- I f IIH l(Q), 

where , was given by expression (3.18). Therefore, we also have 

II|EhIIL (Q) _ C(E)hME I If I Hl((Q) 

Denote by Vh C Ho(Q) a function such that 

(4.4) B(Vh, v) = (Eh, V) 

for all v C H (Q). Then Vh is the weak solution of the problem (2.3), (2.4) with 
f h Therefore, 

I I VhJ JH2(Q) ? C I IEhI L2(Q) 

(2) The approximate solution v ,h minimizes expression (3.20). Therefore, for 
every v E we have 

(45) B( )+ C OKau E ha _ ) =0. L~th~uJ ~ an 

By Theorem 4.4 of [11] for t > 2 and k > 1, there exists a function gh C T"'k(Q) 

such that 

(4.6) || Vh - ghAIHI(`2) + hIZ02 JIghIIHO(r) 

< C(E)h || Vh I H2(Q) < C(E)h IEhI |IL2(Q) 

where K = (t - x)/(t - 1) and x = max (1, I (a + 1)). 
(3) It is easy to see that 

(4.7) B(Eh, Vh) = (Eh, Eh) + (Eh, a Vh/an). 

By using Eq. (4.5) with v = gh, we obtain 

(4.8) B(Eh, Vh) + B(Eh, gh - Vh) = h15(Eh, gh) - (au0/an, gh). 

Hence, by Eq. (4.7), 

(4.9) IIlEhI|L2(Q) < JB(h, gA - Vh)I + hC I(Eh, 9h)J 

+ I(Eh, a Vh/an)I + I(ano/an, gh) I 

Furthermore, we have 

(4.10) IB(Eh, gA - Vh)I ? IIEhIIH`(Q) 1j9h 
- VhIIHl(l) 

< ChI ? K 
IIfIIHl(Q) jIIEhI!L2(Q). 
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Using inequalities (3.27) and (4.6) and the fact that u0 = 0 and V, = 0 on F, we obtain 

(4.11) {~(Eh, 9h)I <II|Eh||L,(r) 1191|L2(r) 
< ChK+o/2-c [h +a/2- 

e+ h'] I If I HII(Q) I jIEh IjL2(Q), 

(4.12) I(Eh, 3Vhl/n)I ? II|EIIL2(r) IIaVh^/nhIL2(r) 
< C[hA+o12E + h ] IIfIIHl(Q) lEAh||L2(Q) 

and 

(4.13) j(auo/an, g9)I < C IIfIIHii() IIgAIIL2(r) 
< h K 

,/ 
2 -E 

I'hIIL2(Q) IIfIIHI(Q)- 

Substituting inequalities (4.10)-(4.13) into (4.9), we obtain 

(4.14) IEhIIL 2(Q) < C(E)[hM+KE + hK+1/2-e + hM+/2-E + ha] l~tlJHi(Q) 

and the theorem is proved. 
Theorem 4.1 was formulated only for I a nonnegative integer. By using the theory 

of interpolated spaces, it is easy to get analogous results for I any nonnegative real 
number. 
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