MATHEMATICS OF COMPUTATION, VOLUME 27, NUMBER 123, juLy, 1973

Efficient Computer Manipulation of Tensor Products
with Applications to Multidimensional Approximation

By V. Pereyra and G. Scherer

Abstract. The objective of this paper is twofold:

(a) To make it possible to perform matrix-vector operations in tensor product spaces,
using only the factors (#-p? words of information for ®?_, 4;, 4; € £(Er, E?)) instead of
the tensor-product operators themselves ((p?* words of information).

(b) To produce efficient algorithms for solving systems of linear equations with coef-
ficient matrices being tensor products of nonsingular matrices, with special application to the
approximation of multidimensional linear functionals.

1. Introduction. The use of multilinear algebra in applied numerical analysis
has been rare. However, this is not the case in theoretical numerical analysis. In
recent times, interest has grown in the use of tensor product interpolation rules
in such different areas as multidimensional numerical quadrature [6], finite elements
[4], interpolation and approximation.

Despite this widespread theoretical interest, there are practically no algorithms
for performing the various tasks required by these applications. This paper attempts
to start filling the gap.

We shall consider some of the basic operations in tensor spaces, and we shall
indicate ways and means to perform them on a digital computer using a high level
programming language. The aim is, of course, towards economy, both in arithmetic
and storage, simplicity, sequential processing, and thus optimization in the manipula-
tion of subscripts.

After giving some basic notations in Section 2, we pass on to describe
an algorithm for performing the Kronecker product matrix-tensor multiplication
A4, -+ X A,)x. It is clear from the beginning that a computer implementation of
an algorithm which wants to be independent of the number of factors k must avoid
the use of multi-indexed arrays. This holds even more if considerations on economy
in index manipulations and storage are taken into account. It turns out, as we explain
in Sections 3 and 4, that the whole process can be carried out sequentially and in
a fairly simple manner.

In Section 5, we deal with systems of linear equations of the form

(Al®"‘®Ak)x=b.

The idea in all cases is, of course, to be able to work with the factors 4, indi-
vidually, and never form explicitly the tensor product X) 4,. This is achieved in a

Received March 8, 1972.

AMS (MOS) subject classifications (1970). Primary 65D15, 65F30; Secondary 65N30, 15-04,
15A69.

Key words and phrases. Computer manipulation of tensor products, multidimensional functional
approximation, construction of finite elements, tensor product systems.

Copyright © 1973, American Mathematical Society
595

596 V. PEREYRA AND G. SCHERER

fairly straightforward way, and the practicality of the algorithms and the code offered
are supported by the numerical results of Section 6, which show applications in
tri-dimensional Lagrange interpolation.

This algorithm, coupled with the efficient, one-dimensional techniques of [1], [5],
should provide a powerful tool in many applications.

Those readers only interested in the algorithmic part of this paper, and who
are ready to accept the validity of the recursion (3.2), should direct their attention
to Sections 4, 5, 6 and skip the more formal (and somewhat heavy) manipulations
of Sections 2 and 3.

The authors would like to acknowledge the very expert and kind handling of
this paper by the editor, and also the excellent suggestions of one of the referees.

2. Tensor Product Spaces. In this section, we shall introduce some necessary
notation and well-known properties of tensor product spaces which will be needed
in the sequel. For details, we refer to [3].

Let U,, U,, - -+ , U, be Euclidean spaces of dimensions #n,, n,, - - - , 1, respectively,
and let U*, U%, --- , U* be their duals.

As usual, if x is an element of the Euclidean space U, we denote by x* the linear
functional (element of U*) defined by

VyE U x*y) = (x,y) (where (,) denotes inner product).

The tensor product space U formed with U,, U,, --- , U, will be denoted by
UR®U,X -+ X U, and it will be the set of all linear combinations of the symbols

2.1 5 XP®x&® - - Qx, withx, € U,.
Let us suppose that the tensor product space U is formed with s spaces {U,},
i=1,---,sand rspaces {U*}, j =1, ---, t, where the U* are the duals of some

of the spaces U,. Then we shall call its elements s times contravariant and ¢ times
covariant tensors, or (s, 7)-tensors for short.

