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A Modified Butcher Formula for Integration of Stiff 
Systems of Ordinary Differential Equations 

By H. Nosrati 

Abstract. An A-stable one-step integration formula, called the modified Butcher (MB), 
is presented and is shown to have an order of accuracy p = 3, when the differential system 
is linear, and p = 2 otherwise. A method for evaluating the local truncation error of the 
formula is also suggested. Finally, the main features of this formula, vis-a-vis the trapezoidal, 
are compared. 

I. Introduction. The characterization of the dynamic behavior of many processes 
(e.g. chemical and nuclear reactor kinetics, circuit analysis and control systems) 
often gives rise to a set of N first-order differential equations of the form 

(1) X(t) = f[X(t)], X(to) = X0, t E [to, toI. 

These equations usually exhibit the stiffness property, i.e., locally, their Jacobian 
matrix J(t) = Of/OX contains widely separated eigenvalues. Their efficient solution 
requires the use of special integration formulas which allow relatively large step- 
sizes without becoming unstable. In the literature, integration formulas enjoying 
such a property in the entire left-half of the hX-plane, are called A-stable integration 
formulas (e.g. see [1]). It is well known that such formulas are necessarily implicit 
[1] and their proper implementation requires the solution, in general, of a set of 
nonlinear algebraic equations at each integration step. 

Dahlquist [1] has shown that the order of accuracy p of an A-stable linear multi- 
step integration formula cannot exceed 2. For example, with the exception of the 
backward Euler formula with p = 1, the trapezoidal, Gear's [2] and those recently 
introduced by Genin [3] are of second order. Outside the linear multistep class, 
A-stable integration formulas do exist with order of accuracy p > 2. These include 
the set of one-step methods of Liniger and Willoughby [4] and the implicit Runge- 
Kutta two-stage process of Butcher [5]. For another example, see [1]. It must be 
noted that linear multistep integration formulas with p > 2 exist which are stable 
except for a specified region of the left-half of the hX-plane [2], [3]. 

The purpose of this paper is to report the results of an investigation on the ex- 
istence of other A-stable integration methods. The research begins with an examina- 
tion of the implicit Runge-Kutta two-stage process of Butcher and the subsequent 
need for its modification. The result is an A-stable one-step integration formula with 
the order of accuracy p = 3 if the system of equations in (1) is linear and p = 2 
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otherwise. But, as will be shown, in many cases, even for a nonlinear system of dif- 
ferential equations, the error of the formula is smaller than those of trapezoidal 
or Gear's second-order formula. 

II. Derivation of Main Results. Consider the following implicit Runge-Kutta 
two-stage integration formula of Butcher [5]: 

(2-1) g, = f[y. + h(blg, + b12g2)], 

(2-2) 92 = f[y. + h(b21g1 + b22g2)], 

(2-3) y.+l = yn + h(b1g, + b2g2). 

This formula has an order of accuracy p = 4 provided that bl= = = b b12 = 

-V/3/6, b2l = 4 + V/3/6, b= = = 1. In (2), f[.] represents the same function 
as the one on the right-hand side of (1) and the symbol y, is used to denote the com- 
puted value of the solution at a given time t,, = to + nh. Furthermore, X,, [= X(tJ)] 
is used to denote the true solution of (1) evaluated at time t = to, h denotes the step- 
size and En = f[vj. 

Although (2) is attractive as an A-stable integration formula of high accuracy 
(e.g. see Ehle [6]), its implementation requires solution of two sets of implicit systems 
of equations. This is a definite disadvantage. Moreover, suppose that it is desired to 
use (2) to integrate the following single first-order differential equation 

(3) x(t) = Xx(t), X(to) = X0 

in which X is a complex number such that Re X < 0. Substitution of (3) into (2) yields 

12 + 6hX + (hX)2 
(4) Yn+1 

- 
12 - 6hX + (hX)2Yn, Yo = Xo. 

Now, for values of Re hX in the far left-half of the hX-plane, the true solution x(t) = 
ex't-to)xo is nearly zero whereas the computed solution obtained from (4) may not 
be unless Yn is already sufficiently close to zero. This situation, although not critical, 
can become cause for concern, for, in a typical stiff system of equations, the parasitic 
effects of the transient can still affect the behavior of the dc solution. 

The preceding arguments tend to support the need for modification of formula 
(2), though such a modification will affect the order of accuracy p of the formula. 
Nevertheless, the modification will be affected to achieve the following objectives: 

(i) Preserving A-stability and self-starting nature of the formula. 
(ii) The need to solve at most one set of implicit equations. 

