
MATHEMATICS OF COMPUTATION, VOLUME 27, NUMBER 123, JULY, 1973 

Solving Linear Boundary Value Problems 
by Approximating the Coefficients 

By Steven A. Pruess 

Abstract. A method for solving linear boundary value problems is described which consists 
of approximating the coefficients of the differential operator. Error estimates for the ap- 
proximate solutions are established and improved results are given for the case of ap- 
proximation by piecewise polynomial functions. For the latter approximations, the resulting 
problem can be solved by Taylor series techniques and several examples of this are given. 

1. Introduction. In trying to solve the boundary value problem 

k 

(la) Lu = u(k+l)(x) + E p,(x)u") (x) = (x) in (a, b), 
=0 

k+1 

(Ib) U.u = E (a,,u('-1)(a) + b ju('_1)(b)) = Fe, i = 1, 2, , k + 1, 
2 = 1 

with pa, f E C[a, b], we, instead, attempt to solve the "approximate problem" 

k 

(2a) Lu, (k+ 1) (x) + E f?(x)u(T)(x) = f(x) in (a, b), 
I =0 

(2b) UZuT = yod i = 1, 2, , k + 1, 

where Al, fare approximations to the coefficients of (1). It is a classical result that, 
if (1) has a unique solution, then perturbations of 0(E) in the coefficients produce 
perturbations of at most 0(E) in the solution (this result is stated formally in Theorem 
1 below). For computational purposes, piecewise polynomial functions are obvious 
choices for approximations and bounds for the errors incurred are given in Theorem 
2. These results are for fairly arbitrary perturbations and, in fact, for specific piece- 
wise polynomial approximations, the bounds can be sharpened considerably as 
demonstrated in Theorem 3. 

Similar ideas have been used by Alexander and Gordon [1], Gordon [5], for 
boundary value problems and Canosa and Gomes de Oliveira [2] and Pruess [8] 
for eigenvalue problems. Gordon has explored some of the theoretical aspects using 
perturbation methods to approximate the error but no general rigorous development 
has been given. In [5], Gordon uses these techniques to compute high order bounds 
on the local error in certain quadratures related to the error in the solution at mesh 
points, however, the max-norm error is not studied. L. Ixaru, in as yet unpublished 
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papers, has also established some results for piecewise polynomial approximations 
but these appear to be no stronger than what is predicted by Theorem 1. 

Computationally, the most relevant result of this paper is the following: Given 
a partition ir = la = x1 < X2 < ... < xN+i = b}, if on each (xn, xn+1) the coeffi- 
cients of (1) are interpolated at the roots of the (m + 1)st degree Legendre polynomial 
transformed to (xn, xn+1), then lu(xn) - u,(xn)l = (17rm I2) and IIu - uI = O(H7rl ) 
where s = min(2m + 2, m + k + 2). Here and in what follows, 17rl = max(xn+1 -x), 
m is the degree of the piecewise polynomial functions and I I is the sup-norm. The 
paper concludes with a discussion of the numerical algorithm as well as several 
examples. 

2. Error Bounds. For the remainder of the paper, we assume that (1) has a 
unique solution u(x) in Ck+ '[a, b]. The notation Dk[a, b] is used for the space of 
k-times piecewise continuously differentiable functions with the understanding that, 
for any f E D[a, b], 

(3) f(x) = 2(f(x+) + f(X-)). 

For p, e D[a, b], i = 0, 1, . , k, f E D[a, b], we are concerned with existence, 
uniqueness and error bounds for solutions to (2). Theorem 1 is found in various 
forms in the literature (see, for example, Necas [7, Chapter 3]) but is presented here 
in some detail in order to yield the higher order results to follow. 

THEOREM 1. If p, E D[a, b], i = 0, 1, , k, f E D[a, b] and IHPp - II < E, 
V i, lf - J ' E for some constant E, then,for E sufficiently small, there exists a unique 
ur E Ck[a, b] n Dk+ 1[a, b] satisfying (2) and I u unWI I = 0(E), i = 0, 1, , k. 

