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Note on Error Bounds for Numerical Integration 

By J. H. Hetherington 

Abstract. A length functional was defined in a previous publication which associates a 
length scale r to every function analytic on a given interval. The ratio of r to the mean 
panel size for numerical integration on that interval was defined as the sketchability. 
Stronger error bounds are given here for interpolative integration schemes in terms of the 
sketchability. Since these are not least upper bounds we also present lower limits for the 
least upper bounds obtained from actual numerical integrations of specific sketchability. 
We find the gap between the bounds and their lower limits to be small enough to be ignored 
for most applications. 

1. Introduction. A length functional has been defined in [1], so that every 
function f(x) analytic on the interval has length r associated with it. r is defined as 
the maximum value r such that 

(1) Ifln)(X)I ? Mr-nn! 

for every value of x in the interval and for all values of n> 0_ where M is the maximum 
value of If(x)l on the interval. This length scale allows a definition of sketchability 
for a given numerical integration 

(2) s = rp/H 

where v is the number of panels and H is the length of the interval of integration. 
An error ratio 

(3) g = IEI/HM, 

where E is the integration error, was also defined in [1]. In [1], bounds on g for various 
quadrature schemes were found which are independent of whether quadrature rules 
are compounded, but depend on the sketchability. The bounds given were not least 
upper bounds (L.U.B.s). We have not succeeded in determining the L.U.B. on the 
error as a function of sketchability, but we have bracketed it rather closely. This 
has been done by first obtaining bounds which are much stronger for low sketch- 
abilities and, secondly, finding error examples which are very close to the bounds 
so calculated. 

2. Derivation of Stronger Bounds. The bounds presented in [1] were derived by 
application of the definition of length scale, Eq. (1), to the formula, valid for inter- 
polative quadrature rules, 
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(4) E Gn H n F n) 

where F(n) is the maximum value of Iffn(x)I for x in the interval of integration. 
In [1] we only used the value n equal to the order of the lowest order polynomial, 
which is not exactly integrated by the scheme. Equation (4), however, can be applied 
for any value n equal to or less than that value; see for example [2]. We find these 
bounds, based on lower order derivatives, to be much stronger for lower sketch- 
abilities. 

The coefficients Gn in Eq. (4) are given by 
1/2 

(5) Gn I Kn(x)I dx 
-1/2 

where Kn(x) is the Peano kernel for the scheme for the nth derivative of the function 
and is defined by 

(6) Kn(x) = Et [(t _xY)nV'l]/(n - 1)! 

for n ? 1, where Et is the error functional for a unit interval. The case n = 0 is 
singular, but the coefficient Go is given by 

(7) Go = I+ E{wi] 

where the weights Wi of integration are normalized for the same interval, i.e., 

E W= 1. 
By combining Eqs. (1), (2), (3), and (4), error bounds can be written in the form 

(8) g _ Bns n 

where the Bn are 

(9) Bn - Gnn!. 

We find that each member of this family of bounds is strongest for some range of s 
for each quadrature scheme. Again, we find the Bn and thus the bounds are indepen- 
dent of whether a rule is compounded or used singly, although we do not expect this 
to be true of the L.U.B.s. The bounds for g versus s for a given quadrature consist 
of a series of straight line segments on a log-log plot. 

Table I lists the quantities Gn and log,0 Bn for several Gaussian quadrature schemes 
and for several of the odd closed Newton-Cotes (NCC) quadratures. Also listed in 
Table I are the values of log10 s and log10 g where the bounds intersect. On a plot 
of logl0 g versus log10 s, the bound for a given quadrature scheme is obtained by 
connecting these intersection points by straight line segments. For log10 s greater 
than the last intersection listed in Table I, the bound is given by a straight line leaving 
that point with slope -n, where n is the order of the highest order error term. For 
log10 s below the first intersection point, the log10 g is bounded by a line of slope zero. 
Thus, log,0 Go = log10 Bo can be found in Table I from log10 g value of the intersection 
point for n = 1. Go = 2 for all schemes with all positive weights. 

