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Higher Order Accuracy Finite Difference Algorithms 
for Quasi-Linear, Conservation Law 

Hyperbolic Systems* 

By S. Abarbanel and D. Gottlieb 

Abstract. An explicit algorithm that yields finite difference schemes of any desired order 
of accuracy for solving quasi-linear hyperbolic systems of partial differential equations in 
several space dimensions is presented. These schemes are shown to be stable under certain 
conditions. The stability conditions in the one-dimensional case are derived for any order of 
accuracy. Analytic stability proofs for two and d (d > 2) space dimensions are also ob- 
tained up to and including third order accuracy. A conjecture is submitted for the highest 
accuracy schemes in the multi-dimensional cases. Numerical examples show that the above 
schemes have the stipulated accuracy and stability. 

Introduction. The task of solving numerically the equations of gas dynamics 
has given rise in the last 25 years to the search for finite difference algorithms of 
increasing accuracy and efficiency. The pioneering work in the late 1940's of von 
Neumann and Richtmyer [1] on the one-dimensional case led to work of Lax [2], 
Lax and Wendroff [3], Strang [4] and Richtmyer [5]. By the mid-sixties, the problem 
of constructing stable 2nd order algorithms in two space dimensions was solved by 
Lax and Wendroff [6], Richtmyer [7, p. 361] and Strang [4], [8]. Burstein and Mirin 
[9] and Rusanov [10] then solved the 3rd order accuracy case while Strang's [4] work 
included arbitrary order of accuracy for a linear system in one space dimension. 

In the present paper, the following results are presented: 
(1) An explicit algorithm that yields finite difference equations that approximate 

the quasi-linear hyperbolic system to any desired accuracy and for arbitrary number 
of space dimensions. 

(2) Analytic stability proofs and criteria of the above-mentioned algorithms in 
the case of one dimension, for arbitrary order of accuracy. 

(3) Analytic stability proofs in the 2 and d (d > 2) dimensional cases up to and 
including 3rd order accuracy with sufficient stability conditions. 

(4) Numerical examples are carried out for a one-dimensional 2 X 2 system and 
a two-dimensional 2 X 2 system. The computed values are compared with analytic 
solutions and are shown to have the stipulated accuracies (4th order for the 1-D case 
and 3rd order for the 2-D case).' 
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1. The Basic Algorithm. We are considering the following quasi-linear hyper- 
bolic system which is in a conservation law form: 

(1.1) as = E fOF()() = O9t 31 O9X3 3=1 O9xi 

where the matrices A are the Jacobians of the vectors Fj with respect to the vector 
u, u E c&. d is the number of space dimensions. 

Theorems 1 and 2 below present explicit algorithms for obtaining schemes of 
accuracy p + 1 and p + 2, respectively, if a scheme of accuracy p is already known. 
Using these results inductively will lead to schemes of any desired order of accuracy 
in any number of space dimension. The discussion of stability is postponed to a 
later section. 

THEOREM 1. Given Eq. (1.1) above, and given that z'+t is an approximation 
to u(t + a,% At) of accuracy p, i.e., 

(1.2) u(t + \, At) n= n+af + O[( At)p+l], 

then 

in d 

(1.3) u(t + At) u(t) + At - F(Zn+at) + '[(3At)p+2] 
t=1 1 F(X+ 

where 

(1.4) a' = 1/(k + 1), k = 0, 1, *, p. 

Proof. From Eqs. (1.1) and (1.2), it follows that 

(1.5) Z __ F,(zn") = u(t + ac, At) + O[(At)p+l]. 

Next, expand the first term on the R.H.S. of (1.5) in a Taylor series up to order p: 

(9 ~~~~pa k 
Atk 9k+1 

(1.6) u(t + a, A) = E (- a-0-- U(t) + O[(,At\')]. 
O9t k=O k! O 

Next, substitute (1.6) into (1.5), multiply both sides by A, and sum on i from 1 to m: 

mn d m 

Z+ , 
i pa 

k 
Atk 9k+1 

(1.7) E , E a F. (Zn+a ) = E I(t) -k+1 u(t) + O[(At\)P+1] 
,1=1 1=1 (1 X =1 k=O k t 

Multiply both sides by At and add u to both sides: 

mn d ( 
U + At Z'3 s E F(Zn.at) 

(1.8) O= 21X} 

u+ZKZ jk}( 

~ ( 
k! 

+ 

u(t) + O[(,At)p+]. U 
( m, ) 0 

Zta, atk+1 

We now require that (1.4) be valid, i.e., k = (k + 1)-1, and Eq. (1.8) now 
becomes 
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m d V ~~~~~~~~~~~( tk?1 k?1 

u + At a [3 E - Fn(Zn) = U + E ( + 1)! Ukmi u(t) + O[(At) +2] 
3=1 9i k=x3k 

= u(t + At) + O[(At)P+2] 

which proves the theorem. 
Several comments are now in order. 
(i) Since m is arbitrary, then, for any integer p, there exists a solution of Eq. 

(1.4). Specifically, for any p, we may take m = p + 1 and select the a<i's a priori to 
be different from each other but otherwise arbitrary. Then, Eq. (1.4) becomes a 
linear system for the unknowns 1, 02, . .. , *,+l. The determinant of the coefficients 
is of Vandermonde's type and, therefore, the system possesses a solution. 

(ii) The algorithm expounded by Theorem 1 can easily be extended to the non- 
conservation law form case by replacing, in Eq. (1.3), the term WFj(z+ a')/Iaxi by 
the expression Ai(zn+ a i)[azn+' a /3xj]. The proof then proceeds in exactly the same 
manner as above. 

A related though different algorithm, which "upgrades" zn+ a not by 1 but by 2 
orders of accuracy, is now given. 