Proof. Since Lu = f is assumed to have a unique solution, there is a Green's 
function G(x, t) for L corresponding to homogeneous boundary conditions; the 
properties of G are detailed in Cole [3, Chapter 6]. Set X = {v E Ck[a, b]/llv -Ulk 

? 1} where IIVI Ik = Zk=o |lv`) |. If zsatisfies Lz = 0, U~z = rye, i = 1, 2, , k + 1, 
then, for v E X, define 

(Tv)(x) = z(x) + f G(x, t)[(L - L,)v + f] dt. 

Since Lu = f, this can be rewritten as 

(Tv)(x) = u(x) + f G(x, t)[(L - L,)v + f- f] dt. 

From the assumptions concerning the coefficient functions, it is easily verified that, 
for e sufficiently small, T is a contraction on X and thus has a unique fixed point, 
say u,(x). It then follows from the properties of the Green's function that u, E 

Dk+ '[a, b] satisfies (2) and 
b 

i' 

(4) (U - ur)(x) Iax,. (x, t)[(L, - L)ux + J - f] dt. 

3. Results from Approximation Theory. For computational purposes, piece- 
wise polynomial functions are a natural choice for the coefficients of the approximate 
problem. For specific choices of piecewise polynomial approximations, the bounds 
of Theorem 1 can be improved. 
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The approximations considered are characterized in terms of linear projectors, 
i.e., linear idempotent maps, whose range is Pm, the space of polynomials of degree 
at most m. By H is meant the set of partitions of the form ir = { a = xl < x2 < < 

XN+I = b}; for 7r E HI, |7rl = max, (xn+ 1 - x). 
Given a function g E Cm+ '[a, b], a piecewise polynomial approximation g to g 

is generated by the scheme: 

for some continuous linear projector Q from C- 1, 1] onto Pm, given 
7r E HI on each (xn, x,+,), let g(x) = Q[g(x(t))] for t E (- 1, 1) where 

(5) x(t) = 2(X., - Xn)(t + 1) + X,; (') (a) = g9i)(a), g()(b) = g(i(b), 
j = 0, 1, , m, and convention (3) is observed at interior mesh points. 

Note that many piecewise polynomial approximations do not fit this context, 
e.g., higher order splines, because of the global continuity condition. For these 
approximations, Theorem 1 is applicable but succeeding results are not. 

LEMMA 1. If g E Cat '[a, b] and g is given by (5), then there is a constant K such 
that, for each ir e HJ, 

Ile)- I ' K1 !T m-'+ j = 0, 1, i, n. 

Proof. See [8]. 
If Q is chosen so that certain moments are integrated exactly for polynomials, 

then the error bounds are sharpened. The following result is needed for this. 
LEMMA 2. If, for some integer M ? m + 2, g E CM[a, b], g is given by (5) and, 

for the projector Q, there is a constant K2 such that, for G E CM"[- 1, 1], 

t (I - Q)G dt < K2 JIG~M '11, i = 0, 1, , AM - m - 2, 

then, for ir e H,, e- Er and v E CM-1'-l(x., xn+1) with bounded derivatives up to 
order M - m- 1, 

Xn+t l- 
(6) J (g g)v dx < K{(x + xI ) E-lvL x g(M1)H/i!]} "I'K 

where K = max { K, K2}, K1 as in Lemma 1. 
Proof. Expand v in a Taylor series about zn, = 2(Xn + x,+,), then for some 

(z E (Xnq Xn +1l)5 
Xn+1 ,/11 m-2 X"+,, 

j (g - g)v Ax Z vE (7,) f (x -z4)(g - g)(x) lx/i! 

rXn+i 

+ ( - Z7) Al- (g g)(x)v (M-m-I)( x) xI/(M - )7 - 1)! 