3. Lower Limits on the Bounds. To obtain lower limits on the bounds, we have 
performed numerical integrations of known sketchability. The function 
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f(x) = A + cos(cwx) 

has been found useful. The length functional r can be determined because the deriva- 
tivesf("(x) with F ? c<Jn are known. Thus, for a given A and co, it is straightforward 
to apply Eq. (1) and obtain r, and thus the sketchability of the particular integration. 
By actually performing the numerical integration, the error ratio g = IEl/HM can also 
be determined since the exact integral is known. Thus, each integration yields a point 
on a log10 s versus log1, g plot. The envelope of these points is a lower limit on the error 
bounds. Table II shows these lower limits for several values of sketchability for the 
same set of quadrature schemes as in Table I. We have included in Table II only un- 
compounded rules. Compounded rules have in cases calculated given smaller errors for 
a given sketchability. Because the function set of given sketchability is somewhat more 
restricted for a longer interval than for a short one, it would be expected that com- 
pounded rules would have slightly lower L.U.B.s. However, the integrals calculated 
indicate that the L.U.B.s are not very much lower and therefore the bounds reported 
here can be considered useful for compounded rules also. 

TABLE I 

The coefficients Gn and logo B. and the coordinates logo s and logo & of the intersection points of 
the bounds for various Gaussian and odd Newton-Cotes closed schemes. 

Scheme n G. logo Bn log10 s log10 g 

1 Gauss 1 .250 - .602 -.903 .301 
(Midpoint) 2 .833 -1.079 -.477 - .125 

2 Gauss 1 .127 - .592 -.893 .301 
2 .101 (- 1) -1.091 -.499 - .093 
3 .119 (-2) -1.240 -.149 - .793 
4 .231 (-3) -1.051 .189 - 1.806 

4 Gauss 1 .689 (-1) - .559 -.860 .301 
2 .273 (-2) -1.058 -.499 - .060 
3 .147 (- 3) -1.249 -.190 - .678 
4 .842 (-5) -1.286 -.037 - 1.136 
5 .544(-6) -1.175 .111 - 1.731 
6 .410 (-7) - .917 .258 - 2.465 
7 .388 (-8) - .494 .423 - 3.455 
8 .562 (-9) .172 .665 - 5.156 

8 Gauss 1 .363 (-1) - .537 -.838 .301 
2 .739 (- 3) -1.024 -.487 - .050 
3 .199 (-4) -1.213 -.189 - .647 
4 .543 (- 6) -1.273 -.060 - 1.032 
5 .155 (-7) -1.214 .059 - 1.509 
6 .460 (-9) -1.061 .152 - 1.976 
7 .142(-10) - .825 .236 - 2.480 
8 .455 (-12) - .512 .313 - 3.015 
9 .153 (-13) - .127 .385 - 3.596 

10 .548 (-15) .330 .456 - 4.234 
11 .210 (-16) .858 .528 - 4.954 
12 .881 (-18) 1.462 .604 - 5.790 
13 .414 (-19) 2.151 .689 - 6.804 
14 .228 (-20) 2.941 .790 - 8.119 
15 .159 (-21) 3.865 .924 - 9.997 
16 .170 (-22) 5.000 1.135 -13.153 
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TABLE I (Continued) 

Scheme n G. log10 Bn log10 S log10 g 

3 NCC 1 .139 - .556 -.857 .301 
(Simpson) 2 .123 (-1) -1.005 -.449 - .107 

3 .174 (-2) -1.079 -.074 - .858 
4 .347 (-3) - .875 .204 - 1.691 

5 NCC 1 .738 (-1) - .530 -.831 .301 
2 .372 (-2) - .924 -.394 - .136 
3 .280 (-3) - .968 -.044 - .836 
4 .257 (-4) - .801 .166 - 1.468 
5 .289(-5) - .449 .352 - 2.210 
6 .517 (-6) .183 .632 - 3.609 

7 NCC 1 .627 (-1) - .424 -.725 .301 
2 .254 (-2) - .738 -.313 - .111 
3 .140 (-3) - .740 -.002 - .733 
4 .834 (-5) - .586 .154 - 1.202 
5 .559 (-6) - .282 .304 - 1.801 
6 .433 (-7) .162 .445 - 2.506 
7 .426 (-8) .779 .616 - 3.536 
8 .638 (-9) 1.635 .856 - 5.217 

9 NCC 1 .845 (-1) - .170 -.559 .389 
2 .273 (-2) - .456 -.286 .116 
3 .118 (-3) - .441 .015 - .486 
4 .525 (-5) - .287 .153 - .901 
S .252 (-6) - .005 .283 - 1.419 
6 .131 (-7) .394 .399 - 1.999 
7 .765 (-9) .908 .513 - 2.685 
8 .521 (-10) 1.547 .639 - 3.567 
9 .449 (-11) 2.340 .793 - 4.797 