THEOREM 2. Given Eq. (1.1) and Zn+ as defined in Theorem 1, then 

d 

u(t + At) = u(t) + At E a Fj(u) + (At)2 
(1.9) i=1 (9x 

E7 b 
E [ ) Fi(Zni)j + OV[(At)p 3] 

i i =l (9Xj 1=1 (9X1 

where 

m 

(1.10) yi ak = 1/(k + 1)(k + 2), k = 0, 1, * *, p. 
i =1 

Proof. According to Eq. (1.1), and using the Lax-Wendroff technique [5], the 
R.H.S. of Eq. (1.9), except for the O[(At)P+3] term, is equivalent to 

ou At2m 
02 

u + At (At) E i u(t + ai At) 
(1 .1 1) A(9t T=1 at2 

U + At + (At)2 E( E t atk+2 + O[(A) (9t I=1 k=O k 

Substitute (1.10) into (1.11) and thus the total R.H.S. of (1.9) becomes 

+ 'atu + P (A t)k2 8k?2u + 
( ati E (k + 2)! 

atk+2 
+ O[(At)O ] = u(t + At) + 0[(At)P+3] 

which proves Theorem 2. 
Theorems 1 and 2 are thus seen to provide systematic methods for building 

explicit finite difference schemes which approximate the system (1.1) to any desired 
order of accuracy. The realization of these algorithms (in particular that of Theorem 1) 
and the stability of the resulting finite difference schemes are discussed in the following 
sections. 
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2. The One-Dimensional Case. In this section, we shall explicitly construct 
finite difference schemes for the problem 

__ UO(u a 
(2.1) a = A(u) = F(u). 

The schemes will be built up in such a way that their first variation (see [8]) will 
coincide with the trigonometric polynomials of Strang [4]. This representation was 
shown, under certain conditions, to have a norm less than unity, and, thus, according 
to a theorem due to Strang [4], there was convergence to the solution. 

We introduce the following notation: 
p/2 

(2.2) i 0) = fJ (a - r)/(j - r), 
r=-p/2 ;r7j 

(2.3) dp(j) = aaq UJ70t=0 

p/2 

(2.4) Dqf(x) = E dq(j)f(x + j Ax). 
j=-p/2 

Following Strang [4], it is easy to show that, in general, 

(2.5) Dqf(x) = (Ax)q Oqf/Oxq + O[(Ax)p+l]. 

However, from considerations of symmetry, for every p odd, we have 

(2 .6) Dl f(x) = (/Ax)f'(x) + O[(AxY)p+2]. 

With these notations, given an approximation of order of accuracy p for u and F, 
the realization of Theorem 1 is immediate: 

(2.7) u(t + At) = D?+ju + A r %,D'+lF[u(t + a, At)]. 
Ax 1 

This formulation, however, is inconvenient on two counts-firstly, the formulae 
(2.2)-(2.4) demand many more mesh points than either desirable or necessary; 
secondly, it is very cumbersome to investigate the stability of (2.7). 

We, therefore, resort to a slightly different method, whose formulation for the 
even-p case differs a little from that of the odd-p case. 

THEOREM 3. 

u(t + At) = u + A- 3 a, { Dl F2N 1@(t + ae, At) 

(2.8) + (D' - D')F2N-3(t + ae, At) + *-- 

+ (D'N-1 - D 1N3)Fl(t + a, A0t)} + O[(/At)211] 

where 

(2.9) F2N_ I(u(t + aoi At)) F2N1(t + ae, At) 

= F(t + a, At) + O[(At)2N-ll] for 1 = 1, 3, , 2N - 1. 

Proof. In order for the expression in the curly brackets in Eq. (2.8) to corre- 
spond to the requirements of Theorem 1, we have to show that 
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DF2N-l(t + ae, At) + (D' - Dl)F2N-3(t + a, At) 

(2.10) + ... + (D2N-1 - D-N_3)Fl(t + ae, At) 

At) 0[(At)N+1] - D2N-1 F2N-l(t + ae, At) + O[(At) ]. 

To do that we utilize the fact that, from (2.9), 

(2.11) F2k+l - F2N-1 = O[(At)2k+2] for every k < N - 1 

and we also recognize that Eq. (2.6) implies that 

(2.12) D 1N l- D 
1 

) =o[(A)N-2k-l]. (2 . 1 2 ) D 2 (X-k) )-1 D2 (N-k )-3 0[(/t) ] 

Combining (2.11) and (2.12), we may write 
N-2 

(2.13) [D2(N-k)-1 - - F2N-l] = O[(Akt)2 ] 
k =o 

or, upon rearranging, 
N-2 

(2.14) , [D2(N-)l- D(N-k)-3]F'k+l = [D2N-1 - DflF2N-1 + O[(At)2N 1] 
k =o 

But (2.14) is equivalent to (2.10); thus (2.10) is established and consequently the 
theorem is proven. 

In a completely analogous manner, we can establish the construction of the 
finite difference scheme when p is odd. 

THEOREM 4. 

u(t + A t) = D2N+lU + , r :,{DlF2N(t + a, At) Ax 

+ (D' - 
D')F2N-2(t 

+ a, At) + *-- 

(2.15) + (D2Nl - DV3)F2(t + ei At) 

+ (D2N+l - D1N-l)FO(t + at, At)} 

+ O[(/At) ] 

where F2N-1 is defined as in (2.9), except that I = 0, 2, ... , 2N. 
Note that if one of the a,^'s is zero, then, for this value of i, we replace f3 { } by 

f,3DfN+1F(t). Theorems 3 and 4 are the finite difference realizations of the algorithm 
expounded by Theorem 1. Corresponding to Theorem 2, we get the following con- 
struction: 

THEOREM 5. The scheme 

u(t + At) = u + Ax D2fN+2F 

(2.16) + 2 (-) Z'Y%{D2(AF)N + (D2 - D2)(AF)2N_2 + 

+ (b )2 - 
2 

+(D2N- 2 - )2N)( AF)o }, 

where D2N(AF) = Zk=-N A;+k+l/2h2N(k)[F(x + (k + 1) Ax) - F(x + kAx)] and 
h2N(k) = -2Z=_N dp(i), is accurate to order 2N + 2. 
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Here, in analogy to (2.9), A2N(t + a~iAt) A2N(U(t + a iAt)). For an odd order 
of accuracy, we have a completely analogous theorem, Theorem 5a (except that the 
leading term is DVN?2u) which will not be written down here. 