Anyelement of U = U, ® - ® U, ® U* & --- @ UX can be generated
as a linear combination of elements of the form

x® - PXxQxE® - ®xk,

where the x, & U, x* &€ U?X.

From a (s, f)-basis-tensor, we can obtain a (s — 1, + — 1)-basis-tensor by con-
traction of one contravariant and one covariant component, provided they belong
to dual spaces

(22) Cf(X) C{(x1 ® . ® X, ® x:"l ® .. ® x:k‘)
*x)x Q * ®x @ xr® ¥ ® x¥),

where i; = i.

The operator ¢’ is extended linearly to all U and is called the contraction of the
ith contravariant with the /,th covariant component.

Given two tensors u, v, belonging to two spaces U, V, we define the tensor product
of u and v as the element of UX) V:

EFFICIENT COMPUTER MANIPULATION OF TENSOR PRODUCTS 597

u@v= (T ul e, @ Qe @t @ - @ e,
@i @ @@ 5 ® - ®)
= 2wl iile, @ @ ey ® i
XDV, Qe Q@ Rer @ @ ® £

Observe that we have chosen to collect first all the contravariant components,
and then all the covariant ones. This we shall always do.

Any linear operator 4 & £(U) can be thought of as a (1, 1) tensor, 7. In fact,
if {e;} is a basis for U, and {e*} is the dual basis, then we can associate with A4 (in
a 1-1 correspondence) the tensor T, = D, (de;) ® e*, and obtain Ax through tensor
multiplication and contraction

2.3) Ax = cé(Z Ae; Q x & e";-) = Z e*(x) de; = Z x;Ae;.

Observe that de; = a, is the jth column of the matrix representation of A4 in
the basis {e;}.

If4;,i=1,---,k, arelinear operators from U, into U;, then 4 = 4,) - - - X A,
is a linear operator from U = U, ® --- & U, into itself, defined by

2.4) (A1®"'®Ak)(x1®"'®xk)= A1x1®"‘®Akxk,

and extended to all U by linearity.
If the A, are nonsingular, then it is well known that A is nonsingular and that

(2.5) (4R @A) '=4"'"® - X 4.

As is usually done, whenever there is no possibility of confusion, we shall use
the same symbol to designate a linear operator or its matrix (tensor) representation
in a given basis.

3. Computation with Tensor Product Linear Operators. Our objective now is
to describe the computation of y = (4, @ 4, Q) -+ @ 4,)-x, using a minimum
of storage and index manipulation.

To fix ideas, let us consider first in detail the case k = 2:

y = (Al ® A2)x) Where X = Z Z xs.nes..l ® e33.2,

and 4, = (@, 5, =1, ,n,ji=1,--- ,n,1 =12

We shall show that y can be obtained via transformation of 4,) 4, into a
tensor, followed by a tensor multiplication and two index contractions.

The matrix 4 = A4,) A, is associated with the (n, - n,, n, - n,)-tensor

T, = TA. ® TA2

E a8, & ek, ® Z ai.i,2€,.2 X eF .,
12:12

1,01

= Z @iiinGiyi 280 X e, ® er X ek ..

Tisia,dr.ie

As in the one-dimensional case, we compute cyc3(T4 X x).

598 V. PEREYRA AND G. SCHERER

We observe that this is equivalent to

C;,(TA. ® E E)Z Airen2Xa0.(€i,0 &) €, 1)

[P 81

E E (E at‘.a..l(z a:‘gaz.2xa.83))eh.l ® €;,,2s
8y 82

i iz

I

cs(Ts, @ c3(Ta, @ x))

which by definition is equal to the desired product

(4, ® A)x = y.

In order to simplify the notation, we shall, in the following, omit the indices
identifying the spaces.

