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On the Vanishing of the Iwasawa Invariant .,
for p < 8000

By Wells Johnson

Abstract. The irregular primes less than 8000 are computed, and it is shown that the
Iwasawa invariant u, = 0 for all primes p < 8000.

1. Introduction. Letp = 2m + 1 be an odd prime number, and let F, (n = 0)
be the cyclotomic field of p"*'th roots of unity over the rational field Q. Let p* be
the exact power of p which divides the class number 4, of F,. Iwasawa [4] has shown
that there exist integers u, = 0, A\, = 0 and », such that

e(n) = up" + \on + v,

for all n sufficiently large. Iwasawa and Sims [7] have computed the cyclotomic invar-
iants w,, A,, and », for all primes p < 4001. In particular, they showed that u, = 0
for every p =< 4001.

In this paper, we derive some conditions on p which are necessary if u, > O.
Computations have been performed which show that these conditions are not satisfied
for any prime p, p < 8000, so that u, = O for all such primes. In particular, the
computations of w, in [7] have been verified, although these appear to have been
incomplete, since they were based upon the incomplete tables in the first paper of [8].

The author wishes to acknowledge the assistance of his colleagues, R. B. S. Brooks
and M. W. Curtis, in the preparation of the computer programs.

2. Notation. Let Z, denote the ring of p-adic integers. Let U be the group of
units of Z, and let ¥ denote the cyclic subgroup of U consisting of the (p — 1)st roots
of unity.

Any x in Z, has the p-adic representation

@

k

X = Z XD 5
k=0

where the x, are rational integers satisfying 0 < x, < p for k = 0. In the following,
the subscript notation x, will always denote the coefficient of p* in the p-adic expansion
of the p-adic integer x. If x is given as above, we define the truncated sum s,(x) by

s.(x) = D xupt.
k=0
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388 WELLS JOHNSON

Thus, x = 5,(x) (mod p"* ) and 0 < s,(x) < p"**'foralln = 0.

For any rational integer a, 1 < a < p — 1, we let v(@) denote the unique member
of ¥V satisfying v(a) = a (mod p). In particular, we always have v(a), = a

We use the so-called “even-index” notation for the sequence of Bernoulli numbers,
B,. This notation and the basic results on Bernoulli numbers used here are given in [1]_

3. Results of Iwasawa. Iwasawa ([3], [5], and [6]) has proved the following
fundamental theorem on the cyclotomic invariant w,:

THEOREM 1. u, > 0 if and only if there exists an odd index i, 1 £ i < p — 4,
such that

() 2 sJ(uv)d = 0 (mod p"*)
W€V

Sor all units u & U and for alln = 0.

In [3], Iwasawa proves the equivalence of (1) with another set of congruences
modulo p, using the relation (w),p" = s,(wv) — s,_,(w) forn = 1:

THEOREM 2. pu, > 0 if and only if there exists an odd index i, 1 < i < p — 4,
such that

> (wv)0' = 0 (mod p)

WEV
forallu & Uand foralln = 1.

By choosing # = 1 in Theorems 1 and 2, we obtain
THEOREM 3. If u, > O, then there exists an odd index i, 1 < i < p — 4, such that

(€] > v’ = 0 (mod p*), and
WEV
)] > vy = 0 (mod p) foralln = 1.

1€V

It is known from the general theory of I'-extensions that u, = O for all regular
primes p (see [11] for a nice proof). We show next how this follows at once from
Theorem 3.

COROLLARY. If u, > O, then there exists an odd index i, 1 < i < p — 4, such that
B; ., = 0 (mod p). Hence p is an irregular prime.

Proof. Part (1) of Theorem 3 implies that

D oo + o) = D 08"t + pi O vwh = 0 (mod p).
WEV vEV vEV

But the second term is 0 (mod p®) by part (2) of Theorem 3. Hence

p—1
Biwp= D, a" = X vy = 0 (mod p*),

a=1 €V

as desired.

4. Additional Conditions for Positive u,. In this section, we investigate the im-
plications of Theorem 2 for different choices of the units u & U, obtaining additional
necessary conditions that u, be positive.

THEOREM 4. If u, > O, then there exists an odd index i, 1 < i < p — 4, such that
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e))] B;., = 0 (mod p),
p—1 . p—1 .
[?)) > &= >, a'=0(modp) foralln = 1.
a=1;a+v(a)n<p a=1l;a+v(a)a2p

Proof. We have already seen that (1) is true. If n = 1 and v & V, we can write

v=wvo +vp+ -+ + ™ (mod p**?).