Theorems 3, 4 (as well as Theorems 5 and 5a) provide us with specific construction 
methods of finite difference schemes of any desired order of accuracy. In Appendix A, 
we shall show that all finite difference schemes presented so far in the literature in 
one and two space dimensions are special cases for the algorithm presented herein. 
We shall also present, explicitly in Appendix B, a fourth order accuracy finite dif- 
ference scheme. 

There remains to investigate the stability of the schemes proposed in the theorems 
of this section. According to a theorem due to Strang [8], finite difference schemes 
for the quasi-linear case converge to the true solution if their first variation is (linearly) 
stable, provided the vector u is sufficiently smooth. For systems like (1.1), where 
A j(u) does not depend on the independent variable, the first variation of the resulting 
finite difference scheme corresponds to the finite difference scheme of the linearized 
version of (1.1), with the Ai's taken to be locally constants. For this linear case, 
Strang [4] gave finite difference schemes of any desired order of accuracy and verified 
their stability. With the aid of the following two lemmas, we shall prove that the 
first variations of our algorithms are equivalent with Strang's schemes for the linear 
case and thereby their stability is proved. 

LEMMA I. The schemes presented in Theorems 3, 4, 5 use the mesh points j z+ k, 
k = 0, 1, . , N, for schemes of order of accuracy 2N, and use the half mesh points 
I + (k + 1), k = 0, 1, N, N.for schemes of order of accuracy 2N + 1. 

Proof. We shall prove Lemma I by induction. If the scheme is of first order 
accuracy, it is given by 

n+1 n ~~~~At\n 
(2.17) U = ((u+112 + U_ 112) + (F,+112 - F. 1/2) 

and, indeed, it uses the mesh points j ? 2. Consider now the schemes resulting from 
Theorems 3 and 4. (For schemes resulting from Theorem 5 the proof is similar.) 
Under the induction assumption, F2N-I (defined by Eq. (2.9)), which appears in 
Theorem 3, uses the mesh points j i (r + 1), r = 0, 1, , (2N - / - 1)/2. A 
typical term in the scheme (2.8) is 

(2.18) D F2N-l 

and, according to Eq. (2.4), D'f(x) utilizes f(x + sAx), s = -1/2, , 1/2. It follows 
that, in (2.18), we must use the mesh points j + k, k = (r + s) = 0, 1, , N. 
Similarly, in the odd accuracy case F2, N (I = 0, 2, , 2N) of Theorem 4 uses the 
mesh points j i r, r = 0, 1, , (2N - 1)/2. A typical term in the scheme (2.15) is 

(2.19) D +lF2N-l 

and, according to Eq. (2.4), D' + utilizes f(x + sAx), s = -1/2, , 1/2. It follows 
that, in (2.19), we must use the mesh points j i (k + 2), k = 0, 1, . , N. This 
proves the lemma. 

LEMMA II. Let 
p/2 

lasfP 

E dp(j)f(x + j Ax) = (Ax)' a + O[(Ax)Y'l] 
i=-p/2 ax 
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and 
p/2 

E MP(i)f(x + i Ax) = (Ax) Q + 0[(,Axfy1] 
i=_p/2 aX 

Then m"(j) = dp(j) for every j. 
Proof. Let h"(j) = dp(j) - m"(j) and, therefore, 

p/2 

(2.20) E hq(j)J(x + j A~x) = O[(z\X)p+l]. 

2 =-p/ 2 

Expand f(x + jz~x) in Taylor series to order p, substitute in (2.20) and change the 
order of summation to get 

P (AXx)r d rf(X) p/2 (Lv) &(x) Z r rhQ(j)=0[Ax + 
r=O r! xr 2=p/2 

The coefficients of every power of (zx)T must vanish and we get 

p/2 

(2.21) E rhq(i) = 0, r = 0, 1, ,p. 
I = -p/2 

The system (2.21) constitutes p + 1 equations for p + 1 unknowns, the unknowns 
being the h'(j)'s. The coefficient-determinant of (2.21) is not zero and, hence, h"(j) = 0 
which proves the lemma. This leads us to the next theorem. 

THEOREM 6. The finite difference schemes presented in Theorems 3, 4, 5 (and 5a) 
are stable provided that 

(2.22) (zAt/ \x)p(A) < 1 (2) 

when the schemes are of even (odd) order of accuracy, except for the 1st order accuracy 
case for which (z\t/z\x)p(A) < 1, and where p(A) is the spectral radius of the matrix 
A of Eq. (2.1). 

Proof. The above-mentioned schemes represent, in the linear case with constant 
coefficients, the expansion 

(2 ) k ku 9N+1 (X)k k 
E (zx)k orUa 

k=O k! AXk or k M k! Axk 

and, according to Lemma I, they use the mesh points j ?4 k (j ? (k + 2)), k = 

0, , N, in the even (odd) order of accuracy case. Therefore, according to Lemma II, 
they are identical with the polynomials given by Strang [4] which are, in turn, stable 

under the above criterion, Eq. (2.22). This proves the theorem. 

Thus, the problem of constructing stable finite difference schemes in the one 

space dimension case is solved. Some explicit concrete examples are discussed in 

Appendix A. 

