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Asymptotic Expansions for Product Integration 

By Frank de Hoog and Richard Weiss* 

Abstract. A generalized Euler-Maclaurin sum formula is established for product 
integration based on piecewise Lagrangian interpolation. The integrands considered may 
have algebraic or logarithmic singularities. The results are used to obtain accurate con- 
vergence rates of numerical methods for Fredholm and Volterra integral equations with 
singular kernels. 

1. Introduction. A widely used technique for the evaluation of integrals of the 
form 

I(f) = f g(s)f(s) ds, 

wheref(t) is "smooth" and g(t) is absolutely integrable on 0 ? t < 1, is product 
integration. This technique consists of replacing Ig(f) by Ig(J), where f(t) is an approx- 
imation to f(t) such that Ig(f) can be calculated in a simple manner. In this paper, 
we shall consider a class of such quadrature rules for the case where g(t) may have 
a finite number of algebraic or logarithmic singularities. These types of singularities 
are encountered in many applications. 

The quadrature rules considered are obtained in the following way: Let 

? U1 < U2 < ***< Un -<1 

be a fixed set of points and define 

t =lh, = O,. ,m; h = I/m, 

and 

(1.1) tik = ti + Ukh, k = 1, * * , n; 1 = 0,. * , m - 1. 

The approximation f(t) on t, ? t < tI+1, 1 = 0,.* , m- 1, is taken to be the 
(n - 1)th degree polynomial interpolating to f(t1 k), k = 1, * , n. 

The main aim of the paper is to establish a generalized Euler-Maclaurin sum 
formula for the above methods. In Section 2, we describe the quadrature rules in 
more detail and prove a basic lemma. An Euler-Maclaurin sum formula is established 
for "smooth" and weakly singular g(t) in Sections 3 and 4, respectively. In Section 5, 
we apply these results to obtain accurate convergence rates of numerical schemes for 
Fredholm and Volterra integral equations with singular kernels. 
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2. The Product Integration Rule. Define 
n 

CW(t) = I (t - Uk) 
k=1 

and the Lagrangian polynomials 

Lk(t) = cw(t)/(wO'(Uk)(t - Uk)), k 1, * , n. 

On t1 ? t < tl+1, 1 = 0, * , m - 1, the approximation tof(t) is 

f(t) = 5 Lk MO) 

and, hence, 
mn-1 t 1+1L 

MI~a)= E 1 g(s)J(s) ds 
1=0 Il 

(2.1) = r A f(tlk) 1| g(s)Lk( h ) ds 

m-1 n 

= E hf(t1k) I g(t1 + sh)Lk(s) ds. 
1=0 k=i ? 

This is the nm point quadrature rule with which this paper is concerned. The weights 
are calculated by evaluating the integrals analytically. The error functional for this 
rule is 

(2.2) E(f) = (f) - Ig(f) = Ig(f - f). 

In the following lemma, an expression for the error functional is obtained. 
LEMMA 2.1. Iff(t) E CP 1[0, f, p _ n, then 

p-n r1 mn-1 

(2.3) Eg(f) - hn+r J f (s)h , g(t1 + sh)f(n+r)(t, + sh) ds + O(h +1), 
r=O O 1=0 

where 

(2.4) Wr(t) = W(t)Pr(t) 

and p r(t) is a polynomial of degree r. 
Proof. It is clear that 

mn-1 1l 

(2.5) Eg(f) - h E f g(t1 + sh){f(t1 + sh) - f(t1 + sh)} ds. 
1=00 

For 0 ? s < 1, it follows from (1.1) and Taylor's theorem that 

fM(tk) = f(t1 + sh - (s - Uk)h) 

= I 
hr (_1)r(S - Uk)Ifr _ +ksh) + 

E= 
h 

t + sh) + O(hv+i), 

k 1, * ,n; 1 = 0,. ., m- 1. 

