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Symmetrization of the Fluid Dynamic Matrices 
with Applications 

By Eli Turkel 

Abstract. The matrices occurring in the equations of inviscid fluid dynamics are simul- 
taneously symmetrized by a similarity transformation. The resulting matrices decompose 
into several lower-dimensional blocks. In addition these blocks are more sparse than 
previously obtained. These properties are then used to find a sufficiency proof for an im- 
proved version of the two-step Richtmyer method. 

1. Symmetrization of the Fluid Dynamic Matrices. The linear stability analysis 
for many numerical schemes for hyperbolic partial differential equations assumes 
that the equations are symmetric or, equivalently, that they are simultaneously 
symmetrizable. Although the fluid equations are nonlinear, in practice one uses the 
linear stability criterion for lack of any other choice. Furthermore, Strang [10] has 
shown that for sufficiently smooth flows the linear theory is valid for the nonlinear 
equations. It is well known that the equations of inviscid fluid dynamics form a 
symmetric hyperbolic system when the dependent variables are chosen as pressure, 
components of velocity, and entropy. Furthermore, Gudonov [4] has shown that 
it is possible to write the equations in conservation form in such a manner that the 
corresponding semilinear vector equations form a symmetric hyperbolic system. 
(For general connections between conservation laws and symmetry, see Friedrichs 
and Lax [3].) 

In this paper, we shall show that the matrices with dependent variables, density, 
momentum components, and energy can be simultaneously symmetrized. By the 
Kreiss matrix theorem [8], the stability of the difference equations is not affected by 
a similarity transform. It therefore follows that all proofs of linear stability for 
symmetric systems also apply to the fluid equations with the physically conserved 
quantities as dependent variables. It should be noted that, to correctly predict shock 
speeds, one must use the equations with p, pu, pv and E as dependent variables (see 
for example [5], [7]). Furthermore, the symmetrized matrices are sparse which can 
be utilized to simplify stability analyses. In fact, the matrices contain more zeros 
than one would ordinarily obtain using the available parameters in the similarity 
transformation. In many cases, it is advantageous to introduce new independent 
variables to simplify the treatment of boundaries. This will introduce new matrices 
which are functions of the original matrices. Use of the sparse transformed matrices 
will simplify the evaluation of the von Neumann condition for the new matrices. 
In later sections, we shall use this sparseness to derive a sufficient condition for special 
schemes. 
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For simplicity, we shall discuss the equations in two space dimensions and for a 
polytropic gas. Three space dimensions or more general equations of state do not 
present any major difficulties. In two space dimensions, the inviscid fluid dynamic 
equations can be written 

(1) Wt +fx+gy = O 
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Equivalently, Eq. (1) can be written as 
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where C2 = yp/p, c is the sound speed. ps = p/cv. We can then calculate the inverse 
of T. 

P -PO 0 0 2 
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It then follows that 

u cO O v O cO 

-1_ C U 0 01 0 V 0 0 (4) Ao = TAT , Bo = TBT- = 

o O U 0 C 0 V 0 

~O O O U) O O O Vj 

It is also possible to diagonalize one of these matrices. For example, let 
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We see that B1 still contains zeros (i.e., elements b12, b21) which would not ordinarily 
occur. So an extra measure of spareness appears after the similarity transformation. 
This is in addition to the effective reduction in dimension due to the common eigen- 
vector of the matrices A and B. 

2. A Sufficient Stability Criterion. The matrices AO and Bo have other properties 
besides that of symmetry. It is immediately apparent that the stability criterion for 
any finite difference scheme depends only on the values of u, v, and c and not on any 
other dependent variables. This, of course, is obvious from a physical point of view. 
Also, the transformed amplification matrix can be written as the direct sum of a 
matrix of rank three together with a matrix of rank one, immediately reducing the 
dimensionality of the problem (a corresponding statement holds for three space 
dimensions). 

We denote by G the amplification matrix of the finite difference scheme, while 
Go denotes the similarity transform, by T, of G. In order to facilitate the following 
analysis, we shall introduce a norm equivalent to the original L2 norm. Let (x, Y)T = 
(Tx, Ty) = (T*Tx, y) and let I I * I I T be the matrix norm induced by the vector norm. 
This quadratic form is positive definite since T is invertible and, hence, has no zero 
eigenvalues. Furthermore, 

K 111 1 11liT ? K I- with K minle.v.(T*T)l 

and so the two norms are equivalent. 
When we are able to show that the norm of Go is less than one, we have strong 

stability for G in an equivalent norm since IIJ = JIGIIT. Hence, by condition (H) 
of the Kreiss matrix theorem, the difference scheme is stable. Because of the special 
form of the matrices AO and Bo, we are able to obtain a simplified condition which 
is equivalent to Go being strongly stable. We thus can obtain a sufficient condition 
for stability. IGo 2 - G *GoII = spectral radius (G*tGO). So, we must find a condition 
that will guarantee that the largest eigenvalue of G*Go is less than or equal to one 
(the eigenvalues are real since G*Go is Hermitian). 

