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Mesh Refinements for Parabolic Equations 
of Second Order* 

By Stewart Venit 

Abstract. Given certain implicit difference approximations to ut = a(x)uzz + b(x)uz + 
c(x)u in the region - co < x < co, t _ 0, with a finer x-mesh width in the left half-plane 
than in the right, we consider the stability in the maximum norm of these schemes using 
several different interface conditions (at x = 0). In order to obtain our results, we first 
prove a stability theorem for certain simple second-order parabolic initial boundary systems 
on an evenly spaced mesh in the right half-plane alone. By a standard procedure, the first 
problem is converted into the second one, and solved in this manner. 

0. Introduction. In [2], Osher shows the stability in the maximum norm 
of certain finite-difference approximations to ut = uzz, where the mesh width is finer 
in the left half-plane than in the right. It is the object of this paper to generalize the 
above result to approximations for parabolic second-order equations with variable 
coefficients, using various types of "interface conditions." 

Following a standard procedure, this stability problem is converted into an equiv- 
alent one concerning a system of two difference equations on a uniform mesh in the 
right half-plane alone. The latter is solved by partially generalizing a theorem of 
Osher [3] dealing with the stability of parabolic difference equations of the initial 
boundary type. 

The original stability problem is generally referred to as a "mesh refinement 
problem." These have been treated by Ciment [1] and Varah [7], as well as by Osher. 
The work presented here is mostly taken from the author's Ph.D. thesis, where it 
is given in much more detail, but in the case of the two mesh refinement theorems 
of Section 4, in somewhat less general form. 

I would like to thank Professor Stanley Osher for offering many valuable sugges- 
tions, as well as guidance and encouragement, toward the completion of the thesis 
upon which this work is based. 

1. The Mesh Refinement Problem. We will approximately solve the initial- 
value problem 

(l) t = a(x)u + b(x)u= + c(x)u, -a:) < X < a:, < t _ T < o. 

U(X, 0) = f x), - 0 < x < a, 
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on a mesh with nodes at 

(1.2) tn = nk, n = 0,1I, X ,T/k; 

xj = jh, i = 0, 1, 2, ; x = jh/p, j = -1, -2, 

The coefficients in (1.1) are to satisfy the following: 

a(x) > const > 0, Ia(x) - a(x) I ? const Ix - x0Iz with 
-y > 0, and b(x), c(x), and f(x) bounded and measurable. 

The difference scheme is of the form: 
1 1 

(. bi(x, h)v(x + ih, t + k) = A ci(x, h)v(x + ih, t) 
( ) i=-1 ~~~~~~~~i=-1 

for x - h, 2h, 3h, . 

1 1 

( b'(x, h)v(x + ih/p, t + k) = A c'(x, h)v(x + ih/p, t) 
(1.4) i=1i 

for x = -h/p, -2h/p, -3h/p, 
8 0 

pj(h)v(ih, t + k) + pj(h)v(ih/p, t + k) 
(1.5) s l1 

8 0 

= a qj(h)v(ih, t) + E qj(h)v(ih/p, t) for x 0, 
i=1 i=-r 

(1.6) V(X, 0) = f(x), X = * ,-2h/p, -h/p, 0, h, 2h, *.. 

In (1.3)-(1.5), t = 0, k, 2k, . ., T, and r, s, andp are positive integers. Restrictions 
on the coefficients will be given in Assumptions (i)-(iv). 

Remark. Notice that we are only considering "three-point" schemes; that is, 
the values of v are needed at only three points on each time level in Eqs. (1.3) and (1.4). 
(The "interface condition," Eq. (1.5), can be of a more general nature.) In his Ph.D. 
thesis [8], the author also considers (2r + 1)-point schemes, but these are limited to 
constant coefficients. Moreover, the applications given mainly concern the three-point 
variety, so for the sake of brevity, these are the only ones considered in this paper. 

Assumption (i). Equations (1.3) and (1.4) are consistent with (1.1). 
Assumption (ii). The coefficients bi(x, 0), ci(x, 0), b'(x, 0), and ct(x, 0) are bounded 

and uniformly Holder continuous with b-1(x, 0) 5 c-1(x, 0) and bl(x, 0) - c1(x, 0). 
Also, the coefficients pi(h) and qj(h) are C2(h) for h small. 