Hence, 
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n 
f(t1 + sh) - f(t, + sh) = E {f(t1) - f(tt + sh)}Lk(S) 

k=l 

(2.6) (l) sh _ 
( E hr (r)(t, + sh) E (s - Uk)r Lk(S) + O(h +1), 

r=1 k=l 

l=0, ,m-1. 

Since 
n n 

(2.7) f: (s - Uk) Lk(S) = CW(s) (s - Uk) r/W (Uk) 
k=l k=l 

and 
n 

E Uk/C(d (Uk) = 
0, q = O) ...** n - 2 ) 

k=1 

it follows that 
n 

(2.8) fj (s - Uk)rLk(S) = 0, r = 0, , n - 1. 
k=l 

For r ? n- 1, 
n )r ~~r n Q 

__ ( - Uk) - 

r~(rI 1)Qsr- E Uk 

(2.9) k=1 ?'(Uk) - k(1 s _'(Uk) 

r n q 

= .. .d 
- 

)1)77Z S 
q=n-1 k=1 q 1 (Ukr 

Substitution of (2.7), (2.8) and (2.9) into (2.6) yields 
p-n 

f(t1 + sh) - f(t1 + sh) = hn+rf(n+r)(t, + sh)w(s)pr(s) + O(h+ 1), 
(2.10) r=O 

where 

Pr(S) = ~~~ 1~rn 
r _1 r-q 

(n + r)! q C k4 (n + q -' |)( 1) (Uk) s 
S 

The result follows on substituting (2.10) into (2.5). E1 
Remark. Clearly, COr(t), r = 0, * * , p - n, also depend on Uk, k- 1, * , n. 

In addition, it should be noted that Lemma 2.1 is valid for any absolutely integrable 
g(t). 

For fixed s 0 < s < 1, the sum 

m-1 
(2.11) h , g(t1 + sh)f(n+r)(t, + sh) 

1=0 

is a generalized Euler approximation to f g(S)f (n+r )(s) ds. 
Summation formulae for (2.11) have been investigated by Lyness and Ninham [4] 

and the application of their results to (2.3) is the basis of Section 4. 
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3. Smooth g(t). Let f(t) E C' i[0 T1, p > n and g(t) E CPn i[0, 7]. Applying 
the Euler-Maclaurin sum formula to g(t)f'n+r (t), we find 

rn-1 1 

h E g(t1 + xh)fIn+r)(t, + Ah) = g(S)f(n+r)(S) dS 
1=00 

(3.1) + pE +1 Bq+l(X) [d (g(t)f(n+r)(t)) dq (g(t- In+r)(t))l 

q=O (q 
+1)!.-t 

= dt 

(tf(t)) + O(hp-n-r+l), 
r = 0, **, p - n, 

where Bq(X), q = 1, 2, * , are the Bernoulli polynomials. Substituting (3.1) into (2.3) 
and collecting powers of h, we obtain 

Eg(f) = hn f wo(s) ds f g(s)fn) (s) ds 

p-n-1 (1 1 

+ E h(n+r+lW( C;) +(S) ds g(S)f(n+r+l)(s) ds 
(3.2) r=o O 

r 1 +,dr-d (g(t)fl (t)) 

- ?tr-L (g(t)f( (t)) ] fwoj(s)Bl+r-1(S) ds} 

+ O(hp+'). 

The above equation is a generalized Euler-Maclaurin expansion for the error func- 
tional. 

If u,, k = 1, *, n, are chosen such that 

(3.3) J Sr(s) ds= 0, r = 0, 1, ,q < n, 

it is clear from (2.4) that 

f'Slcr(s) ds = 0, r = 0, 1, q; l= O q 

and, hence, the first q + 1 terms in (3.2) vanish. This may be expected since, for 
g(t) = 1, (3.2) reduces to the Euler-Maclaurin sum formula for the corresponding 
composite interpolatory quadrature rule (see, for instance, Baker and Hodgson [2]). 