We shall systematically use the indices i;, j,, s, for objects associated with U,
or its dual, which should make clear to what spaces, basis, etc. we are referring.
Also, we will use, when possible, multi-indices i = (i, - - - i), etc.

With this notation, we have e, = ¢, ® -+ R e,,.

We consider now the general case k = 2.

Letx = 3 ; x;e;,and, for 4 = 4, ® -+ ® A,, let

(3.1) TA = TA. ® e ® TA,‘.
It is well known that
y = (4, ® e @ Ax = E (zj‘: Aiqy * aikikxi)ei'
We shall obtain y recursively, in a form appropriate for implementation on a

digital computer.
We define y*’ = x, and in general

(3'2) Y(k_t_l) = cllc-fl(TAk—g ® y(k_t))9 t = 0, 1’ MY k - 1-
In the following lemma, we prove that the tensor y‘’ obtained in this form is
really y = Ax.

We use the following notation:
il = (il’ Tty i:)a if = (it+h MY ik)'

LEMMA 1. Let y'© be obtained recursively by formula (3.2). Then y©° = y.
Proof. By formula (3.2),

77" = ai(Ta, ® ¥°) = 1T, ® x)

= c},+1(< 2 aninen ® ei"i) ® 2 x8°5>

Tkiik i

E Z (E aikskxsk—.u)et'k ® es’:—;‘
8k

ik Sk—1

3.3)

(Observe the change in the order of the basis vectors!)
We assume for an induction argument that

(k=t) _
y = E E (Z Aitopir,skmgrr " al'k“cxsk—t.sk—t‘)eik—t* ® €5y -
ik—¢* sk—¢

Sk—t*

EFFICIENT COMPUTER MANIPULATION OF TENSOR PRODUCTS 599

If we now apply T4,_,:

Ta-, ®y(k_t) = E Z E E aik—l.fk—lyl(kk—_tt‘).sk—l

k-t ik—t* Sk—t Tk—1t

*€iky ® €iko i ® €si_, ® e?k—t’
and finally

(k—t—1) 1 (k—t)
y ‘ = Ck+l(TAk—t ® Y !)
(k—t)
E Z Z (Z atk—:ak—:yik—t‘,sk—t)
Tk—t lk—t* Sk—t—1 ‘8k—1¢
“€ik_, ® €ip_ i ® €sits

2 : z : (2 : Aip_ysr—y *°° aikakxsk—:—.sk—t—|‘)
fe—t—1% Sk—t—

Sk—t—1*

i PP ® €siv—1>
as we wished to prove.
Clearly, y = 4x. O

4. Computer Implementation. The implementation of the computation of
Ax, using a high level computer language, is facilitated very much by the develop-
ments of Section 3.

Our aim is to avoid the wasteful use of multi-indexed arrays by organizing the
data in such a way that its processing is as sequential as possible. This will tend to
minimize index manipulation and paging.

The main bridge between multilinear algebra and computer programming is
provided by the following storage convention:

Storage Convention. The components ¢; of tensors of the form

T=Z[iei.®ei=®"'®eik

will be stored in one-dimensional arrays according to:
begin

Ji=1

Sor i, := 1 step 1 until n, do

Jor iy := 1 step 1 until n, do

fori,:= 1step 1 until n, do

begin
TU] = [nia"'tk;
Ji=j+ 1
end

end,

The implied order of the factor spaces U,,, U;,, --- , U,,, given by the subindices
of the basis vectors, is of primary importance. That order changes in the recursive
algorithm of Section 3, and this will be the cue for the data handling.

600 V. PEREYRA AND G. SCHERER

We assume that the matrices A4; are stored row by row in a linear array A, starting
with 4, and going backwards up to 4,. Thus

A1) — a, AQ) —dfy, -+, A + D) —all', oo, Alnyong <+ - 1)) — an,,.

We also assume that the components of the vector x are given in a linear array
X as explained in the storage convention above.

We define m,, = H;#k n;.