Assumption (iii). Equations (1.3) and (1.4) are parabolic; that is, there exists 
6 > 0 such that if z is a root of 

A (c,(x, 0) - zb,(x, 0))eiiO = 0, 

then z satisfies IzI ? 1 - 6 2, for all 1I1 ? Xr (and a similar statement holds for (1.4)). 
Assumption (iv). Equations (1.3)-(1.5) are invertible; that is, for arbitrary right- 

hand sides in these expressions, there exists a unique v(x, t + k) satisfying the equations 
with Ilv(', t + k)II bounded by a constant times the norm of the right-hand side. 
(II II will always denote the maximum norm.) 
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Necessary and sufficient conditions for the invertibility of different schemes are 
given by Osher in [3] and [4]. 

We also assume, merely for the sake of convenience, that (1.3) and (1.4) are 
symmetric; that is, b-,(x, 0) = b,(x, 0), c_1(x, 0) = c,(x, 0), and the same holds for 
the "primed" coefficients. 

2. A Stability Theorem for the Equivalent Initial Boundary System. If we 
introduce the two-component vector 

w(x, t) = (v(x, t), v(-x/p, t))', 

Eqs. (1.3)-(1.6) are converted into an equivalent initial boundary system in the right 
half-plane. 

1 1 

Bi(x, h)T'w(x, t + k) = E Ci(x, h)T'w(x, t) 

forx= h,2h,3h, ; t= 0,k,2k, ,T, 
l l 

(2.2) E P,(h)T'w(O, t + k) = E Q(h) Tw(O, t) for t = 0, k, 2k, * * , T, 
i=o &=o 

(2.3) w(x, 0) = F(x), for x = 0, h, 2h, **, 

where 

Tw(x, t) = w(x + h, t), F(x) = (f(x), f(-x/p))', 

Bi(x, h) = bi(x, h) O , Ci(x, h)= c(x, h) 0 

0 bY(-x/p, h) 0 ci(-x/p, h) 

and the Pi and Qi are square matrices of order two. The first row of all Pi and Qi 
except P0 have zero entries, while the first row of P0 has entries 1 and - 1. 

We now proceed to state a stability theorem for (2.1)-(2.3). The hypotheses of 
this theorem will include conditions to insure the stability of the related pure initial- 
value problem, as well as restrictions on the boundary conditions (2.3). The latter 
are given in terms of a "boundary matrix" similar to the one employed by Varah [6], 
who only considered boundary conditions on one time level. 

Consider the pair of equations in the vector unknown, g(jh, nk): 

(2.4) (Ci(O, 0) -zB(Os, 0))g((i + j)h, nk) = 0, j = 1, 2, 3, ... 
i =-1 

(2.5) > (Qj(h) - zPjh))g(jh, nk) = 0. 
i =o 

For Iz ? 1, z 5? 1, it can be shown (using the parabolicity of the scheme) that the 
following quadratic equations have no root x with [x[ = 1: 

(2.6) (c,(O, 0) - zb,(0, 0))xi1 = 0, 
i =-1 

(2.7) ,3 (ci(O, 0)- zb(O, O))xi~1 = 0. 
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Consequently, Eq. (2.4) has the solution 

g(jh, nk) = (d tl, d2t2)', 

where di and d2 are arbitrary constants, and t1 and t2 are functions of z satisfying (2.6) 
and (2.7), respectively, and having modulus less than one for [zi > 1, z 5 1. Substi- 
tuting this expression for g into (2.5) yields two linear homogeneous equations in 
the parameters di and d2. Letting d = (di, d2)', we can write these last equations as 

E(z, h)d = 0 

where E(z, h) is called the boundary matrix for the scheme. Explicitly, E(z, h) is 
given by 

E(z, I)ik = E (Qj() - zPj(h))k(tkY with j, k = 1, 2. 
i =o 

THEOREM (2.1). Given the difference scheme (2.1)-(2.3), suppose that 
(a) Assumptions (i)-(iv) of Section 1 are satisfied, 
(b) det E(z, 0) 5 O for [zi _ 1, z 5 1, 
(c) det E(z, O) = O((z- 1)112) as z - 1, Izi _ 1. 