In the case that g(t) = 1 and a symmetric rule is used, the coefficients of the odd 
powers of h are zero, and so the expansion is in integer powers of h2. It should be 
noted that, for general g(t), this does not happen, as, in general, the rule is not sym- 
metric. 

4. Singular g(t). In this section, we shall consider the case where g(t) has a finite 
number of algebraic or logarithmic singularities. 

Firstly, we shall establish an Euler-Maclaurin sum formula when 

(4.1) g(t) = tO(1 - t)w It - VkI sgn(t - vi) It - vi , 3, co, y > -1. 
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As in Section 3, expansions for sums of the form 

rn-1 

h E g(t1 + xh)z(t1 + xh), 
0=0 

where z(t) is a smooth function, are required. Such expansions have been derived by 
Lyness and Ninham [4] who use Lighthill's procedure to obtain asymptotic expansions 
for the integral terms in Poisson's sum formula [4, Eq. (3.13)], 

m-1 1 
h E g(t, + xh)z(t, + xh)-J g(s)z(s) ds 

1=0 

+1co 

(4.2) = E' (- 1)' exp(-ri(2x - l)q) J g(s)z(s) exp(2iriqms) ds 
q=-O o 

+O o~~~~~1 
= I' exp(-2iriqx) J g(s)z(s) exp(2iriqs/h) ds. 

q = - o 

Applying the results of Lyness and Ninham [4, Eq. (8.1)] to g(t)f (n+r (t), we find that 

m-h r-igsf1()d p-n-r hq+1 
h E g(t, + xh)f nnr(ti + xh) = Jog(Syn+r)(S) d + 

1=0 o 1=0 q! 

(4.3) Or{h( - q, x)forq)(O) 
+ ho(-1)q(-w - q, 1 - x)1(r) 

+ hV(f(-y - q, x - mVk) + (-1) ( - q, mvk X))/2r (Vk) 

+ h6(f(- -q, x- mv) - (-1)g('5- q, my, - x));3tr (Vi} 

+ O(hp-n-r+), r = 0,. , p - n, 

where 

Or(t) = f (t)( - t) ft - vk | sgn(t - vi) It - vi I 

Vt'ir(t) = fn+r)(t)t, it - vk | sgn(t - vi) It - vi | , 

Vt2r(t) = fn+r)(t)t (1 - t)w sgn(t - vi) It - vi | , 

t3r(t) fln+r)(t)t (1 -t) It -V/c|, 

and f(a, x) is the periodic generalized zeta function. The periodic generalized zeta 
function is defined by 

(a , X) = ~(aIx), x -x = integer, 0 < x < 1 

where 0(a, x) is the generalized Riemann zeta function (see, for instance, Whittaker 
and Watson [6]). 

Substitution of (4.3) into (2.3) yields 
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P-n 1 (1 

E(f) = hn+r r(s) ds g(s)ffn+r'(s) ds 

r=O 0 ( 

+ Z hn+r+#+l Ej t f (s)0(fl - r + 1, s) ds 
r=O i=0 (r - 1)! 
p-n t r 1 I (r-1) 1) 

+ hn+r+,w+I 
(-1 *1l) (I co I" Z(s) ( -- r + 1, 1s) 

(4.4) + 1i hn+r+r ' 
l 

j +1 E 
(V) I l j(s)[f(-y - r + 1, s - mvk) 

r=O ~1=0 (r - 1)!0 

+ ( 1 )r-l(-y - r + 1, mvk - s)] ds 

+ Z hn+r+8+ 
1 

(r-l) Jo w1(s)[f(-a - r + 1, s - mvi) 
r=0 I =0 ( 

-( )r-l( - r + 1, mvi - s)] ds 

+ O(hp+1). 

This is the desired Euler-Maclaurin expansion for g(t) given by (4.1). For the important 
case of endpoint singularities (i.e., g(t) = to(1 - t)'), terms of the form rO wc(S)s 

a(a, s) ds and f 
1 

w(s)f(a, 1 - s) ds can be reduced to sums of ordinary zeta functions 
by the relations 

f P(a, s) ds = 0, a < 1, 

and 

f Sr(a, S) ds = 1 1 (ra- 1)-r f S (a - 1, s) ds) 

r= 1, 2, a . ; a < 1. 