10 .589 (-12) 3.361 1.021 - 6.850 

TABLE II 

Maximum error ratios (as log10 S) found for the schemes for which bounds are given in Table I as 
computed from the integral of the function A + cos(cox). Values omitted are in the region where 
integration of some polynomial gives error equal to the error bound in Table I. 

log10 S 1G 2G 4G 8G 3NCC 5NCC 7NCC 9NCC 

-.5 - .298 - .300 - .288 - .315 - .220 - .285 - .170 .118 
-.4 - .419 - .410 - .388 - .415 - .320 - .437 - .267 .021 
-.3 - .568 - .600 - .576 - .583 - .494 - .537 - .367 - .079 
-.2 - .737 - .800 - .776 - .783 - .694 - .666 - .467 - .179 
-.1 - .917 -1.038 -1.062 - 1.053 - .911 - .866 - .663 - .363 

.0 -1.103 -1.329 -1.392 - 1.398 -1.190 -1.084 - .863 - .563 

.1 -1.632 -1.793 - 1.831 -1.490 -1.379 -1.156 - .854 

.2 -1.966 -2.280 - 2.375 -1.811 -1.714 -1.492 -1.195 

.3 - -2.325 -2.826 - 3.033 -2.162 -2.109 -1.897 -1.612 

.4 - -2.699 -3.433 - 3.837 -2.532 -2.551 -2.389 -2.119 

.5 - -3.082 -4.101 - 4.777 -2.912 -3.046 -2.943 -2.715 

.6 -3.470 -4.805 - 5.855 -3.298 -3.562 -3.554 -3.400 

.7 - -5.541 - 7.063 - -4.110 -4.228 -4.163 

.8 - -6.301 - 8.377 - -4.678 -4.934 -4.989 

.9 - - -7.076 - 9.780 - -5.256 -5.673 -5.871 
1.0 - - -7.858 -11.249 -5.841 -6.435 -6.786 
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When sketchability is high enough, a polynomial of the order of the highest error 
derivative can have its sketchability limited by the highest (constant) derivative. In 
this case, the error bound given is the L.U.B. and this occurs for sketchability s > 
vn/2, where v is the number of panels and n is the order of the highest error term. 
In Table II, blanks have been left where the bound given in Table I can be shown to 
be an L.U.B. by this argument. 

Fig. 1 shows the error bounds for the closed Newton-Cotes schemes on 3, 5, 
and 9 points. The shading of the lines in Fig. 1 indicates the range of values between 
the curves of Table I and Table II. For higher sketchabilities, the range is substantially 
narrower than the lines could be drawn. Fig. 2 is similar to Fig. 1, except for the 
Gaussian quadratures on 1, 2, 4, and 8 points. Here also, the width of the lines indi- 
cates the range of values between the curves of Table I and Table II. 

4. Conclusions. It will be noted that, among the Newton-Cotes schemes for 
lower sketchabilities, we find stronger bounds for lower order rules while for high 
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FIGURE 1 

Log-log plot of the error bounds versus sketchability for the Newton-Cotes 3, 5, and 9-point closed 
quadrature schemes. Shading shows the gap between the bounds and actual integrations which 
have been performed. 
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sketchabilities we find stronger bounds for high order rules. The possible range of 
the least bounds is small enough that these intersections exist for the least bounds. 
For the Gaussian quadratures, the bounds also probably intersect, but they are so 
close to each other that it is more convenient to think of them as being coincident at 
low sketchability but spreading out at higher sketchabilities. In any case, the ranges 
in which the least bounds are here bracketed for Gaussian quadratures are completely 
overlapping at low sketchability. 

Application of these bounds to the function of the form 

E A/(a2 + (x- b-)2), 

where the ai and bi are real and the Ai are real positive, is particularly simple because 
the length functional r is just the shortest distance between the points ai + ibi in the 
complex x-plane and the interval of integration. 

iog10 S 
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FIGURE 2 

Log-log plot of the error bounds versus sketchability for the Gaussian 1, 2, 4, and 8-point schemes. 
The gap between the bounds and actual integrations is indicated by the width of the lines. 
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In other cases, the length functional may sometimes be determined without too 
much difficulty from knowledge of the derivatives, for example, the function A + 
cos(cox) which we have used above. 