With the data stored in this fashion, the first contraction c,,, (T4, ® y*) is
readily obtained by means of the code (confront (3.3)):

procedure CONTRACT (nk, mk, N, A, X); integer nk, mk, N; real array A, X;

begin integer I, J, k, Inic, i, s, t;
real SUM;
real array Y[1 : NJ;

label 1: k:= 1;Inic:= 1;

label 2: for i:= 1step 1 until nk do
beginJ := 1;

for s: = 1 step 1 until mk do
begin I : = Inic; SUM := 0;
for t := 1 step 1 until nk do
begin SUM := SUM + A[I] X X[J];
I:'=1+1;J:=J+1;

end,;
Y[k]:= SUM; k:= k + 1;
end,

Inic: = I,
label 3: end,
fori:= 1step 1 until N do
X[i]:= Y[},

finish: end,

This code follows exactly the ordering of the indices indicated by the tensor
products and the storage convention. It produces a result y*~*’ that is stored in
such a way that the next contraction can also be performed sequentially, and so on.

Observe that the index s has taken the place of the multi-index s,_, of (3.3).
This index s simply counts the number of subvectors of dimension n, in which the
one-dimensional array X must be subdivided.

If we put m; = [L..; m, N = [[%., n;, and M = 3 %, nf, then the complete
product y = Ax can be obtained by means of the following procedure:

procedure TENSOR PRODUCT (M, N, k, n, A, X); integer M, N, k;
integer array n[1 : k], real array A[1 : M]; X[1: NJ;

begin integer mk, nk, L,
nk := n[k]; mk := N/nk;
other matrix: CONTRACT (nk, mk, N, A, X);

if (k = 1) go to finish;
k:=k — 1, mk:= N/nk];
go to other matrix;

finish: end,

EFFICIENT COMPUTER MANIPULATION OF TENSOR PRODUCTS 601

5. Tensor Product Systems of Equations. We would like to consider now the
solution of systems of equations of the form

.1 W@ - @ Wy = x
where the W, are nonsingular linear operators from the n,-dimensional vector space
U: (i =1, ---, k) into itself. Naturally, x, yE U, R -+ Q U,.

From (2.5), we have that the solution to this system is simply given by

(5.2) y=W'® - @ Wiz,

Thus, after inversion of the W,, we can apply the algorithm of Section 4 directly.
Of course, it is seldom wise to solve a system of equations by inverting the matrix
of coefficients [2, Chapter 2, Section 1.1], and we shall look for a different approach.

Let V., L; be upper and lower triangular matrices respectively such that ¥, =
L;W,. Thus,

(L1®L2®"'®Lk)'(W1® W2®® W)

= (V1® V2® ® Vi).
The system (5.1) becomes, after multiplication by) L.,

G4 N @ Wy=wLQ - @ Lx.

We assume that the nonzero elements of the matrices V; and L, are stored in
one-dimensional arrays ¥ and L in the same way as the 4, were stored in Section 4.

With a small modification in the code to take into account the special form of
the factors L, we can use the same procedure described in Section 4 in order to
obtain

(5.3)

(5.5) b=(LQ® - & L)x.
To compute the solution of the system (V; & --- ® V,)y = b given by
(5.6) y='Q® - @ Vihb,

basically, we will use, recursion (3.2).

For this purpose, 4,_, is replaced by V;',, and y*’ by b. If we make the as-
sumption that b and all the intermediary vectors y*~*’ are stored in the same way
as in (3.2), then each step of the recursion, in this case is equivalent to the solution
of m,_, upper triangular systems with matrix of coefficients ¥,_,. The right-hand
sides of these systems are the vectors obtained by partitioning the present y**’ in
subvectors of length n,_,.

Here we have to point out an important difference between the algorithm of
Section 4 and the present one. In the code described in Section 4, the vectors y *~ ¢~V
resulted automatically in the appropriate storage mode. This was a consequence
of a convenient ordering of the loops, and it was possible because the components
of y*7*= were computed one at a time.