Set G(t) = g(x(t)), 0(t) = g(x(t)) where x(t) = i(x,, - x,,)(t + 1) + x,, so that 

f (X - Z?)'(g- g) (X = (x?1 - j t'(1 - Q)G dt 21' 

< (X41 - Xl) K,) IG('-)11/2'1 

K_(X?? - 1 J1g( !-')J 12 
f 

f- I 
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The remaining integral is bounded by 

KI(x.,,- x)m- rIm+1 
I Ig(m+l) I I I IV(A3-m-1) 11/2'-"' 

as a consequence of Lemma 1. Q.E.D. 
The restriction on Q is equivalent to 

ft'(1- Q)p dt = O Vp E PM--, i =O, 1, **, M- -2, 

and the largest M, for which such a Q (with range Pan) exists, is M = 2m + 2. Thus, 
for piecewise polynomial approximations generated as in (5), M = 2m + 2 is the 
highest attainable exponent in (6). 

4. Applications and Examples. The above lemmas suffice to yield error bounds 
for the solutions of (2) when the coefficients have been approximated by piecewise 
polynomial functions generated as in (5). The first result is a simple consequence 
of Theorem 1. 

THEOREM 2. If p, C Ce + '[a, b], i = 0,. , k, f C C" + '[a, b] and k%, f are gen- 
eratedfrom p,, f, respectively, as in (5), then, for each 7r E- H as i -r 0, 

(7) Hlu - u') II = 0o(17rI ), j = 0, 1, ,k, 

(8) HU(k+) - Uk+i) 11 = o(7rIm+2i) j = 1, 2, , n + 1. 

A more significant result is obtained by imposing the restrictions of Lemma 2 
on Q. 

THEOREM 3. If, for some integer M ? m + 2, pi C Cr[a, b], i = 0, 1, , k, 

f E C'[a, b], r > max(M, k + 1), pa, j are generated as in (5) and, for the projector Q, 
there exists a constant K such that, for G E C"![- 1, 1], 

t'(1 - Q)G dt ? K IIG( 01)I i , 1, , AlM- i - 2, 

then, for ir (E H, I rl sufficiently small, there exists a constant C independent of 7r such 
that 

(9) lu 0(x) - u0(x)I < c r , x E X, 

(10) u()(x) - u )(x)I _ C Irl x E r, 

where s = min(M, m + k + 2-j) and j = 0, 1, ,k. 

Proof. If p, E C[a, b], then the coefficients of the adjoint operator are 
in Cr-k[a, b], so G(x, t) has continuous derivatives with respect to t of order r - 1 
on [a, x) and (x, b] for each x, and continuous derivatives with respect to x of order 
r + k - 1 on [a, t) and (t, b] for each t. For x E 7r, say x = x,, (4) implies 

U ((x) - U r(X,) = + j t) dt [(L }L)u7 + f 

The integrand is comprised of sums of the form (p, -pk)v or (f - f)v where v E 

C' +'(x,,, x, +) Vn and v and its derivatives can be bounded over [a, b], independently 
of 7r. Thus, application of Lemma 2 to each subinterval and summation over the 
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subintervals yield (9). If x (E 7r, say x E (x,, x+1), the integral can be written as 
Hxi + fb+, + f2+': Again Lemma 2 insures that the first two integrals are 0(H7rlM). 
However, the integrand is not smooth enough in (x,, x,+1) for Lemma 2 to be ap- 
plicable to the remaining integral. Let Gi, denote a 'G/3xi3t' and z, = '(x, + X%+1) 

rX+1 k - I - i X ik-i-i 

f GGo(x, t)(- f) dt = a G2l(x, z,)/l! j (t - z,) ) fit 
xZ 1=0 Xi 

+ f (t _ Zl)k- Gi k -(x, St)( - f) dt/(k -j)! 
xi 

The last integral is o(HrTn+k+2-i) from Lemma 1; the others are 0(H7rlM+') by Lemmas 
1 and 2. The remaining terms of the error have the same form and are treated similarly. 

