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Chebyshev Approximation by Exponentials 
on Finite Subsets 

By Dietrich Braess 

Abstract. This paper is concerned with Chebyshev approximation by exponentials on 
finite subsets. We take into account that varisolvency does not hold for exponentials in 
general. A bound for the derivatives of exponentials is established and convergence of the 
solutions for the discrete problems is proved in the topology of compact convergence on 
the open interval. 

1. Introduction. In a recent note, Rosman [9] studied the convergence of best 
exponential Chebyshev approximation on finite subsets. Unfortunately, his investiga- 
tions heavily depend on results of Rice from 1962 [6], [8], and he assumed that the 
family of exponentials 

(1) Vn = E(x) = pijx'e'"; pij, ti E R, (I + mi) < 
n< i= O ii1 

has the varisolvency property. But, as was shown by the author in 1967 [1], [3], 
varisolvency holds only for the special exponentials of the form 

n 
(2) Zaiet 

i =1 

Moreover, there are two different definitions of varisolvency in the literature. The 
exponentials of the form (2) are varisolvent in the sense of Rice's papers [6], [7], [8], 
but not in the sense of Hobby and Rice [5]. For the study of Rosman's proof, this 
difference cannot be neglected. 

In this note, we will present a different proof, using ideas in Werner's [11] and 
Schmidt's [10] proof for an existence theorem. At first, we establish an estimation of 
the derivatives of exponentials similar to Bernstein's inequality for polynomials. 
Computational methods are not considered here; for this, we refer to [2], [8], [12]. 

2. Estimation of Derivatives. The main result of this section is an estimation 
of the derivatives of exponentials mentioned in [4]. But the major part will be con- 
cerned with the lemmas preparing the convergence theorem in the next section. 

LEMMA 1. Let x0 < xl < ... < xn. Iff e Cn[xo, xn], and if 
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holds, then there exists a point z E [x0, xj], such that 
n n 

(4) Ifln)(z)l ? M n! Z II 1/xi - xj. 
i=O if=O;jdi 

Proof. Consider the polynomial p(x) of degree n which interpolates f(x) at 
x0, xi, ... , xn. Since f - p has n + 1 zeros, there is at least one zero of (f -p)In. 

Observe that the right-hand side of (4) represents an upper bound of the nth deriva- 
tive of the Lagrangian interpolating polynomial. D 

By a special choice of points, we get an estimation for functions defined on an 
interval. For each compact set Y, we define the Chebyshev norm on C(Y) as 

WHfIY = SUp If(x)I. 
xEY 

COROLLARY 2. Let X = [a, 3] and d = - a. For each f E CO(X), there exists 
a point z E X, satisfying 

(5) j~~~~~~f (n1(Z)j < 22n- ln! d-n. I if I IX. 

Proof. Let xi = 2(a + 3)-(d/2)cos(ri/n) for i = 0, 1, * , n. By applying 
Lemma 1 to the transformed Chebyshev polynomial f(Q(a + 3) + dx/2) = Tn(x) 
we obtain the equal sign in (4). From T(8 (x) = 2r-1n!, we determine the factor of 
M in (4). This yields the theorem. El 

Now, we have established a priori estimates which are necessary for the applica- 
tion of the main lemma that generalizes a theorem of Schmidt [10]. Notice that deriva- 
tives of exponentials are exponential, too. Thus, they have at most n - 1 zeros or 
vanish identically. 

To each (finite) sequence of distances dl, d2, * * , dn and to the corresponding a 
priori constants M1, M2, ... , Mn, there are associated n + 1 numbers by a recursive 
process 

(6) = 0, 

Kv = Mv + dvKv+l, v = n, n- 1, .., 1. 

LEMMA 3. Let d1, d2, * , dn be positive numbers, satisfying 

(7) dl + d2+ * + dn < do 

Let X D [xo - d, x0 + d] and f E Cn+ 1(X). Suppose that f (n+1) has at most n-1 

zeros or vanishes identically in X, and, moreover, that in each subinterval of length 
dv (v = 1, 2, *, n), there is a point z such that 

(8) If (o~ <_ M. 

Then 

(9) If'(xo)I ? K1 

holds with K1 defined by the recursion relation (6). 
Proof. Suppose to the contrary that (9) is violated and, say, f'(xo) > K1 holds. 

By an inductive proof we will show that, for v = 1, 2, * , n, there are points (v, nv 
such that 
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V V 

(10) X0 E d, v ::< ! x0 + E d, 

(1 1) f (v+'Q) > K*, _ )fVl( > K , 

and f(V+l) has v distinct zeros in [b,, ml. 
Let v = 1. By assumption, If'(zi)l < M1 holds for a point z, C [xo - di, x0]. 

From Rolle's theorem, we obtain a point 0 ? [z1, xo], satisfying 

frI/Q0 = f (XO) - f'(z1) > K1 
- Ml _ K f'x) =K2. 
d 

A corresponding construction yields nl ? [xo, x0 + d1] with the postulated properties. 
By virtue of (11), there is a zero of f"(x) in (hQ, qi). 