3. The Two-Dimensional Case. For case d = 2, Eq. (1.1) becomes, upon 

setting A1 = A, A2 = B, F2 = F and F2 = H, 

- = A(u) du + B(u) -u - FM + dH(u) a t ax a., ax av 
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Both Theorems 1 and 2 enable us to construct finite difference schemes, for this 
two-dimensional case, of any desired order of accuracy. The problem is establishing 
the stability of these schemes. In this section, we delineate a method for checking 
the von Neumann stability condition for finite difference schemes derivable from 
Theorem 1 and of order of accuracy p = 1, 2, 3. The schemes of first and second 
order of accuracy are well known; the examination of their stability is done here 
in a different manner. 

Finite difference schemes, for even and odd order of accuracies, which correspond 
to Theorem 1, are found by a straightforward extension of Theorems 3 and 4. The 
proofs, due to the fact that the conservation vectors F(u) and H(u) are uncoupled, 
are completely analogous to the proofs in Section 2 and will be omitted here; only 
the results are quoted below. 

THEOREM 7. 

u(t + At) = u(t) 

+ E i D',.F2N 1(t + at At) 

+ (D, - D1,)F2N-3(t + 01i At) + * 

(3.1) + (D'Nl,. - D2N-3,)Fl(t + ai At)] 

+ ( H) [D',VH2yi(t + ax At) + ( D1, - DV)N2N-3(t + ai At) 

+ * ** + (D'N1, - DIN-3,.)Hl(t + a, At)]} 

+ O[(At)2N+ l] 

where 

F2N-1(t + ai At) = F2N-1(u(t + 0Hi At)) 

= F(t + at At) + O[(At)2N ], 

H2N-1(t + ai At) = H2N-l(u(t + aHi At)) 

= H(t + at At) + O[(At)2N 1+1] 

for I = 1, 3, , 2N - 1, and D' x and D' are defined as in Eq. (2.4) with the ad- 
ditional subscripts x and y indicating with respect to which coordinates the function 
is translated along the grid, i.e., 

p/2 

DpXF = E dp(j)F(x + j Ax, y), 
i = -p/2 

p/2 

1YH = E dl(k)H(x, y + k Ay). 
k =-P/ 2 

For the odd order of accuracy case, we have 
THEOREM 8. 
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u(t + At) 
12E 

D2N+1, U 
2 1= 

+ E f3 [D',xF2N(t + a, At) 

+ (Dlx - D',x)F2A-2(t + a, At) 

(3.2) + - + (D21,X - D2N-3,x)F2(t + a, At) 

+ (DN+lX - DU1-lx)Fo(t + a, At)] 

+ (Ay)[D',YH2A(t + a, At) 

+ 
1 

- D Y)H2 -2(t + a, At) + ... 

+ (D N2l, - D N-3,)H2(t + a, At) 

+ (DN+i, - 
D2v-1iY)Ho(t 

+ a, At)]} 

+ O[(At)2N+2], 

where here, as in Theorem 4, 1 0= 2, ,2N, d = 2,x1 = x, X2 = y. 
Note again that, if one of the a,'s is zero, then, for this value of i, we replace 

Af3 } by 03DN+1 ,F(t). Applying Eq. (3.2) to a first order accuracy case (N = 0), 
we get the following finite difference scheme: 

n+l 1 n n x 

(3.3) U2,k = 1[U2+1/2,k + 1- l/2,k + U,k+1/2 + U2,k-/2] 

+ (At/Ax)[F,+l/2,k - Fl/2,k] + (At/Ay)[Hfk+l/2 H-,k-112]- 

This is the Lax scheme of 1954 [2]. The amplification matrix of the linearized 
version scheme, for Ax = Ay and X = At/Ax, is 

(3.4) 2 + Cos I + 2iX A sin a + B in - 

and, thus. 

(3.5) uIGh 2 ( 2) +? 4iXA sin + 2 cos I + 4iXB sin 2 2 2 2 2 2 

Under the assumption that A and B are normal matrices (this is less restrictive than 
the usual assumption that they are symmetric), we have 

(cos 1 + 2iXA sin = cos -2 + 2iMp(A) sin 2 X and 
(3.6) \ 2/ 2 2 2 

(cos I + 2iXB sin = cos+2iXp(B) sin 

where p(A) and p(B) are the spectral radii of A and B, respectively. Thus, the R.H.S. 
of (3.5) is bounded from above by unity provided Xp(A) < 4, Xp(B) < '. The two 
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inequalities of the previous sentence provide then sufficient criteria for the linear 
stability of scheme (3.3). As far as we are aware, this procedure for establishing 
sufficient stability conditions has not been tried previously. 

We now start the "boot-strap" operation and go to a second order scheme, by 
first solving the constraint of Theorem 1, Eq. (1.4): 

(3.7) E 3sx= 1/(l + 1), 1 = 0, 1. 

Here, it is sufficient to choose for (the arbitrary) m, m = 1 and then we get 03 = 1, 
1= which leads us immediately to the following two-step scheme: 

,k= [U+1/2,k + U _1/2,k + UIk+1/2 + Ui,k-1/2] 

(3.8) +! (I Atr[F 
n - 

_ 1/2,k] + 
I At k+1/2 -H /] 

2 Azx L+ 1/2,k k 2 Ay [H,k12 
Jk1 

U+ , kt 
n+1/2 _ 

+n+1/2 

t + 

1n+1/2 (3.9) n+ n n+1/ V F1/2k d \+ 4 L, [H 2I - 1 ( * ) xk - U,k + AxJ i+1/,/ 2,k I , Ay J ,k+1/2 j,k 21/ 

This is basically the Richtmyer [7] two-step method. The amplification matrix of 
this scheme is, again for At = zAx, X = At/zx, 

G= I + iX(A sin 2 + B sin ) 
(3.10) 

[(cos 2 + cos + 2iX(A sin 2+ B sink)] 

Let M = A sin a/2 + B sin f/2, and then 

(3.11) G = I - 2X2M2 + iXM(cos a/2 + cos 3/2). 