COROLLARY 1. If M = 2m + 2, then 

(1 1) l) (X) - ur (AX)| ' C 17rl2m+2, X E Or, 

(12) (i'(x)- u'''(x)$ _ C KrIS, x (E r, 

where s = min(2m + 2, m + k + 2 - j). 
COROLLARY 2. If for a (k + 1)st order differential equation p,, f E C2k+ 2[a, b], 

M = 2k + 2, m = k, i.e., we approximate by piecewise kth degree polynomials, then, 
as -* 0, 

HlU(i) - U0)ii = o(iri2k+2-i), j = 0, 1, * k. 

Note that in Corollary 2 the coefficient functions have been perturbed by O(E), 
E = 17rlk+l, yet the solution is only perturbed by O(E2). As discussed above, for 
ran Q = Pm, the largest M for which the restriction on Q in Theorem 3 is satisfied 
is M = 2m + 2. Thus, for such approximations, (11)-(12) give best possible error 
bounds. 

There are many examples of projectors for which Theorem 2 is applicable and 
several which satisfy the additional restriction of Theorem 3. Proofs of the following 
results and further examples are found in [8]. 

Example 1. Let Q be the map which takes G E G- 1, 1] into the mth degree 
polynomial which interpolates G on some arbitrary set {t, ̀ }7 in [-1, 1], then 
Theorem 2 applies. 

Example 2. If Q is chosen as in Example 1 with the restriction that the inter- 
polating points are the roots of the (m + I)st degree Legendre polynomial, then Q 
satisfies the hypotheses of Theorem 3 with M = 2m + 2. 

Example 3. If Q is the map which takes G E C[- 1, 1] into its mth degree poly- 
nomial best approximation in the least squares sense, then Theorem 3 applies with 
M = 2m + 2. 

5. Richardson's Extrapolation. If Q preserves evenness and oddness, then, for 
partitions consisting of equally spaced points, the error at mesh points can be expressed 
as a power series in h2: Thus, Richardson's extrapolation can be used to advantage. 
The representation of the error (4) has the disadvantage that it contains ui, on the 
right-hand side. This posed no difficulty in Theorem 3 since ui, and its derivatives 
could be bounded independently of w. To analyze the error more closely, however, 
requires a different characterization of the error in which the only dependence on 7r 
occurs in the coefficient functions. 
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Define g,(x) = f' G(x, t)(f - f) dt where G(x, t) is as in Theorem 1. Furthermore, 
for v C C'[a, b], set 

(Irv)(x) = f G(x, t)[L - Ly]v dt. 

Then, by a Neumann series argument, (4) implies 

u(x) - u(x) g (x) + Z I7(g, - u) - Ur+l~e 
7 =0 

for any positive integer r. For the case of equally spaced points, we have xn = a + 
(n - l)h, n = 1, 2, , N + 1, h = (b -a)/N. Now, IIII = O(h"' +l) in the map 

norm subordinate to k, SO 

(13) u(x) - u(x) = g(x) + Z I7(gr - u) + (hfr(m+l)) 
t =0 

which is the desired expression for the error. 
THEOREM 4. If p, f fE C+ 1[a, b], r _ m + 1, and QF is odd (even) when F is 

odd (even), then for each n there exist constants a, independent of h such that 

(14) u(x.) - u,(x.) = a, h2 + O(hf +r+2) 
=o 

Proof. From Cole [3, p. 165], the Green's operator fr dtG(x, t) can be written 
as a sum of (k + 1)2 terms of the form v,(x) fx dtv2(t) and v3(x) f' dtv4(t) where 
v, E Cr+ . Thus from (13), the desired formula (14) follows if it can be established 
that integrals of the form 

v(t)(f- f) dt or fv(t)(f - f) dt, v E Cr+ ax 
have error expansions like the right-hand side of (14) when x = x,, a mesh point. 
With the notation of Lemma 2, 

f (J - f)v dx = Z Zv(')zZk)i!(h)'+ t'(1 - Q)F dt} + O(h" r r 2) 