Because the quantity r is less than the distance to the nearest singularity, it may be 
possible from a knowledge of the analytic structure of the function to put an upper 
limit on r and thus on the sketchability of a given integration. 

For integrations by the Newton-Cotes schemes, we find that when a certain 
fractional accuracy is desired, it can most efficiently be obtained from the quadrature 
scheme for which the bound gives the lowest sketchability for the desired accuracy. 
For example, if it is desired to obtain between about 2.5 and 4.0 digits of accuracy 
with one of the three Newton-Cotes schemes shown in Fig. 1, the 5-point scheme or 
its compounds would be the most efficient. For accuracies below 2.5 digits, the 3-point 
scheme or its compounds would seem to be better, while for accuracies above 4.0 
digits, one finds the 9-point scheme or its compounds to be definitely more efficient. 
This result is independent of the value of r for the function to be integrated. 

5. Applications. Consider the integration 

r6 

I f 1/(1 + x2) dx A-7r 
-6 

The theory can be used to decide how to numerically integrate this integral to obtain 
a desired error bound. We will seek methods which yield a bound 8 ? 102 that is 
in terms of fractional error as a fraction of the answer (IEI/I) - (12/7r) X 10'2. 
We will consider integrating this in three ways: First, a single quadrature over the 
whole interval; second, by using a compounded formula; third, by breaking the 
interval nonuniformly and using different rules in different intervals. 

Consider the possibility of using a single NCC rule over the whole interval. 
Because of the form of the integrand, we may apply the rule stated in Section 4. 
We find r = 1 and therefore, for an n-point NCC quadrature, we obtain 
s = (n - 1)/12. 

If we desire 8 ? 102, then we examine Fig. 1 and find that, for s > 2, 9-point 
NCC gives sufficient accuracy. However, if s = 2, we must have n = 25 which is a 
very large order for Newton-Cotes. Returning to Fig. 1, we imagine that such higher 
order NCC quadratures need still higher s for the accuracy desired and we cannot 
prove that by using higher and higher order NCC quadratures the numerical integra- 
tion will converge. 

On the other hand, a single high order Gaussian rule could be expected, from 
Fig. 2, to require s - 1.6 for & _ 10-2, even for a very high order quadrature. There- 
fore, we find that, with a 20-point Gaussian quadrature, we would have the desired 
accuracy. Experimentally, we obtain log10 6 = - 3.23 for 20-point Gaussian. 

Next, consider Simpson's rule, i.e., the compounded 3-point NCC rule. We find 
that in each subinterval r > 1, and the length of the subinterval is H = 24/(n - 1), 
where n is the total number of points on the whole interval [-6, 6]. The bound on 
the actual error in each subinterval is therefore 

|El < 8HM _ 8.24/(n - 1) 
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since M < 1 on each subinterval. We may define whole as 

whole - (E |EsingieI)/MH 

where M and H refer to the interval [-6, 6] and substituting, we find 

whole < n .8-j 1/(1I12) = 8. 

But s > (n - 1)/12 for each subinterval. We find from Fig. 1 that on each subinterval 
the limit 8 < 102 for s = 1.8. 

Therefore, we expect whole < 10' for about 23 points. We obtain experimentally 
log,, 8 = -3.25 for 23-point Simpson's rule. 

Had we compounded Gaussian quadratures, we would have proceeded similarly 
except that, because the necessary sketchability is lower (?- 1.6), we find that a total 
of about 20 points are needed independently of the order of the Gaussian rules used, 
provided they are 4-point or higher. 

Finally, we may break the interval into irregularly sized subintervals. Since the 
singularities in the complex plane are nearest the point x = 0 on the real axis, we 
need the points to be concentrated in that region in order to make the sketchability 
more uniform. Furthermore, since the maximum M in subintervals further from 
x = 0 is less, we should in fact allow s to be less in those regions if we wish the error 
per unit length JEl/H to be made approximately uniform. For simplicity, we may 
try to hold s approximately uniform and apply 3-point NCC on each irregular 
subinterval. For 8 ? 102, we need s - 1.8 as determined from Fig. 1. Therefore, 
we can take subintervals [0, 1], [1, 2.5] and [2.5, 6] and their reflections because with 
3-point NCC each of these subintervals has s = 2, 1.9, 1.5, respectively. We have 
a total of 13 points on the whole interval, but we expect 8 <? 102, a rather more 
efficient integration than any of the above examples. Experimentally, we obtain 
logo 8 = -3.48. 