We would like to check whether this G meets the von Neumann condition, i.e., do 
we have p(G) < 1. Let m be an eigenvalue of M and p(G) be the largest absolute 
value among all the g's, the eigenvalues of G. Using the spectral mapping theorem, 
we can write 

(3.12) g = I - 2X2m2 + iXm(cos a/2 + cos 3/2). 

Let X2m2 = ,, and obtain, from (3.12), 

Igj2 = (1 - 2A )2 + ,A(cos a/2 + cos 3/2)2. 

The requirement p(G) _ 1 or, equivalently, IgI < 1 leads to 

1?1- L cos a/2 + cos 3/2]2 

Hence, it is sufficient to require 

(3.13) [p(XM)]2 ? 1 - [1 (cos a/2 + cos 0/2)]2 

or 

(3.14) X2m2 < 1 - ['(cos a/2 + cos 3/2)]2 for every m. 
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At the same time, since we assume that A, B and M are normal matrices, 

[p(XM)]2 ? X2 IAsn/ sn3212 ? _ 2| II A sin a//2 + B s in /21 /2|2 

(3.15) 
< {AJJ ||sina/211 + JIBIJ ||sin 0/21 

? X2[max{f AIl2, A IB1211](H sin o/211 + I sin //2 1)2 

= X2[maxt p2(A), p2(B)} ](I |sina/211 + I |sin //21 1)2 

Designate max { p(A), p(B)} -= plx and then combine (3.15) with (3.13) to get 

(3.16) 1 2 _ - 
[?j(cos a/2 + cos //2)12 > f X~rnaK 
[sin~ a/2 + sin /3/21 

We thus arrive at the conclusion that a sufficient condition for the stability of (3.10) is 

(3.17) XPrnax = X[maxfp(A), p(B)}] -< 2 

This result agrees in effect with the stability condition obtained by Richtmyer [7], 
except that this analysis was restricted to the hydrodynamic equations while here 
the hyperbolic system is more general. 

Next, we proceed to the 3rd order of accuracy case and begin by solving the set 

(3.18) E /3ta = 1/(1 + 1), 1 = 0, 1, 2. 
2 =1 

We have the following system of equations (for n = 2): 

/1 +/2 = 1, 

(3.19) /31a1 + 0I-31a2 - 2 

/13ia + 02a - 3. 

One of the solutions of (3.19) is a1 = 0, a2 = 3, /1 = 4, /2 = 4. Using Theorems 7 
and 8 sequentially with Ax = Ay = At/ X, we get 

(3.20) [k 1+/2, k + 
u21/2,k + Ui,k+1/2 + Ui,k-1/2] 

+ 3X[Fj+l_2,k F_1/2,k + Hj,k+l/2 -Hi 

3 . 2 1 ) n + 2/3 n + / k 1/2 - H k-1 /2], (3.21) U2k=U~ X[F 2,k F i~k+ Hn)21 H2 
= k 2LU2+1/3 I+ "1/2, k I 1"2,k+/ Ti",k12 k-1/2J 

Un+l 9 n It It It 
- ?k 1Uw+3/2,k + U _1/2,k + Uik+1/2 + Ui,k-1/21 

-3 2 [i+3/2,k + Uj-3/2,k + Ujk+3/2 + Uj k-3/2] 

3 Xn+2/3 n+2/3 n+2/3 Hn+2/3 (3.22) + 4X[Fj+212,k - - 1/2,k + Hjk+1/2 - i,k-1/2 

+ 8X[(F+l/2,k 
t 

1/2,k) + (Hk+l/2 - H -1/2)] 

- ~4jX[F] 3/2,k - F3/2,k + Hi,k+3/2 -H ,k-3/21] 

In constructing (3.22), we made use of the fact that F0(t + caAt) is a zeroth order 
approximation and, hence, without loss of accuracy, we may replace D1F +2/3 by 

Using standard notation, the amplification matrix for this 3rd order accuracy 
scheme is 
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G =16 (Cos 
a + Cos 16 (s 3a + Cos 

3 
16 2 2/ 16 2 21 

+ 4 iX(A sin + B sin ) - iX(A sin + B sin ) 

(3.23) + 2 iX(A sin 2 + B sin 

I+ i (A sin2 + Bsin)[ os + Cos 

+ iX(A sin + B sin2)]} 

Let 

(3.24) n = sin a/2, ? = sin 3/2, M = A?) + B?. 

We can then put G in the form 

(3.25) G = -[(1 - 2)1/2(2 + 2) 
+ (1 - .2)1/2(2 + .2)] 

+ 2iXM 

- [(1 - n2)1/2 + (1 4 2)112](XP(2 - i(X M)3 + i 3(A 7 + B?3) 

In order to investigate the stability of (3.25), we shall utilize the methods used in 
connection with the first and second order schemes. Define 

1 _ 2)1/2 + (1 .2)1/2] 

(3.26) [(1 - 2)1/2 + (1 _ ?2)1/2](XM)2 + 2i(XM)[1 -3 

= 42(1 - 72)1/2 + PXA73, 

G = 142(1 - .2)1/2 + 1 iXB 3. 

It is clear that 

HIGH? < 1G111- + f1G211 + -1G311. 

Note that the spectral mapping theorem can be applied to each of the matrices 
G1, G2 and G3. We next inquire under what conditions the following inequalities 
will hold simultaneously: 

(3.27) G111 ? 1 - 4(772 + .2) 

(3.28) 11G211 -< 4 

(3.29) hIG 11 < 4 

so that, as a result, IIGII < 1. It is easily verified that (3.28) and (3.29) are satisfied 
provided that Xp(A) < 3 and Xp(B) < 3 where p(A) and p(B) are, as before, the 

spectral radii of A and B. Next, we consider the inequality (3.27): 

1(_ 2)1/2 + (1_ 2)1/2)[j _ (XM)2] _ 2i\M[ - X 3M)2 ]I _ I 2 (+?) 