In the present situation though, we shall process y“*~*’ by whole blocks of length
n;.—., and the returning blocks will not be in the proper ordering for sequential process-
ing of y*~+=V,

Let O, be the ordering associated with the tensor product space

602 V. PEREYRA AND G. SCHERER

U= Uk—l+l® Uk-t+2®"'® Uk® U1® Uz®"'® Up—y,
t=0,1,--- ,k—1,

according to the storage convention of Section 4.

For a given multi-index s, let #s = § be the cyclic permutation that sends s,
into §;,,if 1 £ i < k, and s, into §,.

For 0 < ¢ < k — 1, =* is defined by repeated application of . Clearly, (s¥_,, sx_:)
= r's,

We shall also use K = (1, - - , k).

For a given tensor B € U, each of its components

bﬂb—(+x-'l—l+s-"‘-'l.ﬂn"‘-'k—t = ka—t‘.Sk—(= bT‘B

has the linear address (in the order O,, and calling § = ='s, K = 7'K)

k-1 k
(5.7 addo,(b) = 2 G — 1) I nz + &

i=1 t=j+1
Puttingp — 1 = > 22 (5; — 1) [I¥2}s na + Guey — 1), ¢ = 5, we obtain, from
(3.7,

(5.8 addo(b3) = (» — Dng. + q.

Observe that p is the block number in the partition of B in blocks of size n3z,,
while g is the position of the component in its block.

We now need to compute the linear address corresponding to bg,_,., s, in the
ordering O,,,, associated with the tensor product U,,_,_.« ® Us,,_,_,.

Of course, we know that if s’ = s and K’ = #K then

k k-1 k
(5.9) addo. () = i — D [T e + 2 65 = 1) IT ne + st

t=2 i=2

a

But, since ng, = ng,, it turns out that H’f-z ng, = mg,. Also, since s} = §;_,,
we have that

k-1 k k-2 k-1
26 =10 I nee +st=26 —10 II nzi + 8-t = b,
=2 fmi+1l i=1 f=i+l

and s; = §, = ¢, where p and g were defined just before formula (5.8).
Therefore, replacing these values in (5.9), we obtain the simple address mapping

(5.10) addo,,,(bxts) = (@ —)mz, + p.

In the Appendix, we give an ALGOL procedure which reorders the returning
blocks of the process of b*~*, using formulae (5.8), (5.10).

6. Numerical Tests and Possible Applications. The algorithm described in the
earlier sections was used for the solution of systems of the form (W, Q) --- Q W)y
= x with W, transposed Vandermonde matrices. The program was written in
FORTRAN-G and tested on an IBM 360/50 computer. It was run in double-precision,
which corresponds to 14 hexadecimal digits in the mantissa. We shall refer to this
program as procedure TENSP.

EFFICIENT COMPUTER MANIPULATION OF TENSOR PRODUCTS 603

For the solution of the resulting transposed Vandermonde systems, we used
a double-precision version of the procedure dvand (see [1]).

The results of our procedure TENSP were compared with a program that uses
the full Kronecker product matrix and solves the system (5.1) by Gaussian elimina-
tion using the IBM supplied routine DGELG. It is quite obvious that this second
approach is counter indicated in practically all cases, but we include it since we know
of cases in which it is used anyway. Our hopes of seeing a complete breakdown due
to ill-conditioning were disappointed because another factor made it impossible
to proceed with values of n above 5: storage. In fact, for k = 3 and n = 6, we would
have needed 373248 bytes of memory, just for storing the matrix! Also, the factor
time was growing very fast. Compare with the relevant data for our algorithm.
Observe also that there is a significant loss of accuracy.

The table below shows the results obtained in the case k = 3, with all the W,
equal and for different sizes n, = n 4 1.

TaBLE 1

n+1 |7||. TENSP* ||7||. DGELG
3 — 0.0
4 0.4996 X 107*° 0.3035 X 107"
5 0.0 0.2043 X 107'°
6 0.63144 x 107 —
10 0.7835 X 107*° —
15 0.3472 X 107** —

* ||r|] is the maximum norm of the difference between the exact and the computed solutions.