Then, the scheme is stable in the maximum norm; that is, there exists K = K(T), inde- 
pendent of n, k, and h, such that 

IIw(*, nk)I[ = max Iw(jh, nk)l ? KIIFII. 
j=1,2, * * - 

3. Proof of Theorem (2.1). The hypotheses in Theorem (2.1) are essentially 
those of Varah's stability theorem in [6]. The latter, however, requires consistency 
of the boundary conditions to insure stability, while this is shown to be unnecessary 
for three-point variable coefficient schemes in [3], as well as for (2r + 1)-point con- 
stant coefficient schemes in [8]. Of course, to obtain convergence by the Lax-Richtmyer 
theorem, we do need consistency, but not requiring it at this point is convenient in 
proving mesh refinement theorems. 

The proof closely follows that of Osher [3], who in turn made use of techniques 
of Varah [6] and Widlund [9]. Ours differs in some respects due to the aforementioned 
lack of consistency at the boundary, the "linking" of the two equations in (2.1)-(2.3) 
at the boundary, and the use of two level boundary conditions. For this reason, we 
outline most of the proof, referring the reader to Osher [3] or Venit [8] for more detail, 
and fill in the detail ourselves concerning the above points. 

Our goal is to obtain estimates on the zeroth, first, and second divided differences of 

G(jhz, nk, lou) = f2 I 
Zn( V(J, Z, jo) + W(j, Z, jo)) dz 

where V, and W, are solutions of Eqs. (3.1)-(3.3) below. Once these estimates are 
obtained, the parametrix technique of Widlund [9] may be employed. The details 
of this procedure are as given by Osher in [3]. 

Z (Ci (xo, 0) - zB (xo, 0)) Vj + i =(i, j)I, 

(3.1)= jh, j - jo = 0, ?1, zt2, * *; 6 is the Kronecker 

6, and I is the second-order identity matrix, 
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(3.2) E (Ci(O, 0) - zBi(, 0)) W +i = 0, = 1, 2, 3, . 

(3.3) E (Q(h) - zPi())(V, + W) = 0. 
z =o 

S = S1 + S2 + S3 is the contour defined in Osher [3], and is given below: 

S1: Izi = e-, argzl > ' 

S2: z = exp(Ki02 _ 02 + f32h2), 0 < argz _ 062 

S3: z = exp(Ki02 _ 02 + o21h2), -62 ? argz ? 0. 

Here, 02 = arg z0, where z0 is the point of intersection of S1 and S2, and K, 6, and / 
are defined in the course of the proof. 

Estimates are obtained on V and W in two regions. One includes S1, and the 
other includes S2 and S3. We will simply say that our estimates hold "on S1" or 
"on S2 and S3," or, equivalently, "away from z = 1" or "near z = 1." 

Near z = 1, Eqs. (2.6) and (2.7) have the solutions (respectively) 

t (Z) = 1 - 1)1/2 + O(z- 1), t2(z) = 1- (_)1/2 + O(z - 1), 

where the branch cut for the square root is taken from - o to 1 along the x axis, 
and Iti(z)I < 1, It2(z)l < 1. 

Away from z = 1, these roots are bounded away from I = 1. 
The above, together with (3.1), gives us the following expressions for V(j, z, jo). 

On S2 or S3, for Ij-1J0 = 0, 1, 2,..., 

(3.4) Vsk = (a(i, k)gj(z)(t)(xo, z))_'''')/(z - 1)1/2. 

Here, the gi(z) are analytic functions of (z - 1)1/2, and the t,(xo, z) satisfy (2.6) or 
(2.7) with coefficients evaluated at (x0, 0) instead of (0, 0). 

On Si, for Ij-jol = 0, 1, 2,., 

(3.5) 1 Vik I< t(i, k)Kp" ', p < 1, K1 = constant. 

(In (3.4), (3.5) the indices i, k = 1, 2.) 
Since (3.2) is a homogeneous linear difference equation, for j = 1, 2, 3, ... 

(3.6) Wik = dik(ti(Z)) (i, k = 1, 2). 

