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Multi-Dimensional Extensions of the 
Chebyshev Polynomials 

By Richard 0. Hays 

Abstract. Two families of polynomials are introduced which satisfy multi-dimensional (or 
multi-indiced) recursion relationships. These polynomials are developed from the Chebyshev 
polynomials. Also two additional polynomials are presented which satisfy a special two- 
dimensional recursion relationship. 

I. Introduction. The Chebyshev polynomials belong to the set of ultraspherical 
or Gegenbauer polynomials and are related to the hypergeometric functions [1]. 
These polynomials have proven useful in such areas as lattice dynamics [2], numerical 
analysis [1], and differential equations [1], [3]. 

The Chebyshev polynomials appear in the literature in various forms, so the 
following relationships define the forms of the polynomials which will be employed 
herein [1]: 
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(1.1) 1 - 2x + x~=2 T(O; a) + 2 i T(n; a)x', 

1 
co 

)Xn~~~c 
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where T(n; a) and U(n; a) are the Chebyshev polynomials of the first and second 
kind, respectively, and T(O; a) = 1. 

The terms (1 -_x2)/(1 - 2ax + x2) and 1/(1 - 2ax + x2) are the generating 
functions for the Chebyshev polynomials of the first and second kind, respectively, 
where the expressions (1.1) and (1.2) are valid, provided {xl < min la ? (a 2 _ 1)1/21. 

The expressions for T(n; a) and U(n; a) are 

(1.3) T(n; a) = 2E m! (n - m)! -(2a) 

rn/2O m! (n - nm)! n2 
(1.4) U(n; ak) = Y, -a -n)!(a_2 
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Let I(n; a) represent either T(n; a) or U(n; a); then I(n; a) satisfies the recursion 
relationship 

(1.5) 2a1I(n + 1;a) - I(n + 2;a) - I(n; a) = 0. 

II. Extensions to Two Dimensions. The Chebyshev polynomials can be ex- 
tended to two dimensions by forming multivariate generating functions produced 
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by replacing a by (a - (y + y 1)/2) in the original generating functions. Employing 
the multinomial theorem, we find that 

n 

(2.1) T(n; t - (y + y 1)/2) = E T(n; r; O)y', 
r--n 

n 

(2.2) U(n; a - (6 + y'1)/2) = E U(n; r; at)yr 
r--n 

where 

(2.3) T(n; r; a n) = n21 (-) 'f+(n - m- 1)! K(2a);H(q) 2 mt-0O k-0 q! 

(2.4) U(n; r; a) = , (-)E(n- i)! K(2a);H(q) 
m-0 M! k=O q 

subject to the relations 

1 = (n - Irl - 2m)/2, 

K = 1/k! (k + IrJ)!, 

q = n - Irl - 2m - 2k, 

and where H(q) is the Heaviside step function, 

H(q) = {0 ifq < O 
I1 if q _ O 

I(n; r; a) satisfies the recursion relationship 

(2.5) 2aI(n + 1; r + 1; a) - I(n + 2; r + 1; a) - I(n; r + 1; a) 

- I(n + 1; r + 2; a) - I(n + 1; r; a) = 0, 

where I(n; r; a) represents either T(n; r; a) or U(n; r; a). 
Several of the U(n; r; a) polynomials are displayed in Table I. 

TABLE I 

U(n; r; a) Polynomials 

r 

n 0 1 2 3 4 5 

0 1 0 0 0 0 0 
1 2a -1 0 0 0 0 
2 4a2 + 1 -4a 1 0 0 0 
3 8a3 +8a -12a2- 1 6a -1 0 0 
4 16a4 + 36a2 + 1 -32a3- 12a 24a2 + 1 -8a 1 0 
5 32a5 + 128a3 + 18a -80a4 - 72a2 - 1 80a3 + 16a -40a2 -1 10a -1 
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III. Extensions to N + 1 Dimensions. The generalization to N + 1 dimen- 
sions is straightforward with the replacement of a by 

(a_ Yi + Y + Y2 + Y2+ + YN + YN1) 
\ ~~~~~~2 

in the generating functions for the original Chebyshev polynomials. 
T and U are given by 

T(n; ri, r2, * * * , rN; ae) 

(3.1) = 
n/21 ()m+1y(n- m- 1)! > K1 > K2 [ON) K2t 
m2 M= m. k1=O k2-O kN=O q 

U(n; ri, r2, rN; CO 

(3.2) (El((_)m i~n- m)! E K, 
N 

K2 E 
m=O m. kp=O k2-O KN-O q. 

with 

,y = ri + r2 + +rN, 

D. (n - 
r, I Jr2J 

' 
Jr, I 2 m 2k, 2k2 ... 2k,_ 1)/2 

for p = 1, 2, 3, * , N, if we define ko = 0, 

KD= 1/k! (kD + IrI)!, p= 1, 2, 3, , N, 

q = 2(N- kN). 

With mathematical induction, we find that I(n; rl, r2, .., rN; a) satisfies the 
recursion relationship 

N 1 
>2 >2 C(Mk, N)I(tk; S1,k, S2,k, * SN,k; a) 0, 
k=O Mk--1 

where 

C(Mk, N) = N+ if Mk =:} 

l-1 if Mk = -1I, 1J 

tk = n + 1 + Mo k,o, 

Sak = ra + 1 + Ma k,a, 

I1 if k = al 
5ic,a = < 1 if sa 

0 if k 5 aJ 

and I(tk; Sik, S2,k, , SN, k; a) represents either T(tk; SI, k S2, k, SN, k; a) or 
U(tk; SI, k, S2,k, . . , SNk; a). 

IV. Special Two-Dimensional Polynomials. Sometimes, recursion relationships 
arise which are similar to Eq. (2.5) but differing in the coefficients of the I's. 
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Consider the recursion relationship 

2a I(n + 1; r + 1;,y; a) - I(n + 2; r + 1; ,y; a) 

(4.1) - OI(n; r + 1; (3,y; a) - yI(n + 1; r + 1; (, y; a) 

- yI(n + 1; r; A, y; a) = 0. 

An extension of the Chebyshev polynomials allows for the determination of the 
polynomials which satisfy Eq. (4.1). 

Replacing a by 

[a _ 
y 

(y + Yl)] 

in the generating functions produces the polynomials 

(4.2) (n; r; (3 y; a) = - - m! -1) 
(E) 

K 

______________m) 
n 2,n '0 K(2a/,y)" H(q) 

(4.3) U(n; r; a, 'y;a) = i (-) (n - i)! (9)n~2m [ 
m=O M! k0 q 

where (, K, q, and H are the same as for Eq. (2.4). 
The T and U polynomials of Eqs. (4.2) and (4.3) satisfy Eq. (4.1). 

V. Comments. A solution to Eq. (1.5), where I does not necessarily represent 
T or U, can be written in terms of the Chebyshev polynomials. It appears that solutions 
to the higher-order recursion relationships should consist of combinations of the 
extended Chebyshev polynomials. 
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