(iii) When the formula is used to compute a solution to (3), then the computed 
solution should tend to zero as Re hX -) c. 

(iv) The formula should have the highest order of accuracy consistent with the 
above objectives. 

Pursuant to objective (ii), formula (2) is changed to the following form: 

(5-1) = f[yn + h(alig, + a12g2)], 

(5-2) 92 = I[yn + ha2l1g1], 

(5-3) Yn+1 = Yn + haigi. 
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The four parameters a,,, a12, a2l, and a, are chosen to realize the remaining objectives. 
This choice will make Eqs. (5) third order if f[ 4 ] is linear and second order otherwise. 
A routine calculation yields the following values for the parameters: 

2 a2 1 
a1l 

= 3 
'a2 6 - a2l = 1, a, = l. 

Now, since a2l = al, it follows that g2 = Yn+1 and hence a final expression for Y+, 
is obtained as 

(6) Y.+1 = yn + hf[3y. + 2Y.+i - lhyn+J. 
When f[*] is linear and of the form given in (3), Eq. (6) yields 

(7) Yn+i - 1 - 3+ Xh 
I3Xh + 1 (Xh)2Yf 

which is of the form required by (iii). Moreover, in this case, (6) may be written as 

Yn+i = Yn + 3h{f[Yn] + 2f[Yn+1]} - 'h2fIUn+1] 
(8) 

Yn+1 = Yn + 'h[jn + 2yn+l] - 'h2yn+l. 

It is noted that formulation (8) is a special case of the class of A-stable one-step in- 
tegration formulas of Liniger and Willoughby [4]. It has an order of accuracy p = 3, 
but, because of the presence of the second derivative term, its use is limited to cases 
where the Jacobian of the system in (1) is readily available. 

III. The Error Term. The local truncation error of (6) is, in the general case, 

(9) Tn+1 = (h3/24)On + 0(h4) 

where on denotes the principal error function of (6) and is given by 

(10) ckin = [((02f/a X2)f)f](Xn). 

When f[f] is linear, the local truncation error of (6) becomes 

(1 1 ) = (h4/72) Xn4+)1 + 0(h5) 

where X 4)(t) = (d4/dt4)X(t). Equations (9)-(11) can be readily verified by the sub- 
stitution of the true solution X(t) in place of y in (6), expansion of f[4] in a Taylor 
series about Xn and collection of all the terms corresponding to like powers of h. 
Also in (10), the term '2f/aX2 is, in general, a third rank tensor with components 
a 2fi /OXxk, i, j, k = 1, 2, * * *, n. It vanishes, however, when f[4] is linear. 

In controlling the local truncation error, it is necessary to compute the principal 
error function (9) or the fourth derivative of X(t) in (11) as may be appropriate. 
Neither task is easy or desirable. As an alternative, an appropriate predictor formula 
may be used. For example, the following formula 

(12) Yn+i = yn-1 + 2hf[4yn-1 + 2Yn + 3hjM] 

may be employed to predict a value to the solution at each step. For the general case, 
(12) has a local truncation error 

(13) =h3qS + 0(h4). 
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When f[.] is linear, the local truncation error of (12) is 
P 

1h4(X14) 
5 ~ (14) T+= h X1 + + O(I ). 

If the symbols Pn+1 and Cn+1 are used to denote the predicted and corrected values 
as obtained from (12) and (6), respectively, then the local truncation error of (6), for 
f [*] linear or otherwise, is approximately given by 

(15) T.+, = 7(Pn+ 1 -C+1) 

A more flexible version of (12) is 

(16) Y = Y1- + Rf[RS(y- - - 1 2Yh) + Y.-1 + 2R5j] 

where 

hi = tn+1 - tn, h2 = tn - tl1 

R = hi + h2, S = (2h2 - hl)/3h2. 

In this case, any double computation will be eliminated when a change in the step 
size h is contemplated. However, Eq. (15) for the local truncation error must be 
changed to 

(17) = iK3 + 3(P +1)-KC 1)2 
if f[.] is nonlinear, 

3K+3(K + 1)(K - 12+ 4 

(18) 2K +4K3 + 1 if f ]is linear, 

where K is defined by hi = Kh2. 

