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A Modified Bairstow Method for Multiple Zeros
of a Polynomial

By F. M. Carrano

Abstract. A modification of Bairstow’s method to find multiple quadratic factors of a
-polynomial is presented. The nonlinear system of equations of the Bairstow method is
replaced by high order partial derivatives of that system. The partials are computed by a
repetition of the Bairstow recursion formulas. Numerical results demonstrate that the
modified method converges in many cases where the Bairstow method fails due to the
multiplicity of the quadratic factor. Rall [4] has described a generalization of Newton’s
method for simultaneous nonlinear equations with multiple roots. This may be applied to
solve the nonlinear Bairstow equations; however, it fails in some cases due to near-zero
divisors. Examples are presented which illustrate the behavior of the author’s algorithm
as well as the methods of Rall and Bairstow.

1. Introduction. Bairstow’s method [1] is a well-known algorithm to determine
quadratic factors of a polynomial with real coefficients. It is limited, however, in that
convergence is quadratic only if the zeros are complex conjugate pairs of multiplicity
one, or are real of multiplicity at most two. For higher multiplicities it is impractically
slow or subject to failure. An extension of the Bairstow method is described which
relaxes this limitation. An algorithm due to Rall [4] for solving simultaneous nonlinear
equations with multiple roots is also discussed in the context of Bairstow’s procedure.

2. Newton’s Method. The ideas to be presented are analogous to Newton’s
method and some of its modifications, and hence we begin our discussion at this point.
Consider the polynomial P(x) with zero «. The Newton iteration function is

1) x — P(x)/P'(x).

If a is a zero of multiplicity m, we consider two modified iteration functions, both
of which are quadratically convergent. The first is obtained by observing that « is a
simple zero of P~ "(x). An application of Newton’s method then gives

() x — PP (x)/P™ (x).
The second (see e.g. [3]) is
A3) x — mP(x)/P'(x).

If Horner’s scheme is used to evaluate P and its derivatives, (2) costs more than (3)
to compute. To determine = in (3), however, it may be necessary to calculate the
derivatives used in (2) anyway. If such is the case, cost is no longer a factor, and the
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choice of method would depend upon potential numerical difficulties. In fact, such
difficulties are likely as the denominator of (3) becomes small. Similar results will be
encountered in the subsequent presentation. (1), (2), and (3) are analogous to the Bair-
stow, the modified Bairstow and the Rall methods, respectively, which are considered
next.

3. Bairstow’s Method. Consider the polynomial with real coefficients P,(x) =
ax" + a,x*' + --- + a,, and an approximation, x> — px — g, to a quadratic factor
of P,(x). Form
@ Pux)= " —px — @)box"" + bx"" + -+ + b,2) + (x — pbay + by,

whereb;, =a; +pb,.y+qb;_5,j=0,--- ,n;b_,=b_, =0.Thenx’ — px — gisa
quadratic factor of P,(x) if and only if b,_, = b, = 0 [3]. Thus, we must solve the
nonlinear system
(5) bn—l(p, q) = 0’ bn(pa q) = 0'
Newton’s method is used to accomplish this. The required partial derivatives are
obtained recursively from

¢; = b; + pc;—1 + qci-s, j=0,--,n—1;, cc,=c, =0,

where 8b,(p, q)/p = ¢.-1, 9b(p, 9)/3q = 8b,_(p, q)/dp = c._», and b,._,(p, q)/0q =

Cp—3.
The corrections to p and ¢q are then

bncn—3 —- bn—lcn—z Aq - bn—lcn—l _ bncn—Z
2 s = 2 :
Cp—2 — Cp_1Cpn-3 Ch—z — Cp_1Cp_3

(6) Ap =

Thus, p; = p + Ap, q, = q + Aq are the next approximations in this iterative process.
If x* — sx — tis a quadratic factor of P,(x), then the Jacobian determinant of (5)
at the solution

db,_1(s, t)/0p 9b,_.(s, 1)/dq
8b,(s, t)/0p  9b.(s, 1)/dq

is nonzero in case the quadratic factor has zeros which are either simple, distinct zeros
of P,(x) [3], or real equal zeros of multiplicity two.* In such cases, Newton’s method
converges quadratically for sufficiently close initial guesses. In all other cases, D(s, ) =
0,* thereby causing the method to converge slowly or to fail because of near zero
divisors in (6).

N D(s, 1) =

4. Modified Bairstow’s Method. We begin this section with an investigation of
the higher order partial derivatives of (5). The recursion formulas of the Bairstow
method are extended as follows.

Definition 1. Let A% = a;, j = 0, - - , n, and define

AL, = 4°, =0,

Ai = A7V +pdi, +qdi,,  j=0,--- ,n i=1,2,---

* See Corollary 1 and Theorem 4 of the next section.
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We remark at this point that 4} = b, and 4 = ¢, by definition. 4} is obviously a
function of p and g, and the point at which it is evaluated, if not explicitly stated, will
be apparent from the context.

Definition 2. Given P,(x) and a particular (p, q), let

Poon(x) = Ax" ™ 4+ A" 4+ oo+ AL, k=0, -4, [n/2].

As seen from (4), P,_,(x) is the quotient polynomial resulting from the division of
P(x) by x* — px — q. If P,_4(x) is divided by x* — px — ¢, the quotient would be
P,_,(x). These results are contained in the following lemma.

LeEMMA 1.

Pooi(x) = (x* — px — @Q)Pacsan(x) + (x — P) A1 0(D, @) + Arl5u(D, @)
fork =0, .-, [n/2].