Substituting this into (3.3), and defining the matrix D by Dik = dik (i, k = 1, 2) 
yields 

(3.7) -E(z, h) D = i (Q (h) - Pi (h)) V(], z, jo). 
z =0 

Since det E(z, 0) 5 0 for IzI - 1, z # 1, it can be shown that det E(z, h) F 0 
for z on Si, and thus, by using (3.5), (3.6), and (3.7), we obtain the following estimate 
for z on S1, i, j = 1, 2: 

(3.8) IWikI < Klp1' , p < 1, K1 = constant. 

To estimate W on S2 and S3, we define the following second-order matrices 
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(m, n = 1, 2): 

[Ai]m,n = a(m, n)(gm(z)(tm(xO, z))'O-')/(z - 1)1/2, 

[A$itm,n = a(m, n)(gm(z)(t.(xo, z))- iO)/(z - 1)1/2, 

Tmn = a(m, n)tm(XO, z). 

Then, we can write (3.7), with the aid of (3.4), as 

1 1 
-E(z, h) D = (Q(h) - zPi(h))AX + (Q(h) -zPj(h))(A~ - Ai) 

X =O i=0 
1 l 

- I (QQ(h) - zPi(h))(Tt + (T t - Tt))AO + (Q(h) - zPi(h))(A'- Ai). 
X =O X =io 

Now, E 0 (Qi(h) - zP,(h))Tt - E(z, h) = O((z- 1)1/2), and T - T= 
O((z - 1)1/2). Hence, there exist F1(z, h) and F2(jO, z, h), both analytic in (z - 1)1/2 

with F2(jo, z, h) = 0 if jo > 1, such that 

-E(z, h)D = (E(z, h) + (z - 1)1/2F1)Ao + F2. 

Now, E(z, h)- 1 exists on S2 and S3 (see Osher [3]). Therefore, 

D = + 
(Z 

- 1)"2F3(z, h)) O + F4(jo, z, h) -~~ d et E(z, h) A0 ? et E(z, Ih) 

where F3 and F4 have the same properties as F, and F2, respectively. Combining this 
last equation with (3.6) gives the following estimate for z on S2 and S3, j = 0, 1, 2, , 

(3.9) 

k g(Z)(tk(X, )' ((i, k) + F(z, h)ik(z - 1)1/2 + F2(0, z, h)ik 
L(Z - )" det E(z, h) / det E(z, h)J 

It can be shown that det E(z, h) = ((z - 1)1/2 + ch)f(z, h), where f and f are 
analytic functions of (z - 1)1/2. 

The proof is then completed by noticing that (3.4), (3.5), (3.8), and (3.9) give us 
estimates for each entry of the divided differences of G(jh, nk, jOh) which are similar 
to those of Osher in [3]. We can therefore proceed in the same manner to obtain the 
desired stability inequality. (For more detail here, also see Venit [8].) 

4. Mesh Refinement Theorems. First, we will extend a theorem due to Osher 
given in [2]. 

THEOREM (4.1). Let (1.3), (1.4), (1.6) approximate (1.1) on the mesh (1.2) with 
the interface condition 

1 1 

(4.1) b j(O, h)v(ih, t + k) = E cj(O, h)v(ih, t). 

Assume that the scheme is smooth, consistent, parabolic, symmetric, and invertible. 
Then, it is stable in the maximum norm. 

Remark. An interface condition of this type is known as "using the difference 
equation itself at the interface." 

Proof. Introduction of the vector w(x, t) = (v(x, t), v(-x/p, t))' converts this 
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scheme into an initial boundary one of the type (2.1)-(2.3) with 

P= 1 - 0 0 Pp 0 O 

bo(0, h) 0 bj(0, h) 0 0 bj(0, h) 

0 0 0 0 _0 0 

co(0, h) 0 c1(0, h) 0 0 c1(0, h) 

All other Qj and Pi are zero. We now verify conditions (b) and (c) of Theorem (2.1). 
Letting b, = bj(O, 0) and ci = cj(O, 0), we have 

E(z, 0) = Z -z 
CO- zbo + (c1 -zbl)tl (c1 - zbl)tl 

where t1 satisfies (2.6), and consequently, 

CO- zbo + (c1 - zb)tj = (c - zbl)(t" - t/t,). 