Since FEEC'-"[- 151]5 

t'(1 - Q)Fd = Z {F~i)(0)/j! j t7(1 - Q)t? dt} 

+ , tr+ (I - Q)(F )(r)tr+1) d/(r + 1)!, 

so, with j3, = f1 t(1 - Q)t' dt/(2Y +' i!j!), we have 
x 1 r r f w1 A 

(15) f (f - f)vdx = E > 3,,/1 J{h h v"(zP)f (zk)} + 0(/h 
rI )2 

a 8 ~~~~=0) I =l 0 k= I 

The term in braces is just the composite midpoint rule applied to J' v" (x)f ')'(x) dx 
which is known [4, p. 168] to have an error which is a power series in h'2. Finally, 
from the assumption on Q, {,, = 0 for i + j odd and thus only even powers of h 
occur in the low order part of (15). 
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In practice, Q is chosen to satisfy the restrictions of Theorem 3 as well, so that 

ao = a, = = a,, = 0. Examples 2 and 3 in Section 4 satisfy both the restrictions 
of Theorem 3 and those of Theorem 4. 

6. The Numerical Method. With the exception of a special algorithm for the 
case k = 1 and m = 0, a shooting method is used to solve (2). The general scheme 
is described in Keller [6] and consists of computing a number of linearly independent 
solutions of (2a) with initial value conditions and then finding the appropriate linear 
combination which satisfies (2b). Thus, the problem is reduced to that of integrating 
a linear initial value problem where the coefficients are piecewise polynomial func- 
tions. This is easily done by Taylor series techniques as the required derivatives 
can be computed recursively from the differential equation. In particular, given 
initial values u')(x), j = 0, 1, , k, from the differential equation 

k i \ 

1+1) = j.(i) - E E J )p It) 'i + j = O, 1, 
t=0 1=0 

But on each (xn, x,+,), the coefficient functions are mth degree polynomials so all 
their derivatives of order m + 1 or higher are identically zero. Thus, we have 

k m 

(~~~k 1 6 )) (u Tr 
= 0 ,Atz)p r , j O I, (16) uT~il PI-Z I 0 1 

z=0 1=0 

For m = 0, 1, 2 these sums are not too complicated. If T7,(h) is the operator 

Zl=0 (h2/i!)d2/dx2, then since the coefficient functions are analytic in (xn, x,+1), 
for x, h such that x, x + h E [x,,, xe+,], we have 

u~r(x + h) = Tp(h)u,(x) + (hfP+l). 

Moreover, the quantity (T,)+1(h) - T7,(h))u,. provides an approximation to the local 
error in computing ur which can be used to monitor the accuracy and predict h for 
the next step. In most cases, 7r is fairly coarse so it is necessary to use a step size 
h < x+1 - x. For the numerical data displayed below, p = 12 is used so the local 
error in computing ur is 0(h'3). 

The computation is more efficient if (16) is rewritten in terms of the scaled de- 
rivatives h'u('"/j!. For example, when k = 1 and m = 2, the formulas are 

V-2 = 1 = 0, 

Vo = u(x), V =' , 

and, for j= 1, 2, . , p5 

V1 h V1I/i, 

VI hlf /')j! P1V, 

- h{j(0 + (j- 1)p5) V,_1 + h[(P, + (j - 2)p/'/2) V,_2 
+ hp5'/ V,3/2]}/j. 

Then uj(x + h) = Z=o V;, u4(x + h) = 7=0 VI and V7)+1 = hVJ/(p + 1) is an 

estimate of the local error in u,(x + h). 

7. Numerical Examples. All computations were done in double precision on 
the IBM 360 using N subintervals of equally spaced points. 
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The first problem is a 4th order equation (k = 3), viz., 

U(4)(X) = (X4 + 14x3 + 49X2 + 32x - 12)ex in (0, 1), 

u(O) = u'(O) = u(1) = u'(1) = 0, 

which has the known solution u(x) = x2(x -1)2e'. It is easily seen that if v(x) satisfies 
V = f, v(O) = v'(0) = v"(0) = 0, v///(0) = 1, then 

u(x) = v(x) + (v'(1) - 3v(1 ))X2 + (2l() _ V'(1))x3. 