Assume that the statement holds for v - 1 <. n - 1. Denote by xl, x2, ** , 
the zeros of f(V). By assumption, we have If(')(z)l < Mv for a point z E [iv-l-dV9 
t^-1]. Let f (V attain its maximum in [z, xi] at zi. From f ()(zi) > f (V)(r) > K, > 
X _ f y(z) and f(V)(xi) = 0, we conclude that z1 ? (z, xi) and f(V+l)(zi) = 0. Set 
z2 = min(zl, t-1). By virtue of Rolle's theorem, there exists (v, satisfying 

f(V+l)( 
) 

- (v) (Z2) - f (Z) (> K -+1 

Construct nV ? [m,-9, flV-i + djI by an analogous procedure. Hence, f(P+l) has at 
least v - 2 zeros between xl and x,-1. Moreover, two zeros are determined in (iv, xl) 
and (x,_l, 77,), respectively, and the induction is complete. As a consequence, for 
v = n, there is a contradiction to the assumption on the zeros of f a+ 1). ClI 

Now we are ready to prove the desired estimation. 
THEOREM 4. Let X = [a, A] and 2d < A - a. There exists a constant c = Cn, such 

that, for each exponential E of degree _ n, 

(12) 1E'(x)I < (c./d)I IEIIx for x C [a + d,f3 - d]. 

Proof. It is sufficient to prove the theorem for E(x) 4 0. Given x0 ? [a + d, 
13-d], set 

f(x) = (1/1IEIjx).E(xo + dx), -1 ? X < +1. 

Obviously, f(x) is an exponential and If II l.?'] ? 1 holds. Let d1, d2, ., d,, be 

positive numbers, the sum of which is 1. Set 

Kn+i = 0, 

(13) KV = 2 2v1. d-V + d,,KV+, Y = n, n - 1, *., 1, 

Cn = K1. 

By virtue of Corollary 2 and Lemma 3 we obtain If'(0)I < cn. From this, the inequality 

(12) is evident. Z 

3. Approximation on Finite Subsets. Let X be a compact interval on the real 
line and let X, be a set of r distinct points in X. Then the density of Xr in Xis measured 

by 
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Ar = max min Ix - yL 
xEX YEEXr 

We consider a sequence of subsets {Xr}, satisfying Ar -+ 0 as r tends to infinity. 
Since X is compact, this is equivalent to the assumption in [9] that, given x ? X, 
there is an Xr C Xr such that x, -* x. 

As usual, Er is called a best approximation to f on Xr, if the functional I If - El Xr 
attains its minimum on V, at Er. It is known that best approximations need not exist 
on finite point sets [8] and unicity of the solution cannot be ensured [1]. From the 
computational point of view, it is reasonable to assume existence anyway. However, 
for a rigorous proof of the convergence theorem, we avoid this difficulty by the defini- 
tion of nearly best approximations. Let E* be a best approximation to f(x) on X. 
Er is called a nearly best approximation to f(x) on Xr, if 

jjf - ErIlxr - jjf - E*Ijx. 

Obviously, each best approximation on Xr is a nearly best approximation. 
THEOREM 5. Let X = [a, /3], and let Xr be a sequence of finite subsets, such that 

Ar -A 0. Then, each sequence of nearly best approximations { Er } contains a subsequence 
that converges to a best approximation E* on X uniformly on each compact subinterval 
of (a, -3). If E* has the maximal degree n, then convergence is uniform on the total 
interval X. 

Proof. Let Y = [a1, Oj] be a compact subinterval of (a, A). Set Y1 = ['(a + a,), 
2(3 + 3k)]. From Corollary 2, we know that, in any interval I of length d, we can 
find n + I points x0,,, x, xX such that the sum in inequality (4) has the value 
22n 'd-. Since Ar tends to zero, for sufficiently large r, we may choose n + 1 points 
in I C\ Xr such that the sum can be bounded by 22n. d-n . By virtue of Lemma 3 and by 
I IEr IXr I If - Erjl Xr + I If [ lxr < 2 1 If I I, there is a constant c such that, for sufficiently 
large r, 

Er'(X)I < c- IIEr Ixr _ 2c Iif Ix for x ? Y1. 

Since for each x ? X there is a point in Xr with a distance not greater than Ar, we 
obtain 

IIErIy1 - (2 + 2cAr)!!f!!x. 

Hence, { Er} is bounded on Y1. By Corollary 1 in [10], there exists a subsequence 
converging uniformly on Y C Y1 to an exponential E*. By standard arguments, we 
conclude that this subsequence converges uniformly to E* on each compact subset 
of (a, /3). Obviously, E* is a best approximation to f on X. Moreover, from Theorem 
4 in [10], we obtain uniform convergence on X, if E* has maximal degree. E 
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