If Uk, k = 1, * , n, are chosen such that 

(4.5) 10 w(s) ds= = . 

the first term in (4.4) is deleted. However, in general, (3.3) does not lead to higher 
order convergence. From (4.4) it is clear that the conditions required depend on g(t). 

To illustrate this, we take g(t) = t- "2 and determine the conditions necessary for 
optimal convergence in the cases n = 2 and n = 3. 

If n = 2, we require (4.5) and 
1 

(4.6) j o(s),s) ds = 0. 

Numerical calculation yields 

(4.7) ul = .1182506123, u2 = .7182932992. 

For n = 3, we require (4.5), (4.6) and 

f s(s) ds = 0. 
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Numerical calculation yields 

(4.8) u1 = .04456270208, U2 = .3909749362, u3 = .8537066313. 

The quadrature formulae with the points given by (4.7) and (4.8) have been applied to 

Ig(f) = (2 x)1/2 dx = 1 + r/2. 

Numerical results for various stepsizes are tabulated in Table 1. The order of con- 
vergence can be seen to be three and four and a half, respectively. 

Remark. All computations were done in double-precision arithmetic on the 
IBM 360/50 computer at the Australian National University. 

The extension of (4.4) to a g(t) which includes terms of the form ln t, ln(1 -t), 
In It- vI and sgn (t - vi) ln It - vi can be made by differentiation with respect to 

co, y and 6, respectively. To illustrate this, we consider the case when 

g(t) = In It - VkI =d (it - Vkl) 7=-0, 0 < Vk < 1. 

Then 

Eo(f) = hn w 0(s) ds g(s)f (n(s) ds 

V-n-1 f 1 1 
+ h n+r-1 f ,,3+1(s) ds f g(S)f (fn+ + 1) (S) ds r=ooo 

+ E- (rI )! [d ;: (g(t)fy (+1(t)) f col(s)-(-r + 1, s) ds 

+ (-l~rr d 
(g(t)f (n+)(t))t 

(4.9) .JO wo(s)f(-r + 1, 1 - s) sd]} 

(-n +r f r 1 f1 - my) + L f(vk)h I1n h - )! r (s)(f(-r + 1, s- MVk) 
r=0 1 =0 r 

+ (-) (-r + 1, mV - s)) ds 

+ wo (r I Joi(s)('( r + 1, s- mVk) 1=0 (r -1!J 

+ ( r- 11I'(-r + 1, mvk - s)) ds} 

+ O(hv+'), 

where 

I'(a, s) a - (a, s)/Oa. 
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This expansion can be simplified slightly by substitution of the relations 

?(-q, s) = -B,+?(s)/(q + 1), q = 0, 1, 2, 

Again, if (4.5) holds, the first term in (4.9) is deleted. 

TABLE 1 

Stepsize n= 2 n= 3 
h Eo(f) Eo(f ) 

0.2 6.008 E-6 3.025 E-9 
0.1 7.004 E-7 1.505 E-10 
0.05 8.287 E-8 6.956 E-12 
0.025 9.933 E-9 3.013 E-13 

5. The Application to Integral Equations. Atkinson [1] considers the numerical 
solution of linear Fredholm integral equations of the second kind with singular 
kernels 

(5.1) y(t) = G(t) + X f K(t, s)y(s) ds, 0 ? t ? 1, 

where 

(5.2) K(t, s) = E Pk(t, S)Qk(t, s), r > 1 
k=l 

and Pk(t, s), Qk(t, s), k- 1, * , r, satisfy 
(i) Qk(t, s) is continuous on 0 < s, t < 1; 

(ii) fo IPk(t, s)l ds is bounded; 
(iii) lim1 t t2- JO If IP(t1, S) - Pk(t2, s)I ds = 0 uniformly in t1 and t2. 
Important cases of P k(t, s) are 

(5.3) it - sl, Iv - sl, 0 > y > -1, In it - si, In Iv - sI, 0 < v ? 1. 

