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Elliptical Membranes with Smallest Second Eigenvalue* 

By B. Andreas Troesch 

Abstract. The elliptic membranes with fixed boundary are determined, for which the 
second eigenfrequency is a minimum if the area or if the circumference is prescribed. The 
results are compared with those of some other shapes. A remark is made about the overtones 
of elliptic membranes. 

1. Introduction and Problem Statement. Over the years, the classical membrane 
problem has not lost its fascination. In spite of a large number of investigations 
(cf. [3] and the references given therein), there still remain many questions that are 
natural and can be stated in simple terms. We will present here results of limited 
scope related to two of these questions, namely results on the second eigenvalue of 
elliptic membranes, which are fixed along the boundary. It is well known that, among 
the fixed membranes of a given area, the circle has the lowest principal frequency. 
The circular shape also furnishes the solution to the isoperimetric membrane problem 
if the length of the perimeter is prescribed instead of the area. 

However, for the second eigenvalue, the situation changes. It has been proved 
by G. Szeg6 and reported in [4, p. 336] that there does not exist an admissible membrane 
(i.e., a connected open domain) for which the second eigenvalue attains a minimum, 
but that the infimum is obtained for the double circle (cf. Fig. 2b). If the membrane 
is assumed to be convex, then the solution is not known. But the question can then 
be asked, whether part of the boundary is straight, and there exists some (numerical) 
evidence that this might indeed be the case. More is known about the second eigenvalue 
of a membrane with given circumference. As has been proved in [2], the isoperimetric 
shape exists, and the membrane is bounded by an analytic convex curve. Again, the 
exact curve is not known, but it is likely to be not far from the oval shape sketched 
in Fig. 3d. 

Considering then the state of the problem, it appears worthwhile to give at least 
the solution of the isoperimetric problems for the second eigenvalue for a particular 
shape, namely for ellipses. After a short summary of the very simple situation for 
rectangles (Section 2), the solution for the ellipse and the comparison with other 
shapes is presented in Section 3. The notation and the results of [6] will be used 
throughout. In the last section, we take up a question that is only loosely connected 
with the main topic. How could the sound of a drum be improved, if it were not 
round but shaped like an ellipse instead? 

2. Extremal Rectangular Membranes. In order to get a feeling for the problem, 
let us summarize the results for the rectangular membrane with sides 2a and 2b 
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(a ? b). The solution of the membrane equation [6, Eqs. (2.1), (2.2)] for the second 
mode is simply 

o= sin (rx/a) sin (ry/2b), 

the eigenvalue 

2= r2(a2 + 4b2)/4a2b2 

and the dimensionless quantities of interest here are therefore 

X2A = Or (a + 4b )/ab, 

X2L2 = 7r2(a + b)2(a2 + 4b2)/a2b2 

Their minima are listed in Tables 3 and 4, and the corresponding shapes are shown 
in Fig. 2a and Fig. 3a. 

We observe that the solution for the rectangle points in the right direction: for 
fixed area A, the double square resembles the double circle, and, among convex 
membranes, the minimum frequency for the rectangle is even surprisingly good, 
namely, only 2% above the best (known) value. For fixed perimeter L, the minimum 
does not come near the best value, but at least the indication is clear, that the shape 
should be only slightly elongated. 

3. The Extremal Ellipses. The membrane problem for ellipses was solved a 
long time ago. An approximate solution can be obtained directly from Fig. 1, which 
is an enlargement of Fig. 1 in [6]. The dimensionless quantity XA is [6, Eq. (3.8)] 
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FIGURE 1. The two lowest frequencies of a membrane. -Ellipses of constant area. 

--- - Ellipses of constant circumference. A: Point of minimum X2A, L: Point of minimum X2L2. 
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(3.1) XA = 7r(X1/2b)2/(l -e2)1/2 

Furthermore, the circumference of an ellipse with the major axis a is 

L 4aE, 

with E the complete elliptic integral 

r r/2 
E = (1 -e2 sin2 9)1/2 d#. 

It turns out to be a little more convenient to use the quarter-circumference 1 = L/4, 
so that 

(3.2) X12 = (X112b)2E2/(1 - e2) = Xa2E2. 

Curves with constant area, Eq. (3.1), and with constant circumference, Eq. (3.2), 
are plotted in Fig. 1. It is obvious that, in contrast to the principal frequency, the 
circle is not isoperimetric and the two solutions are different. The shape for a given 
perimeter is rounder, as was already suggested by the rectangular membrane. 

3.1. Ellipses with Given Area. From Fig. 1, the approximate value of X2A is 
seen to occur at 

b 2.6, (1 - e 
)1/2 55 

so that (cf. Eq. (3.1)) 

X2A - 12.3r. 

The points'on the curve of X1'2b are obtained by the method described in [6]. For 
the extremal membrane, we find that s 16. The results for appropriate s values 
near it are listed in Table 1, together with 

X2 A =-(Xl/2b)(a 

The last line gives the interpolated minimum. 
In Table 3, we list the data for the best ellipse and for some other shapes. It 

should be mentioned that the value for the slightly shortened double-square capped 
by two half-circles of radius R was obtained by the Rayleigh-Ritz method and there- 
fore represents an upper bound. 