Hence, det E(z, 0) = z(c, - zbl)(tp - 1/t1). If we assume that z is such that cl - 

zb1 0, then since I t1I < 1 for IZl 1, z 5 1, det E(z, O) 5 0 there. On the other hand, 
if cl - zbl = 0, then det E(z, 0) = co- zbo. Suppose that det E(z, 0) = 0. Then, 

(4.2) cibo = cob,. 

Without loss of generality, we may assume that a(O) = 1. Then, consistency yields 
the equations 

2c, + co = 2b, + bo, 2c, -2b, = 2X. 

These two equations, together with (4.2) imply that bo + 2b, = 0, which contradicts 
the invertibility of the scheme (see Osher [3], [4]). Hence, det E(z, 0) 5 0 for any z 
with Jzj ? 1, z 5 1. 

Moreover, since t1 = 1- (z - 1)/2/(Xa(O))1/2 + O(z - 1) near z = 1, det E(z, 0) 
O((z - 1)1/2). Thus, we have verified the conditions of Theorem (2.1), as desired. 
In the next theorem, for simplicity of notation, we assume that we are approxi- 

mating u, = ux on the mesh (1.2). A similar theorem for approximations to (1.1) 
is easily proved in the same manner. 

THEOREM (4.2). Given any consistent, parabolic, and invertible approximation to 
Ut = ux; on the mesh (1.2). Let the interface condition be of the form 

(4.3) b-lv(-h/p, t + k) + bov(O, t + k) + blv(h, t + k) 

= c_ v(-h/p, t) + cov(O, t) + clv(h, t) 

where the coefficients are given by 

b-= -2Xp20/(p + 1), bo = 1 + 2Xp0, bi = -2XpO/(p + 1), 

c = 2Xp2(1 - 0)/(p + 1), co = 1 - 2Xp(t - 0), cl = 2Xp(t - 0)/(p + 1) 

(O < 0 _ 1, X = k/h2). 

Then, the resulting scheme is stable in the maximum norm if 1 - 2Xp(l - 0) _ 0 
when 0 < 1, and X > 0 otherwise. 
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Remark. Notice that here the interface condition makes use of three successive 
points (on each time level), unlike (4.1), which skipped p - 1 points in the fine mesh. 
The coefficients given above, as well as the restrictions placed upon them, are anal- 
ogous to those for general two level three-point schemes with even mesh spacing 
(see Richtmyer and Morton [5, p. 189]). 

Proof. Converting to an initial boundary system, we find that 

det E(z) = z(co -zbo + (cl - zbj)tj + (c, - zb-)t2) 

= z[ z + 2Xp(t - 0+Zo)(ti+ 2 1)] 

Immediately, we see that det E(z) = O((z- 1)1/2) near z = 1. Now, suppose that 
det E(z) = 0 for some z with jzj _ 1, z 5 1. Then 

z = (1 - 2Xp(l - 0)(1 - r))/(t + 2Xp0(l -r)) 

where r = (t, + pt2)/(p + 1), and hence ITI < 1. 
If 1 - 2Xp(l - 0) 2 0, then zj < 1 - 2p(1 - 0) + 12Xp(1 - 0)rI < 1, a con- 

tradiction. If 1-2Xp(1-0) < 0, we need only consider values of 0 with 2 < 0 $1. 
Here, 

_z 11 - 2Xp(l - 0)(1 -r)I < 11-Xp(l - r) <1 
11 + 2XpO(l - r) = II + Xp(l-r)I 

The last inequality follows from a consideration of the real and imaginary parts of 
the quantities within the absolute value bars. Thus, once again we get a contradiction, 
and our theorem is proved. 

An example of an interface condition which leads to an unstable scheme is 

v(O, t) = ( )1 i+1 () v(ih, t), 
i=1~~~~~~ 

where (m) denote binomial coefficients. Notice that we are giving v(O, t) in terms of 
values of v taken at points lying only in the coarse mesh. If m > 2, this equation is 
consistent with u, = uXX. Here, det E(z) = (t, - 1)', which is not equal to zero for 

Izj ? 1, z 5 1. However, det E(z) = O((z - 1)m/2) near z = 1, which violates condi- 
tion (c) of Theorem (2.1) (if consistency holds). This itself does not prove instability, 
but lack of convergence for explicit three-point schemes employing this interface 
condition can easily be shown for the initial values: f(x) = 1 if x < 0, f(x) = 0 if 
x > 0. This is essentially due to the fact that parabolic schemes must make use 
of all the initial data at any point, as the mesh width approaches zero, and the above 
scheme does not. However, this interface condition is a stable one for certain hyper- 
bolic approximations (see Ciment [1]). 