IV. Corrector Solution by Recursive Iteration. When 4.] is linear, the solution 
of (6) for Yn+, presents no serious problem. However, for the general case, an alterna- 
tive to repeated back substitution into (6) itself is use of the Newton-Raphson iteration 
method. When (6) is expressed in the form 

(19) F[Yn?1] = Yn+1 - Yn- hf[13yn + 23Yn+1 - 6hyn+l] = 0, 

then a sequence {Yn +i } r=1 may be obtained from 

(20) Y+1= - B- 1Fj 

where yn+1 denotes the value of yn,? at the ith iteration, B, is the Jacobian of F[yt+ ] 
and Fj = F[yn+1]. The explicit expression for Bi is given by* 

(21) Bi = I - 2hQ(I - SheJ) 

where Ji and Jt are the Jacobian of f[V] evaluated at V = 1 +? 2yt+i - thyn+? and 
V = Yn+15 respectively. Normally, the sequence of iterations produced by (20) is 
terminated when the condition 

(22) -nv+I Iv?I (22)~~~~~~~ | Yn+ 1 Yn+l | | - C I |Yn+l |I| 

for some constant C and an appropriate norm is satisfied. It can be shown [7] that 

* See Appendix I for derivation. 



A MODIFIED BUTCHER FORMULA 271 

the sequence {YI+1, y2+, . * * , yn+1, * * * I will converge to a solution yn+,, such that 
F[yv+,] = 0 in the sense of (22), when Yn+i satisfies the following condition for a 
reasonably small number d: 

(23) I IY.+1 - Yn+ |II < d. 

V. Concluding Remarks. The Modified Butcher (MB) formula (6), like the 
trapezoidal, is a one-step formula requiring two function evaluations. Whereas the 
trapezoidal formula, for sufficiently large values of [Re hX] oscillates, formula (6) 
does not. For the trapezoidal, the order of accuracy is p = 2 regardless of the nature 
of fL ]. Formula (6) has p = 2 when f4 ] is nonlinear, and p = 3 otherwise. On the 
other hand, when using the Newton-Raphson iteration scheme (20), for each itera- 
tion, formula (6) requires one more function and Jacobian evaluations than the 
trapezoidal, in addition to one matrix multiplication. However, with an appropriate 
choice of step size, it may be possible, in many problems, to calculate only Ji or J,. 
Moreover, in many sparse systems, two evaluations of the Jacobian and one matrix 
multiplication will not generally be very serious. 

It is conjectured that even for nonlinear systems, the local truncation error of 
(6) will be generally smaller than that of the trapezoidal. However, accurate and 
practical estimation of the error, and hence step size control, of formula (6) is a 
problem as it generally is with other formulas. A method has been suggested in 
Section III (Eqs. (1 2)-(18)), but it has the drawback of requiring two function evalua- 
tions. Clearly, a less costly predictor would greatly enhance the appeal of formula 
(6). As was noted earlier, for the special case of linear f[ ], formula (8) of Liniger and 
Willoughby and the present formula are identical. However, for a general f[.], al- 
though (8) has an order of accuracy p = 3, it requires the knowledge of the system 
Jacobian at each step of integration. Consequently, its use is limited to the cases 
where the Jacobian can be easily computed. On the other hand, formula (6) makes 
no such requirement, although its use in conjunction with the Newton-Raphson 
iteration scheme depends on the knowledge of the Jacobian. Here, however, an 
exact knowledge of the Jacobian is not as critical as in formula (8), so that a scheme 
such as Broyden's method [8], [9] may suffice. 

Preliminary tests, using formulas (6) and (12) along with sequence (20), have 
proved successful. Further tests comparing performance of (6) and other integration 
formulas of about the same order of accuracy are under way and the results will be 
the subject of a future report. 

APPENDIX I 

Determination of the coefficient matrix Bi in (20). 

Write formula (6) in the form 

(I-1) F(Yn+l) = Yn+ - Yn - hf[3Yn + 3Yn+1 - 6 = 0 

Let 

(1-2) Z+,= 3Yn + 3Yn~l - 6hf[yn+1]. 

Then (I-1) becomes 
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(1-3) F(y.+1) = Y.+i - Yn - hf[Z.+] = 0. 

By use of the chain rule differentiation, 

(1-4) oF = I- h af .Z +1 

(1-5) oZn+1 = 21_ h df 

where I denotes the n X n identity matrix. Let w = f[V] and denote the Jacobian of 
f[V], evaluated at V = Vi, by J(Vi), i.e. 

J(V1) - 

Then write 

ji = J(Zn+l) = JMMYn + IYn+1 - *hIz~) - dZ | 
Zn+ 1 Zn+]. Zn+1 i 

Ji = J(Yn + 1 )| 
aYn+1 yn+ 3nI+ii 

From (1-4), (1-5) and above relations, the expression for Bi becomes 

Bi = d I- hijil- 'hJj] = I - hJj[I - -hJj]. 
Y.,, 1Yn+ ii 
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