Let ,u = [(XM)]2 where p(XM) is the spectral radius of the matrix XM. We now assume 

that XM satisfies the spectral equality theorem IIXMII = p(XM). This is true if M 

is a normal matrix or even satisfies lesser restrictions. Therefore (3.27) leads to 
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[(1 - 2) + - 
- 72) + 2(1 

- n2)1/2(1 - .2)1/2][1 
_ + 

2/ 

+ [1 - 
4 

+ 4/2] < 1 - 1(2 + .2) + 1(2 + .2) 

Since _ 
- 0 + 82 > 0 and since 2(1 - l 2)1/2 - - .2)1/2 < (1 _ 2) + (1 2 

the following inequality holds: 

(3.31) A - [(3/4) + (9/8)r2 ]2 + (9/8)r 2/. - (9/256)r4 < 0, 

where r2 = ' 22 ? t2 Next, introduce v = g/r2. This is legitimate since r2 = 0 means 
-q = v = 0 and, for this case, M = 0 and hence, from (3.25), G = I. The inequality 
for v can be put in the form: 

(3.32) r2V2(V- 9/8) - (3/4)V2 + (9/8)V - 9/256 < 0. 

Assuming v < 9/8, the first term in (3.32) will only strengthen the inequality. Hence, 
a sufficient condition on v is found from 

(3.33) V2 - (3/2)v + 3/64 
? 0 

from which it follows (recalling that we took v < 9/8) that 

(3.34) v < 34[I - (11/12)1 /2] 

satisfies the inequality (3.33) and, hence, also (3.32) for all r's. 
Now 

X2 = [p(M)]2 = 1IM112 = II A + BrII2 

(3.35) < (h|Ail 
- + IIBiI t)2 = [-p(A) + !p(B)]2 

- P<ax~l ? t) < 2 p2a(712 ? t2) 

where Pmnax is the greater of p(A) and p(B). Thus, using (3.34), we set 

(3.36) v= /r2 < 2X Pmax 
2 

< (1 - (11/12)1/2). 

or 

XPmax < [(1- (11/12)1 /2)]1/2 .12635 ... 

Thus, a sufficient condition for stability of the 3rd order finite difference scheme, 
Eqs. (3.20)-(3.22), is approximately 

(3.37) XPMax = Xmax[p(A), p(B)] < 8 

From numerical computations, it is apparent that the necessary and sufficient con- 
dition is quite a bit more relaxed and, in fact, in our particular example (see Section 5) 
the 8 can be replaced by a 4. That XPma,, cannot exceed 4 can be verified analytically 
directly from (3.25) by setting =7 

Note that the 3rd order scheme, Eqs. (3.20)-(3.22) is a "true" 3-step process in 
the sense that at each time step (t + At/3, t + 2At/3, t + At) one uses information 

only from the previous step (and of course from the time t), and, at each time step, 
it is evaluated to some specified accuracy. Thus, UI,2/3 is of 2nd order accuracy. 
When we go to higher accuracies, the resulting finite difference schemes are more 
complex in the sense that at some intermediate step there might be several U1,+ka 

each one being evaluated to a different accuracy. That this is so in general is quite 
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apparent from Theorems 7 and 8. The schemes up to and including p = 3 are simpler 
by virtue of their lower order of accuracy. In Appendix B, we put forth, by a straight- 
forward utilization of Theorems 7 and 8, a specific 4th order accuracy finite difference 
scheme for any number of space dimensions. 

4. The Multi-Dimensional Case (d > 1). In anology to Theorems 7 and 8, 
the finite difference schemes for d dimensions for even and odd order of accuracy 
are, respectively, 

U(t + At) = u(t) 

(4.1) ? E i E2N-(t ? ci At) 

+ (D ,z2 - D ,zi)F,2N-3(t + a, At) 

? . . . ? (D'Ar1 Z; - D2N-3,xi)Fil(t + ai At)] 

+ O[(At)2N+ ]A 

d 

u(t At) = (t) 

+E Di2N a [D zlF 2xi+ t t 
d=1 

? At 

(4.2) ?+ (D~t;- Dl,)FI,2N_2(t-N At)?.a t 

? (D'N1 - D2N.-3,xi)Fi,2(t + ai At) 

? (D'N+1 ,; - D2XNlxi)Fo(t + a, At)] 

+ O[(At) ,] 

where, in the notation of the 2-dimensional case of Section 3, F1 2N-1 = F2N-1; 

F2,2N-1 = H2N-1; etc. The stability proofs, up to and including 3rd order, follow 
exactly the same pattern as in the 2-dimensional case (d = 2; xl = x, x2 = y). The 
results are 

(i) for 1st order accuracy schemes XPmatx < 1/d, 
(ii) for 2nd order accuracy schemes XPrnax < 1/d, 
(iii) for 3rd order accuracy a sufficient condition is 

1 1/2 
) PMax <- [pmaxlldimension = 2d 

5. Numerical Results. We have applied the results of the previous section to 
two cases: A one space dimension problem which was solved with a 4th order accurate 
scheme and a two-dimensional system which was solved using a 3rd order accuracy 
scheme. In both cases, the numerical results were compared with analytic solutions 
and, by halving the grid size, we could show that the indicated accuracy was achieved. 
Delineated below are summaries of the result. 