For u = 1 4 p", we have

w=vy+ - + 0,0+ @ + vI0" + @ F vae)p" (mod pE).

Thus, if v, + v, < p, we have that (w), = v, + v, and (w),., = v, + v,., (mod p).
However, if v, + v, = p, then (w), = v, + v, — p and (uv),,; = vy + V41 + 1
(mod p).
By Theorem 2, Y,y (up),.:0° = 0 (mod p), or
D @ +oawh+ D, vh= 0 (mod p).
W€V 2EVivo+va2p

But by Theorem 3, the first sum is 0 (mod p), and therefore, so is the second. Since
> vev U5 = 0 (mod p), we have

vo= D, v=0(modp),
vEVivo+vn<lp v€Vivoton2p

which is the same as (2).

We remark that for several other choices of the unit u in Theorem 2 (e.g., 4 =
p — land u = 1 4+ 2p”) we have derived additional congruences which are also neces-
sary conditions for u, > 0. These are omitted here since they are not required for any
of our computations. We have selected the congruences of Theorem 4 since they lead
(in the next section) to a sum with relatively few terms, thus providing for the greatest
computational efficiency.

5. Main Theorem. For the actual computation of u, for p < 8000, it was
necessary to use Theorem 4 only in the case that n = 1. In this section, we derive
some simplifications of Theorem 4 when n = 1.

By expanding the congruence

1 = v = (a + vy (mod p°),
we see that v(a), is completely determined by the conditions
) v(@), = (@ — a)/p (mod p) and 0 = v(a), < p.
It is easy to see by (2) that
3 v@, +vlp —ay=p—1, 1=a=p-—1.

It follows immediately that a + v(a), < p if and only if (p — a) + v(p — a), = p,
so that, letting b = p — a and recalling that i is odd, we obtain
m p—1

a = — Z b* (mod D).

a=1l;a+v(a):<p b=m+1;b+v(b) 2D
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By the Mirimanoff congruence [9]
2G4+ 1) 2 o' = (1 — 2" By, (mod p),
a=1

we see that B, ,, = 0 (mod p) implies that

m p—1

Za"E Za‘EO(modp).

a=1 a=m+1
Combining the above congruences with the results of Theorem 4, we arrive at our
main result:

THEOREM 5. If u, > O, then there exists an odd index i, 1 < i < p — 4, such that

() B;., = 0 (mod p), and

() 2. @ =0 (modp).
a=1;a+v(a),;2p

The computations of Theorem 5 were carried out on the PDP-10 computer at
Bowdoin College for all primes p < 8000, and the results are included in the Table
accompanying this paper. About 60 hours of computing time were required for all
the computations, the bulk of it in the search for the irregular primes and for the
Bernoulli numbers satisfying (1). For no prime p < 8000 is the conclusion of Theorem
5 satisfied, so that we have

THEOREM 6. The Iwasawa invariant u, = 0 for all primes p < 8000.

A more detailed explanation of how the computations of Theorem 5 were carried
out is given in the following sections.

6. The Irregular Primes. The first condition of Theorem 5, that involving the
Bernoulli numbers, has been of interest since Kummer’s fundamental work on
Fermat’s Last Theorem in the nineteenth century. In a series of papers, Vandiver and
others [8] claimed to have found all ordered pairs (p, i + 1) satisfying B; ., = 0 (mod p),
for p < 4001. They then verified that Fermat’s Last Theorem is true for all exponents
in this range. These pairs were used by Iwasawa and Sims [7] for their computation
of the cyclotomic invariants u,, \,, and », for primes p < 4001.

Our approach to finding these pairs was somewhat different from that used in [8].
The Bernoulli numbers satisfy the recursion relation

k
@ >+ 8 -0

i=0 J
with B, = 1. Computing the binomial coefficients (mod p), we can use the above to
compute B, (mod p) recursively. This requires, of course, that we store the B;’s as we
go along. Since B; = 0 for j odd, j = 3, there are really only approximately k/2
terms in the sum defining B,.

Carlitz posed the following identity for the Bernoulli numbers as a problem in [2]:

(5) (=" iﬁ (:”) B.., = (—1) ZO (’;) B,... mnz=0.