For illustrative purposes, it is sufficient to consider the case 

K(t, s) = P(t, s)Q(t, s). 

The application of product integration to the integral term in (5.1) yields the numerical 
scheme 

Y;= G(tiQ) + X E E Wlk(tij)Q(ti;, tlk)Ylk, 

(5.4) 1=o k=1 

j= 1, *k n;i=O *, m-1 

where 

Wk) =JO P(t, s)Lk( h ds 

and Yjj denotes the numerical approximation to y(ti;). Atkinson has shown that 
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if X is not an eigenvalue of (5.1), then (5.4) has a unique solution for sufficiently 
small h and 

max y(tii) - Yi = O(E), 
i=1, - ,n; i=O, * ,mn-1 

where 
m-1 n 

E = max j: E Wlk(tij)Q(tz;, tlk)Y(tlk) 

(5.5) j=1, -,n; i=O, -,m-1 1=0 k=1 

- K(ts;, s)y(s) ds 

We shall now indicate how the results of Section 4 can be extended to obtain 
accurate estimates for (5.5). It will be assumed that Q(t, s)y(s) is p + 1 times con- 
tinuously differentiable with respect to s. 

The direct application of the results in Section 4 yields the following estimates 
for E: 

(i) E = O(hn fW(s) ds) + O(hn+l+,) for P(t, s) = IV - SI' 

and 

(ii) E = O(hn f w(s) ds) + 0(hn+1 In h) for P(t, s) = In V - SI. 

However, for the case when P(t, s) = It - sl or In It - sI, (4.4) and (4.9) are no 
longer valid since Vk takes the values tj, j = 1, * , n; i = 0, *.. , m - 1, and thus 
depends on h. The extension of the results of Section 4 to these cases is obtained in 
the following way. First, the integral terms in (4.2) are rewritten as 

jd 
t27riqs\I (27riqt. is\ 

Jg(s)z(s)exp h -) ds t, J g(tiis)z(t,,s)exp rh ds 

(5.6) + ( t,)exp( h) g((1 tL,)s + ti,)z((l -tii)s + ti,) 

* exp(27riq(1 - tji)s/h) ds, 

j = 1 *i-,n; i 0.*, m - I. 

For 

(5.7) g(t)= ti i tl 0 < tjj < 1, 

Eq. (5.6) becomes 
1 ~~(27r iqs~ 1? + I i27r iqs~ 
g(S)z(s)exp h ) = tsA (1 -s)7z(t ,s)exp y--) ds 

(5.8) + (1 - ti)ye($ ) foSYz((l - tii)s + ti,)exp(21r-q) ds 

0 < tij < 1, 
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where 

h = h/ti,; h = h/(l - tiO) 

The singularities of the integrands on the right-hand side of (5.8) are now endpoint 
singularities independent of ti4 and so asymptotic expansions in h and h, respectively, 
for the corresponding integrals can be calculated in a similar way to [4] by Lighthill's 
procedure. 

Define 

Gl(tij, f) = f (1 -s)7z(t js)exp(27iris) ds 

and 

G2(ti;, A) 
= f syz((1 -tij)s + 

tij)exp(27iris) 
ds 

where 

f =1 qh; I = q/h; q = o, 1, 2, 

Clearly, G, (ti, r) and G2(ti , r) are the Fourier transforms of the generalized functions 

41(ti;, s) = (1 -s)7z(t js)H(s)H(1 - s) 

and 

02(ti;, S) = S~z((l - tij)s + tjj)H(s)H(1 - s) 

where H is the Heaviside step function defined by 

I1 , S > 0, 

H(s) = f , s = 0, 

10, S < 0. 