From the form of AO and Bo, it follows that 

g11 g12 g13 0 

(5) G*Go = I + =I + 12 g22 g23 0 

g13 g23 g33 0 

.0 0 0 g44 
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where gi i are complex functions of i, q, the dual Fourier variables. For stability, it 
is thus sufficient that G be negative semidefinite, i.e., that & has no positive eigenvalues. 

(6a) 0 = det(G -AI) = (g44 - A)(-_ 3 + a2A2 + alA + ao). 

We shall assume that , = g44 is negative since this is equivalent to stability for a 
single scalar equation. Any difference method which is unstable for this simple system 
is not to be considered. We shall thus confine our attention to the cubic equation 

(6b) f(, 1; A) = -,2 + a2p? + alA + ao = 0, 

where 

a2 = g11 + g22 + g33, 

(7) a1 = -(g11g22 + g91g33 + g22g33- g212 - _g1313 - 1g2312), 

ao = g11g22g33 + 2 Re (g12g13g23) -g11 1g2312 -_g22 1g1312 -_g33 1g12 1. 

A necessary and sufficient condition for the roots of f to be nonpositive is that 

(8) aO < O, a, < O. a2 _ ? 

This is true since the ai are real and the roots are known to be real, since G*G is 
Hermitian. In fact, if the roots are all simple, it is enough to find the conditions under 
which ao changes from negative to positive in order to find the stability criterion. 
In this case, we have only one trigonometric inequality to analyze, rather than a 
matrix inequality. When a double root can occur, it is necessary to verify the inequal- 
ities for both a, and ao. It is not necessary to check the inequality for a2 since, at 
a triple zero, ao will become zero and so it suffices to verify the inequalities (8) for 
a, and ao. Even in cases where the stability criterion cannot be given explicitly, it is 
easier to sample two scalar implicit conditions rather than sample the eigenvalues 
of a four by four matrix over a range of the Fourier variables. In addition, if one can 
solve the trigonometric equality (rather than inequality), then it is sufficient to verify 
the conditions under which ao = 0 for some i, a, 0 < t < 7r, 0 < X < ir, since this 
must occur at a zero root of (6b). Assuming that the difference equation is not un- 
conditionally unstable, there is a range of u, v, c for which the roots of (6b) are negative 
and so, the only way the scheme can become unstable, is for f(Q, q; a1) to have a zero 
root. Therefore, instability sets in only at those values of u, v, and c for which ao = 0. 

In the following section, we shall explicitly calculate the ai for a large class of 
second-order difference methods. For one specific scheme, we shall explicitly construct 
conditions on u, v, c that guarantee that ai < 0 and so we have an explicit sufficient 
condition for stability. For this particular scheme, the condition is necessary as well 
as sufficient. 

3. Applications. In this section, we shall determine the trigonometric inequalities 
that result from Eq. (8) for a class of finite difference equations. We shall then solve 
these inequalities for a particular scheme to determine a sufficient condition for 
stability. The class of difference equations that we consider is a generalization of the 
Lax-Wendroff method [7]. This generalization includes the two-step schemes of 
Richtmyer [8] and Burstein [1]. 

We consider finite difference schemes which can be characterized by an ampli- 
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fication matrix of the form 

(9) G = I - X2[a2(t q)A2 + 02(t, q)B2 + 'y(, q)(AB + BA)] 

+ iM[(S, q)A + e(, q)B] 

where X = At/A, A = Ax = Ay; i, n are the Fourier variables. For this amplification 
matrix, the gi i (see Eq. (5)) are 

= g (2o2 - 62)(u2 + c2) 
- (232 - e2)(v2 + c2) - 2(2y - S6)uv 

+ 4(U4 + 622 + C4) + 34(V4 + 6v2c2 + C4) + 42(u2v2 + c2u2 + c2v 2) 

+ 2o 202(U2 2 + C2U2 + C2v2 + C4) + 4o2y(u3v + 3uvc2) 

+ 40 2y(UV3 + 3UVc2), 

-(2 2- 82)(U2 + C2) - (212 _ e2)v2 - 2(2y - 6e)uv 

+ a4(U4 + 62c2 + C4) + f4v4 + y2(4U2v2 + 4v2c2 + c4) 

+ 2oa202(U2v2 + V2c2) + 4o2y(u3v + 3uvc2) + 4A 3 

9 
- (2a2 _ 82)U2 _ (212 _ e2)(v2 + C2) - 2(2,y - 6e)uv 

44+ 4 4 + AV 2C2 + C4) + Y2 2 2 2 2 + 4) 