If we let f(m, n) be the left-hand side of this equation, the problem is to show that
f(m, n) = f(n, m) for all m, n = 0. This is easily done by induction on m, using the
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identity f(m 4+ 1, n) = —f(m, n) — f(m, n + 1).
If we now consider the special case m = n + 1 in (5), we obtain

n

(6) 2. Cn,MNB,,, =0, n=xl,

r=0

where C(n, 0) = 1 and
n—+1

r

)+( " ) for1 <r<n-+1.
r—1

Equation (6) defines B,, recursively in terms of B,, B,.,, - - - , B.,_,, a considerable
saving in computation time over the recursive relation (4). The coefficients C(n, r) are
easily computed modulo p, since they form a Pascal triangle whose first row is 1 2.

Using Eq. (6) modulo p, we found all pairs (p, i + 1) with B;,, = 0 (mod p) for
all primes p < 8000, at which time the program was terminated, since each additional
prime took an excessively long time to run. Four additions were found to the tables
in the first paper of [8], and these are marked with an asterisk in the accompanying
Table. These omissions also occur in the table on p. 430-431 of [1], and, presumably,
in the table (not completely published) of [7].

In [8], a prime p was first tested for irregularity by means of the congruence

20+ 1) 2 a=@" 43— 677 — 1B, (mod p)

p/6<a<p/4

which holds for p > 7. As a check on our computations, we ran another program for
the four pairs (p, i + 1) omitted from [8] as well as for those pairs for which 4002 <
p < 8000. For each of these pairs, it was found that the sum on the left-hand side of
the congruence above is 0 modulo p, while the coefficient of B; ., is not, so that indeed,
B; ., = 0 (mod p).

Selfridge and Pollack [10] have found all pairs (p, i + 1) with B,,, = 0 (mod p)
for primes p < 25,000, and they have verified that Fermat’s Last Theorem is true
for all exponents less than or equal to 25,000 using the methods of [8]. A complete
table of their calculations has not yet been published, but when it appears, we intend
to use it to make further computations of the Iwasawa invariant u,. The validity of
Fermat’s Last Theorem for exponents less than or equal to 8000 was also verified
by us in still another machine computation, using the criteria developed in [8].

Cn,r) = (

7. Computation of the Sum in Theorem 5. In this section, we make some
remarks on the algorithm that we devised for computing the sum in Theorem 5.
The real problem lies in computing v(a), fora = 1, 2, - -+ , m. This can be done, of
course, by Eq. (2), but those computations really have to be done modulo p®. Below,
we indicate how certain of the v(a),’s can be found from others by means of a linear
congruence modulo p.

Clearly, v(1), = 0, so that the index a = 1 is never included in the sum. We first
computed v(2),, using Eq. (2). The following identities can be derived from (2) and (3):

v(a), — 2v0(a/2), — (a/2)v(2), = 0 (mod p)  (a even),
v(a) + 20> — @)/2) + ((p — a)/2)w(2); + 1 = 0 (mod p)  (a odd).

Hence, given v(a), for some a, 1 £ a £ m, these identities may be used to compute
either v(a/2), if a is even or v((p — @)/2), if a is odd, without resorting to Eq. (2).
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Starting with a = 1, for example, we next computed v(m), = v((p — 1)/2),, then
v(m/2), or ((p — m)/2), = v((p + 1)/4), (depending upon whether m was even or
odd), and so forth, until a full cycle was completed. We then searched for the first q,
1 < a = m, for which v(a), had not yet been computed, found the value of v(a), by
using Eq. (2) again, and then began another cycle using the identities above. This
procedure was continued until v(a), had been computed for alla = 1, 2, --- , m.
It can be shown that the cycles arising in this way all have the same length and that,
in the particular case that m is also a prime number, there is but one cycle, indicating
the efficiency of the algorithm thus devised.

If we assume that, for fixed a, it is equally likely that v(a), assumes any one of the
values 0, 1, 2, --- , p — 1, then the probability that the term a’ appears in the sum
of Theorem 5 (i.e., the probability that a + v(a), = p) is just a/p. Thus, the expected
number of terms in the sum is Y ", a/p = p/8 — (8p)™", or approximately p/8 for
large primes p. It is interesting to compare the value p/8 with the entries in the third
column of the accompanying Table.

8. The Table. In the first two columns of the accompanying Table, we have
listed all pairs (p, i + 1), where p is a prime, p < 8000, and where the Bernoulli
number B;,, = 0 (mod p). The four additions to the tables of [8] are marked with an
asterisk. The third column contains, for each of these pairs, the number of integers
a, 1 £ a £ m, satisfying the condition a + v(a), = p. This is the same as the number
of terms in the sum D™, ... (.2, @' Of Theorem 5. The value of this sum modulo p
is given in the final column of the Table. Since a zero never appears in this final column,
we can conclude by Theorem 5 that Theorem 6 must be true.
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