(i) The one-dimensional, 4th order accuracy problem. Consider the system 
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(5.1) [wj [1/3V2 -2w/3v3 {wj < x ? 2, 
D j t ? 0 1/V2 V z 0 ? t ? 1, 

or, equivalently, 

(5.2) [;] [3 

It l/v J 

with the initial conditions 

Wr '0 ] X 1/2 
(5.3) [w(x 0) = x 

V(X ' ?), 
I 

IXl/2 

The analytic solution of (5.2)(5.3) is 

(5.4) w(x, t) = (X(t + 1))1/2, v = ((t + 1)/x)1/2. 

We solved (5.2) numerically, using a 4th order scheme like the one presented in 
Appendix B, except, there it is presented for the multi-dimensional case. First, we 
used Ax = 1/20 with the stability criterion of At = [Ax/maxi Jv21] and got the 
following maximum errors: 

e(w) = max Iw' - w(x, t)I 4 X 10-7 

and 

e(v) = max IV'- v(x, t)l = 5.4 X 10-7. 
i 

When the grid size was halved, i.e., Ax = 1/40, the corresponding errors were e(w) = 
2.5 X 108 and e(v) = 3.4 X 10'. Thus, the expected improvement in accuracy 
of (2)4 was achieved. 

(ii) The two-dimensional, 3rd order accuracy problem. The system under con- 
sideration is 

(5.5) [XW = [-w V []+ [w v [w] 1 _ x, y $ 2, 

D t ? 1o , X 0 1 YVJ 0 < t < 0.3, 

with the initial conditions 

(5.6) w(x, y, 0) = v(x, y, 0) = (x + y)l/2 

The analytic solution of (5.5)-(5.6) is 

W = (x + y + t2)1/2 
_ 

t, v = (x + y + 2 t)1/2. 

First, we ran the problem with the sufficient stability condition found in Section 3 
which, in this special case, takes the form (Ax = Ay): (At/Ax) < '(1/maxi jwj). 
When the grid of Ax = Ay = 1/10 was halved, the expected reductions in the errors 
were obtained. Even better absolute and relative results were obtained when, in the 
stability criterion, we replaced 8 by 4. Since, as mentioned in Section 3, the numerical 
coefficient in the stability criterion cannot exceed 4, it is apparently indicated that 
4 is the true necessary and sufficient condition. 
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6. Summary. The schemes (4.1) and (4.2) represent essentially the distilled 
results of this paper-they, together with the condition (1.4), 

k 2N kO 1 ,,in Eq. (4. 1), 
k-F-I {2N + I in Eq. (4.2), 

provide specific finite difference schemes, of any desired order of accuracy, for solving 
the hyperbolic partial differential equations system (1.1), using a minimum number 
of grid points. Sufficient and necessary conditions for stability were given in the 
one-dimensional case for any order of accuracy. In the multi-dimensional cases, 
sufficient and necessary conditions were given for the 1st and 2nd order of accuracy 
cases. Sufficient conditions for the 3rd order of accuracy cases were established 
analytically. Numerical experiments with a specific 2 X 2 system seem to indicate 
that a necessary and sufficient condition is obtained by considering the case of equal 
disturbing Fourier frequencies in all directions, i.e., k, = k= = =. , etc. In 
view of the results in Section 4, we offer the following conjecture: 

(a) For 1st order accuracy schemes corresponding to Eq. (4.1) with N = 0 (p = 0) 
and Ax, = h (j = 1, - , d), a necessary and sufficient condition for stability is 

(,At/h)Pinax < 1 /d (1 < d), 

where d is the number of space dimensions in the original p.d.e. system. 
(b) For all higher order of accuracy cases, corresponding to schemes (4.1) and 

(4.2), depending on whether the order of accuracy is even or odd, respectively, a 
necessary and sufficient condition for stability is 

(i\ tlh)pl,< 1 /d (1/2d) 

for even (odd) order of accuracy. plnax = maxi p(A,) as defined in Section 3. 

Appendix A. We have already shown in Section 3 (see Eq. (3.3)) that the 1st 
order accuracy scheme due to Lax (1954 [2]) is obtained from Theorem 8 by taking 
N = 0 and A = 1. We have also shown there (see Eqs. (3.7), (3.8), (3.9)) that by 
solving Ej7o' akc4 = 11(k + 1), k = 0, 1, we get A = 1, a, = 1 and thus get 
the 2nd order scheme known as the Richtmyer two-step method. If instead of m = 1, 
we take m = 2, we obtain the 2nd order scheme proposed by Gourlay and Morris 
[1 1]. 

In order to get a 3rd order accuracy scheme, we have to solve 1 = ca4 = 

1 (k + 1) with k = 0, 1, 2 (see Eqs. (3.18) and (3.19)). The case m = 2 with a, = 0, 
a2 = 23, /3 = -, 02 = 3 is basically the one due to Burstein and Mirin [9]. They, 
however, did not use a staggered mesh, as we do, and, hence, the scheme was unstable 
without the addition of artificial viscosity. Using the staggered mesh, one gets in 
1 space dimensions the finite difference scheme (3.20)-(3.22) without the vector H; 
it is then stable provided that Xp(A) < 2. In the 2 space dimension case, we obtain 
the sufficient condition of Xp,,, < -. The scheme proposed by Rousanov [10] is 
also essentially the one given by Eqs. (3.20)-(3.22). 