We may, in the analysis of an integral, want to know the values r and M for 
a function which is the product of two functions for which r and M are known. 
It is easy to bound r for a function which differs at most by a constant from the 
product of two such functions. Suppose g(x) = f1(x)f2(x) on [xl, x2] and suppose 
r fi(r)} = ri and M{f (x)} = M,; then the coefficients of the power series forf, andf2 
are bounded so that, if 

00 

ft(x) = a(x - xo n=o 

for xoC[x1, x2], then Iad _ Mir. 
Considering the product of the power series, we have 

00 

g(x) = E An(x - XO)n 
n=o 

where 
n 

1 2 

An = E aman-m 
m=0 

From the bounds we have on a', we obtain 
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IAnI ? M1M2 Ermr2n+m. 
m=O 

Assuming without loss of generality that r2 _ rl, we have 
n 

tAn1 < MIM2r-n E (r2lrl). 
m=O 

Therefore, there exist functions g(x) + Cn which have M and r bounded by 

r? (1 - (r2/rl )n)(1 - (r2lrl 
) r2, 

M = (1 - (r2/rl)n+l)n+l(l - (r2lrl)n+2)-nM, M2. 

We may simplify these bounds by writing for n = 0, 1, , and without specifying 
the size of r, relative to r2, 

(10.1) r >( + 1) min(r,, r2), 
(ni + 2) 

(10.2) M = 
+ 2 MM2, 2 

and 

(11.1) ~~~~~r >min(rl, r2), 

M max(r1, r2)MM2 (11.2) Ml = -l M- M2. 

Since the addition of the constant to g(x) will not affect the absolute error of any 
integration scheme, the theory we have given can still be applied to the function g(x). 
However, because a constant added to the function will affect the fractional error 
as defined by 8 = IEl/HM, we will have to take account of it in determining fractional 
error. 

We may now consider the integral 

(12) ,(1~~~~~ cos(cox) x 
(12) 

1 (X - Z1)(X- z2) 
dx 

where z, and Z2 are complex parameters and where co is a real parameter. An integral 
of this character, when integrated numerically, might need a lot of points or a few 
depending on the values of the parameters. We can define a sufficiency condition 
for the subdivision of this integral. On any subinterval of [-1, 1], the functions 

f = (x - zY)-' have ri = r{ f, } equal to the distance in the complex plane from the 
point zi to the nearest point in the subinterval. And M {If } = (ri)-'. Also, r{ cos (cox)} 
> 1/fcol and M{cos (cox)} = 1. 

As a result of our above considerations, we know that the integrand of (12) plus 
some constant is a function which on any subinterval has 

r > a min(1/l1cl, r1, r2) 

and M = fM1M2. Without any analysis of which of the family of bounds (10) is best, 
we select the case n = 3 and obtain 
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r _ (45 )2 min(1l/1co |, rl, r2). 

M = (6.25)M1M2. 

Let us suppose that we desire the result of the integration to about 6 digits relative 
to the integral of the absolute value of the integrand. (We measure the fractional 
error this way because it is convenient because of the considerable cancellation which 
can occur in (12).) Because of the factor 6.25 in M, we need to require 8 to be about 
(6.25)-i X 1lo on each subinterval in order to achieve this accuracy. From Fig. 2 
or Table I, we can determine that, for 8-point Gaussian, the most efficient rule we 
have tabulated in this accuracy range, a sketchability of about 5 is required. Therefore, 
the length H of the subintervals should be bounded by 

(13) H < 8(4) min(97- r, r2) < rI/s. 

Equation (13) is a sufficiency condition on H such that the fractional accuracy will 
be about 106. This prescription is simple enough and specific enough for the pro- 
gramming of a computer to make the subdivision automatically on the basis of the 
parameters co, Z1, Z2. 

Thus, if z, (or Z2) lies very close to the integration interval, subdivision will be 
finer in that neighborhood than in parts of the interval further from z, (or Z2). Also, 
the form (13) will prevent H from being too large to adequately treat oscillations 
due to cos (cwx) when I w1 is large. 
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