The vector alpha [0 : n] defines the matrices W, and its elements are of the form
alpha [j] = j/n.

Given a function f(z,, z,, z;) and an appropriate right-hand side vector x, the
solution to the system of linear equations will be formed by the coefficients of the
polynomial

n
—_ 1 _t3_ta
P(z,, z;,2,) = E Yiiiaia21 22 23
t1,93,5a=0

that interpolates f at certain points.
In fact, if we consider the function f(z,, z,, zs) = 2z}, and define x by

L:=1;
Sor I:= 0step 1 until n do
for J:= 0step 1 until n do

604 V. PEREFYRA AND G. SCHERER

or k:= 0step 1 until n do

begin

X[L] : = alpha [I] ** n;
L:=L+1;

end,

then we shall have that P(z,, z,, z5) = Zi, since f(z,, z., 25) is interpolated exactly.
Thus, the solution vector will be

Ymine+r = 15 y; = 0 otherwise.
Some further data on these computer runs:

CPU time for DGELG; n = 5: 2/42.39",
CPU time for TENSP; n = 5, 10, 15: 55.40".
Storage for TENSP; n = 15: 64000 bytes.
Storage for DGELG; n = 5: 150,000 bytes.

By using the procedures pvand of [1], or vanderconf and dualconf of [5], it is
possible to apply this algorithm to a large variety of problems in multidimensional
interpolation of the Lagrange and Hermite type, numerical hyper-cubature, con-
struction of tensor product finite elements, etc. The most remarkable points, we
“think, are the efficiency and simplicity of the algorithms and, overall, their ability
to solve problems which are traditionally avoided because of their purported ill-
conditioning. We mean by this, problems involving the solution of Vandermonde
systems which, for moderate sizes, can be solved directly, accurately, and efficiently
by our methods. See [1], [5] for more details.

Appendix. Below, we give an ALGOL procedure for the reordering of y ™"
(see Section 5, (5.8), (5.10)).

procedure ORDENAR (X, Y, mk, nk, N);
Comment Parameter list:
X[#]: starting vector, length: [[*., n. = m, X n, = N,
Y[s]: reordered vector;
integer mk, nk, N, t, I, J, s;
real array X, Y,
begin t:=1;
for J:= 1 step 1 until mk do
for I:=1 step | until nk do
begin s:i=U—-1)X mk + J;
Y[s]:= X[z};
t=t+1;
end,
end,

Departamento de Computacién
Universidad Central de Venezeula
Apartado 59002

Caracas, Venezuela 105

EFFICIENT COMPUTER MANIPULATION OF TENSOR PRODUCTS 605

Departamento de Fisica Atémica y Molecular
Instituto Venezolano de Investigaciones Cientificas
Apartado 1827

Caracas, Venezuela

1. A. BJOrRck & V. PEREYRA, “Solution of Vandermonde systems of equations,” Math.
Comp., v. 24, 1970, pp. 893-903. MR 44 #7721.

2. E. IsaacsoN & H. B. KELLER, Analysis of Numerical Methods, Wiley, New York,
1966. MR 34 #924.

3. N. JacoBsoN, Lectures in Abstract Algebra, Vol. 1, Van Nostrand, Princeton, N.J.,
1951. MR 12, 794.

4. G. BIRKHOFF, M. H. ScHULTZ & R. S. VARGA, “Piecewise Hermite interpolation in one
and two variables with applications to partial differential equations,” Numer. Math., v. 11,
1968, pp. 232-256. MR 37 #2404.

5. G. GALIMBERTI & V. PEREYRA, “Solving confluent Vandermonde systems of Hermite
type,” Numer. Math., v. 18, 1971, pp. 44—60.

6. P. J. Davis & P. RABINOWITZ, Numerical Integration, Blaisdell, Waltham, Mass., 1967.
MR 35 #2482.