For k > 0, let 

;il(tii, S) = (1 - s)'z(tijs), 

12(tik, S) = S1Z((l - tij)S + ti;), 

R1(ti;, s) = ! a-L- (ti,, O)s'H(s), 

RI(ti;, s) = E (!i _ q t )( sq 8H1-) 

k 

R3(ti;, s) = E !i)2 Z(2) (tOi i)s2+ H(s) 

and 

R4(ti, s) =E (- q! ds) H(l - s). 
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Then it follows from Lighthill's theorem that 
+ 00 

(5.9) Gl(tt,, f) = j {R1(ttj, s) + R2(tii, s)} exp(27iris) ds + O(lf -k-l) 
-oz 

and 
P+ co 

(A k 

1. (5.10) G2(t,, J) = j {R3(t,j, S) + R4(tii, s)}exp(27irirs) ds + O(If kl). 
-oz 

The generalized Fourier transforms in (5.9) and (5.10) can be evaluated by the standard 
integrals given in [4, Eq. (6.14)]. Substituting the resulting asymptotic expansions for 
G,(ti,, q/h) and G2(ti , q/h), q = 0, 1, , into (4.2), we obtain in the same way 
as [4] 

rn-i1( 

h E It1 + xhi - t i Iz(t, + xA) = J Is- ti l z(s) ds 
1=0 

k hq+ l 

+ Zh!~ {( -q, x) (it -tiijV Z(t))0 

+ x(--)(I --q, i1 -z t) 
dt2 (I=-tJ 

+ E 
h 

If(- -q, x - uj) + (-)(- -q, 1 + u -x)zq)(ti) 
q=0 q. 

+ O(t'y hk ) + O((1 - tii)l+'Yk+l), 0 < tii < 1, k > 0. 

Hence, it is easy to verify that for g(t) defined by (5.7), Eq. (4.4) remains valid if the 
order term is replaced by 

O(h /tipn-y) + O(h+ 1/(_ -tiiy-n-y) 

In a similar way, it can be shown that for g(t) = ln I t-tj i the order terms in (4.9) 
have to be replaced by 

O(ln(tii)h /ttp-) + O(ln(1 - tii)hp+l/(l - t j)-n) 

We thus obtain the estimates 

(iii) E = o(hn f w(s) ds) + O(h n+l+^) for P(t, s) = It - s I, 

and 

(iv) E O(hn f w(s) ds) + O(hn+1 In h) for P(t, s) = I t - s. 

As an example, consider the equation 

y 1 4 

y (t) = I + E Pk(t , S)Qk(t, S)y(s) ds, O < t < 7r, 
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where 

Ql(t, S) = sin((t - s)/2 + Int sin((t + s)/2) } 
(t- s)/2) ~ (t + s)(27r - t - s)J 

P2(t, s) = nit - sI, P3(t, s) = ln(27r t s), 

P4(t, s) = ln(t + s), P1 = Q2 = Q3 =Q4=1, 

which has the solution 

y(t) = 1/(1 + 7r In 2). 

Atkinson [1] has applied the product Simpson rule (u, = 0, U2 = 2, u3 = 1, fo w(s) ds 
= 0) to this equation. Although the rate of convergence was observed to be approxi- 
mately 0(h4), only 0(h3) convergence was established. The above estimates yield 
0(h4 ln h) convergence. 

The above can also be extended to Volterra integral equations of the second kind 
with singular kernels. Linz [3] applies a product Simpson and a product block by 
block method based on the points u, = 0, U2 = 2, u3 = 1 to the equation 

y(t) = G(t) + f (t, - Sy-)) ds, t _ 0, 

and estimates order three convergence. The correct order for both methods is three 
and a half. 

Remark. The extension of (4.4) (and hence (5.1)) to the general case with sin- 
gularities of the form (4.1) where vk, vi may depend linearly on h can be made by a 
splitting similar to the above and a similar analysis to that given in Ninham and 
Lyness [5]. The details of such an analysis however are beyond the scope of this paper. 
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