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An Error Analysis of a Method for Solving 
Matrix Equations 

By C. C. Paige* 

Abstract. Let B = [L O]Q be a decomposition of the m by n matrix B of rank m such that 
L is lower triangular and Q is orthonormal. It is possible to solve Bx = b, using L but not 
Q, in the following manner: solve Ly = b, solve LTw = y, and form x BTw. It is shown 
that the numerical stability of this method is comparable to that of the method which uses 
Q. This is important for some methods used in mathematical programming where B is very 
large and sparse and Q is discarded to save storage. 

1. Introduction and Insight. For a given m by n real matrix B with rank m, 
n > m, and a real m-dimensional vector b, the under-determined set of equations 

(1) Bx = b 

can be solved as follows. First, use the transformations of either Givens or House- 

holder to obtain the decomposition 

(2) B= [L O]Q= [L O[ IQ LQ, LQ2J 

where L is lower triangular and Q is orthonormal, so that 

(3) Q FQ 1 

This could be done for example for small matrices by applying Householder trans- 

formations to BT via the procedure "decompose" in [1]. A solution of (1) is then seen, 

by substitution, to be 

(4) x = L 

and since this lies in the range of BT, it is orthogonal to the null space of B and so is 

the solution which minimizes 

(5) I lxi 12 = (xT x)12. 

This problem arises in important algorithms used in mathematical programming, 

for example in [2] and [3]. However, in these cases, B is usually very large and sparse 

and, because of storage difficulties, it is often uneconomical to store and access Q,. 
If this is so, the solution can still be obtained by noting that, if w is obtained from 
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(6) BBTw = LQ QT LTw = LLTw = b 

by solving with L and then LT, then x is given by 

(7) x = BTw, 

and this can be seen to give the same mathematical result as in (4). 
Unfortunately, when such results are obtained on a computer, rounding errors 

occur; and the two different approaches are likely to give different answers. Some- 
times it has been thought that the second result could be disastrously worse than the 
first, thus negating, to a large extent, algorithms similar to the one described by 
(6) and (7). It is the purpose of this note to show that such algorithms are numerically 
quite satisfactory. 

In order to obtain a clear understanding of the problem and what is happening, 
a simple computation will be examined before carrying out the full analysis. This 
computation has no practical use other than to clarify the numerical performance 
of the actual case. Suppose A is a nonsingular square matrix and 

(8) A ATw = b 

is solved on a floating-point computer with precision E to give ii. How well does 
x = ATw approximate x = ATw? Note that this computation is similar to that 
in (6) and (7), except that no special advantage is taken of any decomposition here 
and no error in forming AT w will be considered. For simplicity, assume that I IAI 12 = 1, 
so that x IIA 11,2 is the spectral condition number of A. 

The set of equations (8) can be solved in two distinct ways. First, AAT could be 
computed and the resulting positive-definite symmetric matrix equation solved, for 
example, using the Cholesky factorization. From the rounding error analysis [4, pp. 
115, 231], it is known that the computed solution w will satisfy 

(9) (AAT + El))w = b, I1E,112 = 'E _ f(n),E 

where f(n) is some function of n, the dimension of the problem. But this is just 

(10) A(I + A_'ElA-T)ATo = b = AATW, 

so that on multiplying throughout by A1 and taking norms 

(11) |Ix -k 12 = IIATW - A TII2 = IIAE1AT A Tp12 

? XEi11W112 I XIi 11-x112 

But just solving Ax = b directly, using a reliable method, is known to give a bound on 
the error I Ix-xl 12 proportional toXEJ IH 12, so that if IlI 112 is very large, the above 
method for solving this equation can lead to a disastrous loss of accuracy. 