(1 0) +Z +f( +6v +c+ (4UV +4U +c ) 
+ 2 a (uv + u c2) + 4a! Yu v + 4 3(uv3 + 3uvc2), 

2= -2(2a! - 62)uc- 2(2,y - 3e)vc + 4oZ4(dc + 3) 

+ 2y2(4uv2 + uc 3) + 2a!2 (2uv c + uc3) + 42ri ?(3u2vc + vc) 

+ 432y(V3C + VC3)- i_26 - j y)c3 

13= -2(202 - E2)VC - 2(2- 3e)uc + 4f4(V3C + VC 3) 

+ 2'Y (4U v + VC3) + 2a!202(2U2vc + VC ) + 4a27(u 3C + UC3) 

+ 4f2 y(3uv2C + UC3) + i(y _a2)3 

2 -(2y - 3E)C2 + 8y2UVC2 + 422UVC 2 + a2y(6U2C2 + C4) 

+ o2'y(6v2C2 + C4). 

Now we consider a modified version of the Richtmyer two-step scheme. This 
scheme has the advantage over the original Richtmyer scheme [8] that its domain 
of dependence is a square rather than a triangle; this is of great importance near 
boundaries. Furthermore, there is no splitting between even and odd mesh points 
and so increased stability for long term integrations. In addition, Eilon, Gottlieb 
and Zwas [2] have shown that this modified Richtmyer scheme is computationally 
faster than the space splitting schemes proposed by Strang [9]. This scheme is also 
more efficient than a similar scheme proposed by Burstein [1] and an explicit stability 
condition can be formulated for the inviscid fluid dynamic equations while none 
has thus far been found for the Burstein equations. Further comparisons between 
these schemes will be discussed in a future paper. 

We consider the general equation 
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(11) Ut = fx(u) + g.(u). 

Let 

ui+1/2, +1/2 =4 4i+l ,+l + U+i, + u i+1 + i4, ) 

+ X(fn n~1 + fn -n~ + 4 if+11i+1 fis~ i+ f+l~i fi 0) 

(12) + IX(g +n, - gn+1, + g,+1 - n, 

Ui. = u + 2Xfi+1/2,i+1/2 
- fi-1/2, +1/2 + fi+1/2,i-1/2 - 

fi-1/2,;-1/2) 

+ iX(gi+1/2,.+1/2 - gi+1/2,i-1/2 + gi-1/2,+1/2 - ki-1/2.i-1/2) 

where X = At/A, A = Ax = Ay, f = f(ut). For this particular scheme, the gi, are 
real. Let 

S(~,~ + ! 1- Cos ~)1-Cos n) >1 
(13) 2 4 1 -cost cosn ' 2' 

= (tt)2 au2 + v2 + 2yuv - 2(( a )1/2 / 1/2 2 

'A a + 0 ~~ + W/ 

and K1 = 4cm 12(-S + m + c2); K2 = m(-2S + m) + 2(-S + 3m)c2 + C4. It 
then follows from Eq. (7) that 

(14) ao = (a + f)6(-2S + m)m(K2 - K- 

but 

K1 + K2 = (ml/2 + c)2(-2S + (Ml/2 + C)2), 

K2 - K1 = (ml/2- c)2(-2S + (Ml/2 _ c)2) 

Therefore, if (Mi1/2 + C)2 < 2S, it follows that K1 + K2 _ 0, K2 - K1 ? 0, and so 
K2 ? 0, also K1 ? -K2 = K21, -K1 ? -K2 = IK21 . Therefore, IK I_ I K21 which 
implies that ao < 0. Thus, the requirement that ao be less than or equal to zero is 
equivalent to 

(15) (At)2 (i/2 + C)2 < 2 min S(Q, q) = 1, 
A 

but 

m = (au2 + v2 + 2yuv)/(a! + 3) 

2 + 2 (( 30! _1) -( - ) V) - + V2 

with equality for a = u/(u2 + v2)1/2,: = v/(u2 + v2)1/2. So we require that 

(16) (At/A)[(u2 + v2)1/2 + c] < 1 

Similarly, 

(17) a, = (a + 3)6(K 2- (K2 + 2m(-2S + m))K2) 

as before (Mln2 + c)2 < 1 implies that K2 < 0 and 2m(-2S + m) < 0 and hence that 
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(18) a, < (a + 3)6(K 2- K2) < 0. 

We have thus shown that if (At/A)[(u2 + v2)112 + c] < 1, then both ao and a, 
are nonpositive and, hence, that the difference scheme (12) is stable, under these 
conditions, for the inviscid fluid dynamic equations. Zwas [11] has shown that this 
condition is also necessary and so the condition is the best possible. Similarly, the 
sparse symmetric form of the fluid dynamic matrices (Eq. (4)) can be used to simplify 
the stability analysis, both analytic and numerical, of other difference methods. 
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