Moreover, if j is a piecewise mth degree polynomial, then the solution of V( = f 
is a piecewise (m + 4)th degree polynomial which can be computed in closed form. 
Table 1 displays the error for various types of approximation schemes and different 
mesh sizes. The following notation is used for the types of approximations: 

Gm: On each (xn, x.+,), J is the mth degree polynomial which interpolates f at 
Gauss-Legendre points. 

Hm (Hermite): On each [xns, X.+1], j(i) interpolates f (i), j = 0, 1, (m - 1)/2, 
at xd,, x+ 1. 

S2 (Spline): On each [x,, x, l], f interpolates f at x,, x,,-, and 4(xn + x,+1). 
S3: is the natural cubic interpolatory spline for f on ir. 
Theorem 3 predicts l l ( i) )-( - ) l = O(17rl s) where s = min(2m + 2, m + 5-j) 

for Ga,. The other schemes have errors at worst O( 7rlm+ -i), although there are 
some special cases which give slightly higher rates of convergence. The superiority 
of the methods based on interpolation at Gauss-Legendre points is evident and it is 
equally clear that demanding smoothness in f, as in S3, contributes little to smaller 
errors in u,. 

The remaining examples are second-order problems and, for low degree poly- 
nomial approximations, it is not necessary to use shooting as the approximate prob- 
lem can be solved exactly. For example, when m = 0, the equation 

U 7 + P. U r + qnu7 = x E (Xn, Xn+1), 

has the solution 

TABLE 1 

Hu- u'H Hu'- U'l! 
Method 7rl = 2 4 

GO 2. 25E-2 4. 69E-3 1. 08E-3 8. 44E-2 1. 75E-2 

GI 1.48E-3 2.51E-5 1.09E-6 8.51E-3 3.03E-4 

G2 8.14E-5 1.24E-6 1.94E-8 4.83E-4 1.24E-5 
G3 1.74E-6 8.25E-9 3.50E-11 1.30E-5 1.24E-7 

HI 3.62E-2 8.50E-3 2. 10E-3 1.25E-1 2.78E-2 
H3 6.85E-4 4.09E-5 2.54E-6 2.38E-3 1.31E-4 

S2 6.98E-4 3.41E-5 1.96E-6 2.80E-3 1.28E-4 
S3 9.64E-3 1.38E-4 5.96E-6 4. 10E-2 1.26E-3 
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(17) u,(x) = exp[ax,(x - xn)]{ An cos fn(x - xn) + Bn sin fn(x - xJ)} + fn/qn 

with an = -Pn/2 On = (qn- a2)1/2. If fOn is imaginary, it is a simple matter to switch 
to hyperbolic functions of a real argument; if qn = 0, adjustments can be made which 
lead to similar results. The continuity of ur and u4, together with the boundary 
conditions, give rise to a linear system for ur(x,,), u4(Xn), fn = 1, 2, .. , N + 1; 
moreover, the coefficient matrix has a simple band structure. For m = 1, when the 
u' term is not present, a similar procedure can be used with Airy functions, for m = 2 
parabolic cylinder functions appear in the solutions. Gordon [5] has described ways 
of evaluating Airy functions but these can be awkward to use, particularly because 
of scaling and conditioning problems. No method (other than Taylor series) is 
available for computing parabolic cylinder functions, thus, in this paper, the results 
for m > 0 have been computed by the Taylor algorithm. For m = 0, the fact that 
ur has the form (17) can be used to carry out exact integrations in the shooting 
method. Since the exponential and trig functions can be evaluated fairly rapidly, 
this is the method used here. 

The following problem is a difficult one for methods based on polynomial ap- 
proximation of solutions, particularly for conventional shooting techniques. 

i" + (3 cot x + 2 tan x)u' + .7u = 0, x E (300, 600), 

u(300) = 0, u(600) = 5. 