Had we chosen to also develop explicitly the finite difference schemes which are 
implied by Theorem 2 (i.e., utilize the coefficient matrices A, as well as the conserva- 
tion vectors F,), then we immediately get, for the 2nd order case, the Lax-Wendroff 
scheme [6] and, for the 3rd order case, a scheme considered earlier by the present 
authors (unpublished). 
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Appendix B A 4th Order of Accuracy Finite Difference Scheme. In order to 
get a 4th order accurate scheme, we must solve the conditions given in Eq. (1.4) 
for k = 0, 1, 2, 3. The smallest system to be solved is for m = 3 and explicitly it is 

/31 + 032 + /33 = 1 

O31a1 + 2a2 + /3a3 =2 

O3lai + /32a2 + /3a3 = 

O3ai + 32a2 + /3a3 = 

A possible set of solutions is a1 = 0, a2 = 2 a3 = 1; 31 = 6, 02 
= 23 /33 = 6. Using 

these values in Theorem 7 with N = 2, we get, for the 2 space dimensions case 

= u + 6 3 (F,+2,k - F.2,k) - 12 (Fi+l, [ F. l k)j 

? 3 [ ,k+2 - H2k-2) - 12 (Hk+l - Hk-1)] 

2 J n+l/2,3 n+1/2,3) ( n+1/2,1 n+/2,1 + 3 )I(Fi~k+112 -Fi,k-1/2) 8 (Fi,k+112 Fi,k-I 2) 

n+1/2,1 n+l1/2, 1 

24 (F. +3/2,k -F i-3/2,k) 

r n+l/2,3 n+l/2,3) + + 1/2,1 n+1/2 

[(Hik+1/2 -Fk-I2) 2 8 (Fik+1/2 -F,k-1/2) 

(B.1) 1 n+(1/2,1 n+l/2, 1- 

24 (f, k +3/2 H , k-3;2)2 

Jr n+1,3 n+l ,3 + F1 n+1l 1 n+l ,l + - F6 21/2 ,k) 8 (Fj+1/2,k -F,_ i2,k) 

- F~ - F2i ,k)] 24 (.+ 3i2, k Fj_3 j2,) 

r (Hn+ 1/3 H n+ 1/3 1 n+I l n +ll 
? L(Hi,k+l/2 - k-1/2) + 8 (Hi k+1/2 - ,k-i 

1 1~n+1, 1 

- 2(4 i k -j'3/2 - FHik-3/2)] } 

where the numerical superscripts indicate the order of accuracy to which that term 
is to be calculated. Thus, Fn+'12 3 = F(un+1/2 3) where Un+1/2 3 is u evaluated at 

2 't to 3rd order of accuracy, etc. Quantities at nAit = t do not carry the ad- 
ditional numerical superscript because un is assumed already to be known to 4th 
order accuracy. In order to evaluate the various terms in (B.1), all the following 
quantities have to be computed as indicated: 

n+ 1/f,1 1 n n 
U,,k = 4(U,+1/2,k + U,1/2,k + +,,1l/2 + Uj,k-1/2) 

(B.2) 

+ 6 [(Fj l/2,k Fi_ 1/2,k) + (Hj,k+l/2 H,-k-1/2)] 
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n+1/3,1 n n n n 
Ui,k = 4(i1+1/2,k + Uj1/2,k + i4,k+1/2 + Ujk-1/2) 

(B.3) ? - 

[(F7+l/2,k - 
F1l/2,k) + (Hk+l/2 - 

k-/2)] 

n+l1/3,2 n )X n+lI/6,1 n+l1/6, n+lI/6,1 n+l1/6,1)] (B.4) Ui k = Ui k + [(F - Fj1) + (H~k'' Hj - 

Uj k = 4i.(Ui+1/2,k F+ Uj-1/2,k I Uj-k+1/2 I Uj,k-1/2) 

(B . 5) + -2 [(+ - F_/2,1k) + ( Hk + l/2 - 

= k + Uj-1/2,k + Uiik+1/2 + Uik-1/2) 

- (U+3/2, k + U13/2,k + U1,k+3/2 + Uj,k-3/2)] 

(B.5)~~ ~ ~~~~ nl/, nl/, nl/, nl/, 

(B .6) + 8X[(F +12 ,k: - F~i-?, ) + (Hj k+<1/2-Hj,-/) 

+ 1X[(F.+F/2,k F>1/2,k) + (Hk+l/2 -H k-1/2)] 

4 [(F1+3/2,k I F-3/2,k) + (H k+3/2 - 

n+l2/,2 1n+nn n+ U n+n 

(B.7) Ujk = 4u~/ Uj _ /,k + M(Fk+l/2k-~ t Uj,k-/2 

(B.8) U[(k' 1 ,k 32 +11/k + i1/2,k + Ui,k+1/2 + U 
jk-1/2) 

+i~l' 1 X[9(F+l/2,k - Uj-1/2,k) + (Hj,k+1/2 + ~-12 

- (Uj+3/2,k + Ui-3/2,k + U;,k+3/2 + Uj,k-3/2)] 

(B.9) + 1x[(Fi~l/2:n - Fin+/,12) + (Hn+ 1;32 - n+1/32) 

+ 8X[(F?+1/2,k - Fn1/2,k) + (Hk+/2 - H k-1/2)] 

- [(Fi+ 3/2, k Fj-3/2,k) + (Hj,k+3/2 -H jk-3/2)] 

24 

Note thus that at t + '3At, for example, we compute uni,+k13 twice, once to 1st 
order accuracy, un2'3'1 and once to 2nd order accuracy, unt,+ l/3,2 etc. 

The scheme (B.U)(B.9) is easily expendable to higher space dimensions. We use 
the notation F ,^1^, .r (j = 1, *.., d) to denote the component of the vector 
Fnj (associated with conservation in the x; direction) at grid point vl ,. vd where 
d is the number of space dimensions. Thus, in 3 space dimensions, k-I ,V,2,V3 

corresponds, in our previous notation of Section 3, to H ,k-1/2 I With this notation, 
the equation corresponding to (B.3), for example, but for d dimensions takes the 
form 

d 

n+1l/,3 1'[ ( n U n n 

Uni, 1 12 (u , . v +_1/2, * + 
U 

k*1/ .,v U-1/2, * d) 

Xd 

+3X 
n ( Fj k) +(H.. ... ; *H dv-1/2, ) i 1=1 
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Similarly, we can express all the equations (B. 1) to (B.9) in a form suitable to d space 
dimensions. 
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