For the second approach to solving (8), consider solving Ay = b and then solving 
ATw = y for w. Using, for example, triangular decomposition with pivoting, this 
will give a computed solution w satisfying [4, pp. 215, 248] 

(12) (A + E2)(AT + E3)0 = b, IIEII12 = 1E < f(n)aE, 

where a depends on the largest element arising in the decomposition 

(13) .1. Ax = A(I + AlE2)(I + E3A T)A T = b 
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so that 

II - X112 < XE2 11X112 + (E3 + XE2E3) II1 l12 

(14) 
-(X( + XE3 + E2E3) 11xI12, 

and if xE, < 1, the order of magnitude of the error bound is the same as that for the 
direct solution. This, in effect, is what happens in solving (6) and computing (7); 
that is, whenever the square of the condition number occurs in the error bound for 
the final solution, it is effectively multiplied by the square of the precision. Note that, 
in both the examples just considered, a X E term will appear in the error bound for iV, 

so that the intermediate vector w could have negligible accuracy, but in the second 
method of solution, the final result could still have quite a few accurate figures. The 
same comments apply to computing (6) and (7); X will not lose as much accuracy as 
the intermediate result i. This is a fairly regular occurrence in numerical computations 
and needs to be emphasized. 

2. Analysis of the Practical Algorithm. For simplicity, in the full analysis, the 
multiplicative terms involving the dimensions of the problem will be omitted from 
the error bounds. These are relatively unimportant and can be found for any particular 
computation from the literature [4]. Results of rounding error analyses will be quoted 
from [4] without further reference, and the symbols E, will indicate nonnegative quan- 
tities which are just the product of E, the computer precision, and constants dependent 
only on the dimensions of the problem. It will be assumed that I LI 2 = 1 in (2) so 
that x- IIL' 12 is the condition number of L for solution of equations. 

The computed lower triangular matrix L obtained by applying the orthogonal 
transformations of either Givens or Householder to B can be shown to satisfy 

(15) B + E4 [L O]Q = LQ1, 

I, 11E4112 = E4; 

and, when this is combined with (2), it follows that 

(16) L = LQ1Q, + E41. 

The computed solution w of Ly = b, L7w = y can be shown to satisfy 

(17) (L + El)(LT + E2)0 = b, IIEI112 = E, 

while the formation of the final solution gives 

(18) x = (BT + E3)>, 11E3112 = E3. 

Equations (15), (17), and (18) describe the rounding errors that occur in the 
computation. These will now be manipulated to show their effect on the final solution. 
From (4), (16) and (17), it can be seen that 

(19) X = QT-lb = QTL-(LQ1Q 
T + E4Q( + E T(L + E2)p, 

- Ql[Ql + L1(E4 + ElQ)][Q, L + 1E2hP, 

where use has been made of Ql Tl = I. But using (15) and then (18), 
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(20) TLTo = BT* + E To = X + ETo -E- 

so that (19) becomes 

(21) X = QT[Ql + L 1(E4 + E1Q1)][L + (E4 - E3 + QTE2)0]. 

Next, from (18), using Q1Qt -I, 
T QLT To+ Q TQ1E3) 

= BT + Q TQ1E3* 

= x + (Q1Q1 - i)o, 

so that (21) gives 

(22) x - = (QTQ1 - I)E30 + QTQ1(E4 - E3 + QTE2)0 

+ Q1L1(E4 + ElQ1)[k + (E4T - 3 + Q1E2W1. 

The QT QlE3 terms cancel in this last equation, and since, from (18), 

w= L Qix- LTQ1E30, 

which, if XE3 < 1, gives 

(23) 11*112 _ X 11X112/( - XE3), 

it can be seen by taking the norm of (22) that 

lIX - X112 _ [E3 + E4 + E2 + X(E4 + El)(E4 + E3 + E2)] 11*112 

(24) + X(E4 + El) I 1 1 12 

< {X[ + ] + X[E2 + E3 + E4][1 + X(Ei + E4)fl 11X112. 
=- 

,l+ 14 1 XE3 1) 11 

Thus, if XE << 1, the bound on the error in x is proportional to XE rather than x2 e 
as has often been thought. There is then no catastrophic loss of accuracy in computing 
(6) and (7) rather than (4), and so the algorithms described in [2] and [3] can safely 
be used. 

This analysis applies to the fully determined case as well as to the under-determined 
case. Of course, the analysis can be simplified if the fully determined case is treated 
alone, but the result will be just the same. Computational tests carried out by Michael 
Saunders for the fully determined case using leading parts of the Hilbert matrix 
indicated that (24) was a fairly tight bound. The computations on the same matrices, 
using (4), gave results well within the bounds for this approach, and so these results 
were in fact better than those obtained by using (6) and (7). Such comparisons have 
probably helped to form the myth that (6) and (7) produce a %2E error effect in the 
solution x. 
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