TABLE 1. The X2A values around the minimum 

s X2a X1/2b X2A/ir X2A 
15.5 4.7406 163 2.6407 277 12.518 677 39.328 58 
16.0 4.7805 548 2.6179 581 12.515 292 39.317 95 
16.5 4.8207 518 2.5960 831 12.515 072 39.317 26 
17.0 4.8611 705 2.5750 687 12.517 848 38.325 98 
17.5 4.9017 769 2.5548 809 12.523 456 39.343 60 
18.0 4.9425 386 2.5354 857 12.531 736 39.369 61 
16.2847 4.8034 2 2.6053 9 12.514 79 39.316 4 
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TABLE 2. Numerical results around the minimum of X2L2 

2 2~~~~~~~~~~~~~~~~~ s X2'2a A'be2 
7.5 4.1714 828 3.1466 282 .43100 
8.0 4.2015 132 3.1068 816 .45319 
8.5 4.2324 488 3.0681 627 .47450 
9.0 4.2642 646 3.0305 037 .49494 
9.5 4.2969 312 2.9939 301 .51452 

10.0 4.3304 148 2.9584 612 .53326 
8.7693 4.2494 8 3.0477 5 .48561 

3.2. Ellipses with Given Perimeter. The case of the ellipse with a given perimeter 
and the minimum X2L2 is only slightly more complicated. First, we find from Fig. 1 
as approximate values 

X,1/2b _ 1-2)1/2- b 3. 0, (1 - .7 

and hence 

s 9. 

The solutions near this value are listed in Table 2. The quarter-circumference E for 
ellipses with .42 < e2 ? .54 is found in [1, p. 609], and the minimum of Xa2E2 (see 
Eq. (3.2)) is interpolated and shown on the last line of Table 2. 

TABLE 3. Minimum X2A and related quantities 

I 
Fig. 2 X2A = f2ir f for X2=1 

42 = 12.56647r 27rl/2 = 3.54491 a = ir2l/2 = 4.4429 
(a) = 39.4784 b = a/2 = 2.2214 

b/a = .5 

2j 2r = 11.56647r jo21/2 = 3.40094 R = 3.40094 
(b) = 36.3368 J0(j0) = 0 

jo = 2.4048 

= 12.5148ir = 3.53762 a= 4.8034 
(c) = 39.3164 b = 2.6054 

b/a = .54241 
e = .84012 

= 12.1292ir = 3.4827 a = 4.5687 
(d) = 38. 1050 R = b = 2.3429 

a -R = 2.2258 
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TABLE 4. Minimum X212 and related quantities 

Fig. 3 X212 = X2(L/4)2 for X2 = 1 

(a) = 4.33047r2 a = 4.0109 b = 2. 5267 
= 42.7397 b/a = 2'/3/2 = .62996 

(b) = (ji/2) 27r2 R = ji = 3.83171 
= 36.2264 J1(j1) = 0 

(c) = (5.77015)2 a = 4.2495 b = 3.0478 
= 33.2946 b/a = .71721 e = .69686 

E = 1.3578 

(d) = (5.7495)2 a = 4.192 b = 2.893 
= 33.0568 

From the results in Table 4, we see that the ellipse does not solve the isoperimetric 
problem: the value for a certain oval is actually lower. But this conclusion can also 
be reached from [2, Eq. (4.18)], which establishes the relation between the curvature 
of the isoperimetric shape and the normal derivative of the second eigenfunction (p 
at the boundary. It is easily shown that if the ellipse were to solve the isoperimetric 
problem, then the Mathieu function ce,(q, -q) could be represented as a finite expression 
of trigonometric functions, and this is clearly not the case. 

The method that was used to obtain the results for the oval (essentially an inverse 
method) is not related to the present investigation and will not be described. But 

(a) (a) 

(b) .F X (b) ( D 

(c) (C) 

(d) .(d) C 

FIGURE 2. The shapes of the membranes listed FIGURE 3. The shapes of the membranes listed 
in Table 3. in Table 4. 
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let us mention that the result in Table 4(d) represents (as does 3(d)) an upper bound 
to the true minimum. 

4. A Note on a Harmonious Drum or Timpani. Since the sound of a round 
drum is not very harmonious, we will show how to construct a better drum or timpani 
by shaping it as an ellipse. The reason why a string or an organ pipe sounds more 
pleasant than a drum is obvious; the roots of the trigonometric functions lead to 
higher harmonics which are simple multiples of the principal frequency, whereas the 
roots of the Bessel functions do not exhibit this property [5, p. 331]. From the knowl- 
edge of the eigenvalues of an elliptical membrane [6, Fig. 1], we can determine the 
relation of the first few higher harmonics to the principal frequency, and the simpler 
the ratio the better the sound of the instrument. Now, the simplest ratios are easily 
seen to be obtained for e > 1; but this is a degenerate case. However, a real elliptic 
drum or timpani with b/a = 3.8 should have a rather pleasant sound. The principal 
tone and the first three overtones stand very nearly (well within the scale of equal 
temperament [5, p. 12]), in the ratios of 4:5:6:7 (cf. Fig. 1 for the first two values). 
This corresponds to the harmony GBDF. Furthermore, if the timpani is struck at a 
point on the major axis, then the two overtones F# and A are not excited, and the 
following two overtones (G' and C%) are hopefully sufficiently weak. 
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