This problem arose in considering stress distributions in a spherical membrane 
having normal and tangential loads [9]. The solution has a sharp peak near x = 30.5, 
so good local polynomial approximation requires fairly small step sizes. However, 
the coefficient functions are quite smooth and, in fact, the results in Table 2 have 
been generated with N = 6, i.e., I 7rl 

= 5. The "exact" answers are actually high 
accuracy results of other methods. 

This data illustrates the power of this method for problems with smooth co- 
efficients but ill-behaved solutions: The high order Taylor algorithm for piecewise 
polynomial functions is stable enough and accurate enough that ur can be computed 
well by shooting even though u cannot. 

TABLE 2 

x u(x) u,(x) by Go GI G2 

35 171.653 172.092 171.651 171.652 
40 89.0707 89.2643 89.0694 89.0704 
50 21.2680 21.2935 21.2676 21.2679 

u'(x) u4(x) by Go G, 

30 1896.44 1795.69 1889.92 1896.22 
35 -21.5363 -20.5436 -21.6044 -21.5341 
40 - 12.1522 - 11.7617 - 12.1821 - 12.1515 
50 -3.13100 -3.11483 -3.13746 -3.13100 



560 STEVEN A. PRUESS 

TABLE 3 

(u- u,)/uI 
_#r 1 1 1 16 

2 4 8 1 6 

GO 6. 47E-3 7. 26E-4 1. 60E-4 3. 80E-5 
GI O1.O1E-3 4. 42E-5 2. 59E-6 1. 60E-7 

The final example is difficult to solve by conventional difference schemes: 

,, ? _ 4x_ u'?+ _ 2 >- u =0 in (0), 

u!(a.= ().. uW. .= 8000.. 

which has the known solution u(x) = 104/(1 + x2). As in the previous example, 
the coefficients are more amenable to local polynomial approximation than is the 
solution. Table 3 contains results for methods based on interpolation at Gauss- 
Legendre points which yield uniform errors of O(1 7rlj2+2) for m = 0, 1. 

Theorem 4 states that for many approximation schemes, including those based 
on interpolation at Gauss-Legendre points, Richardson's h2-extrapolation can be 
used. The argument is sufficiently general to include initial value as well as boundary 
value problems so either local or global extrapolation can be used. The former is 
much more effective since the error can be monitored as the integration is carried 
out. For m = 0, the fact that u, has the form (17) means the integration can be done 
exactly and much more efficiently than by the Taylor algorithm. For the preceding 
example, the missing initial condition u(O) was computed by this approach and, 
in spite of the fact that u has very large derivatives, the extrapolation was very effec- 
tive. With the extrapolation sequence , 4,, 8, 12 , 

. } to estimate u(O) with a 
relative error of 5 X lo-8 required 19 evaluations of the coefficient functions and 
a relative error of 104 required only 55 function evaluations. 

8. Conclusions and Generalizations. From the above examples, it can be seen 
that this method is particularly effective when the coefficients can be well-approximated 
locally by polynomials and the solutions cannot. In essence, this is due to the fact 
that the solutions are being approximated locally by transcendental functions which 
are far more able to reflect rapid growth or oscillatory behavior than are polynomials. 
Even if the coefficients do not lend themselves to accurate local polynomial ap- 
proximation, the method presented here has one advantage over conventional 
methods in that one is dealing with known functions, viz., the coefficients. Thus, the 
degree of the polynomials and the mesh can be chosen to approximate the coefficients 
well without requiring a special knowledge about the solution. 

The Taylor algorithm described above is also useful for problems where the 
original coefficients are polynomials. The method appears quite stable and the 
built-in error estimator for the high order method allows fairly large step sizes to 
be used in the integration. 

All of the results in this paper pertain to problems in nonselfadjoint form. Anal- 
ogous results can be derived by directly treating problems in selfadjoint form. 
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