5. Numerical Experiments. In this section we will present the results of numer- 
ical experiments concerning the initial boundary-value problem 

ut(x, t) = uXX(x, t), 0 < x < 1, 0 < t < T, 

(5.1) u(x, 0) = 1 if x = 2, u(x, 0) = 0 otherwise, 

u(O t) = u(l, t) =0, 0 ? t < T. 
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We will solve (5.1) on a mesh refined in the subinterval [1, 2] by means of the 
difference scheme: 

v(x, t + k) - v(x, t) = (052V(x, t + k) + (1 - O)52V(x, t)) 

forx = h,2h, **, 3 -h, 3+h, *, -ht = O,k, , T-k, 

v(x, t + k) - v(x, t) = Xp2(0O2 v(x, t + k) + (1 - 0)5v(x, t)) 

for x = + h/p, + 2h/p, ,-h/p; t = O, k, , T-k, 

v(x, 0) = 1 if x = 2, v(x, 0) = 0 otherwise, 
v(O, t) = v(1, t) = 0 fort = 0, k, , T - k, T, 

together with interface conditions at x = 3 and x = 23 In the above 

X = k/h2, p is an integer > 1, 0 < 0 < 1, 
52 (X, t) 5v(x, t) = v(x - h, t) - 2v(x, t) + v(x + h, t), and 

P5 v(x, t) = v(x - h/p, t) - 2v(x, t) + v(x + h/p, t). 

Numerical experiments were run using the scheme above with 0 = 0 and three 
types of interface conditions. These results were compared to a "standard" obtained 
by using the above scheme with 0 = - h2/12k (for greater accuracy) on a uniform 
mesh, and hence requiring no interface condition. The three interface conditions 
considered were 

v(3, t + k) = v(3, t) + X52v(4 t), 

v(3, t + k) = v(3, t) + X52v(3 t). 

Here, we have used the difference scheme itself at the interface. 

(ii) v(3, t + k) = alv( - h, t) + a2V(Q, t) + a3V(4 + h/p, t), 

v(3, t + k) = blv( - h/p, t) + b2V(I, t) + b3v(3 + h, t). 

Consistency requires that a, = b3 = 2Xp/(p + 1), a2 = b2 = (1 - 2p), and a3 = 

bi = 2Xp2/(p + 1). This interface condition makes use of three successive x-mesh 
points. 

(iii) v(3, t) = alv( - h, t) + a2V(3 + h/p, t) + a3V(3 + 2h/p, t), 

v(3, t) = biv( - 2h/p, t) + b2v( - h/p, t) + b3v(3 + h, t). 

Here, consistency yields a, = b3= 1 + p/(p + 2) - 2p/(p + 1), a2 =b2 = 2p/(p + 1), 
a3 = bi = -p/(p + 2). Notice that condition (iii) involves evaluations of v which 
are all on the same time level. 

The results of the numerical experiments, after 20 steps in the t direction (T = 20K) 
are summarized below. 

Interface 
Condition h 0 P 4p2 V(2, T) 

0 none 1/24 .2315 1 .36 .1049 
1 (i) 1/12 0 2 .36 .1045 
2 (ii) 1/12 0 2 .36 .1098 
3 (iii) 1/12 0 2 .36 .0987 
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As can be seen from the above table, case 1, using the difference equation itself 
at the interface, gives the closest value of v to the "standard" (case 0). This corroborates 
the fact that interface condition (i) has a higher order of accuracy than that of either 
(ii) or (iii). 

6. Further Results. Theorem (2.1) can be extended to parabolic constant co- 
efficient (2r + 1)-point multistep schemes, as well as to the nonparabolic two-step 
DuFort-Frankel approximation (see Venit [8]). In a future publication the author 
hopes to extend these results to get a maximum norm stability theorem for (2r + 1)- 
point initial boundary approximations to variable coefficient higher-order systems of 
parabolic equations. Such a theorem employing L2 stability has been obtained by 
Varah [7]. 
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