Proof. By induction on k. If k = 0, we are considering the original Bairstow
method, and this lemma has been established [3]. Assume the lemma true for k — 1,
and consider k < [n/2]. Then

A" AT+ ALy

* — px — @O) + (x — P)u-1-p + dus

Pn—Zk(x)

where
0(x) = dx" "™ + dx""* 4 oo+ dps
Equating coefficients of like powers of x yields
dy = Af,
dy = A7 + pd,
di= A+ pdi.y + aqd;=s,  j=2, - ,n— 2.

From Definition 1 we see that d; = A%*', j = 0, - -- , n — 2k, and from Definition 2
that Q(x) = P,_,_,(x), thereby establishing the lemma. Q.E.D.

We now proceed to show that the higher order partial derivatives of b,(p, q) and
b,_.(p, ) may be obtained recursively from Definition 1.

THEOREM 1.

j=0,...’n; i=1’2’...'

Proof. By induction on i. Suppose i = 1 and j = 0. Then 94,/dp = 9A4}/dq =
A%, = 0 is obvious. Assume the theorem is also true for subscripts < j, and consider
j+ 1 = n Then

9di

d
= — [4}., + pd; + qd;_,]
dp dp

A + PA?—l + q4i-,

2
= Ai’
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0A}ss

d
= 7 [A?+2 + PA:'H + qA}]
dq dq

Aj + pAi_ + qdi,
= 42

Thus, the theorem is true for j + 1. Now assume it is true for iand all j,0 < j < n
Consider i + 1. If j = 0, then
i+1 i+1

.1 dA, =.l 0A; — 47—

i+ 1 dp i+ 1 dq
is readily apparent. Assume the theorem true for subscripts <j, and consider j +
1 £ n. Then

1 94ii 1

— i+1 i+1
i+1 6p l+16[A1+1+PA +qA11]

i i+l i+1
- - 1 [3A,'+1 +p 0A; + A::H +q 6Ai—1:|

i+ 1 op op op
= _TT A" + p(i + DAY + A" + qG + 1) A}L3
— A"+2
1 o4ii 1 ;

T 99 — 731 —[A,+2+pA,I: + a4;"]
1 Toeds a4t | a4 ]
—l+1[ ag +p aq +q ag + 4;
= + U4+ pG+ DAL+ g+ DA+ 47
= 4i*?

Thus, the theorem is true for j + 1. Q.E.D.
THEOREM 2.
8" 4;

m:k!/{;::_k’ j=0,...’n; k=0’...’j; i=0’...’k.

Proof. By induction on k. If k = 0, the theorem is obvious. Assume the theorem
true for kand all i, 0 < i < k. Consider k + 1 = j. If i = O, then

"4, 9|94 ] .
o = Lo = o K1 A525] = (k + DL AL

Assume the theorem true for 7, and consider i + 1 < k 4 1. Then
"' 4} ] [ 8" 4; ] ] i1
_ 1 = | =1 = — ] +
apk+1—(t+l)aq3+1 aq aplc—taqt aq [k A7 i— k]

e + DA G -G
Thus, the theorem is true for i + 1. Q.E.D.




A MODIFIED BAIRSTOW METHOD 785

The next theorem provides a criterion for the determination of the multiplicity of a
quadratic factor.
THEOREM 3. (x* — sx — 8)", m = 1, is a factor of P(x) if and only if

A, D = A oa(s, =0 fork =1, .-, m.
Proof. By induction on m. If m = 1, we have
Pu(x) = (5" — sx — DPuy(x) + (x — ) Aus(s, 1) 4+ Aus, 1).
The proof, in this case, is given by Henrici [3]. Now assume the theorem true for m,
and consider m + 1. We have, by the induction hypothesis,
P.(x) = (X — sx — )" Pu_sm(X).

Consider

Pn—Zm(x) = (x2 — sX — t)P —2—2m(x) + (x - S) Af'n',.:ll—2m(s’ t) + A:::Zlm(s9 t)~

If A™!, = A"} = 0, then x> — sx — ¢ is a factor of P, ,,(x), and so
m+1 2

(x* — sx — )" is a factor of P,(x). Conversely, suppose (x* — sx — )"*" is a factor
of P,(x),and x* — sx — t = (x — a)}(x — B). Then

Pn—Zm(a) = ((X - S)A;n:ll—Zm + Az.:zlm = Oa
Pn—Zm(B) = (B - S)A::Il—Zm + A:tn:;m = 0'

If « # B, the determinant of the system (8) is « — 8 5 0, so the only solution of (8)
is the trivial one A™*', = A"} = 0. However, if « — 8 = 0, then P/_, (o) =
A™ L, = 0, implying that A7*,,, = O also. Q.E.D.

We propose to replace the system (5) of Bairstow’s method by

(9) Ar’ln+l—2m(p’ q) = 0: Az+2—2m(p: q) = 0-

From Theorem 3 it is seen that (s, ¢) is a solution of (9). To investigate the applicability
of Newton’s method to (9), its Jacobian determinant must be considered. To this end,
we make the following definition.

Definition 3.

®

A:+2—2k(p’ q) A:+3-2k(17, q)
AP, @) Anisn(p, @)

Using Theorem 1 it is seen that J;.,(p, q) is the Jacobian determinant of
(10) A, @) =0, Al q) =0,

and in particular, J,,.,(p, q) is the Jacobian determinant of (9). (Note that D(p, q) =
Jo(p, 9).) An immediate consequence of Theorem 3 is
COROLLARY 1. If (x* — sx — 1), m 2 2, is a factor of P,(x), then

Jup, q) = (k — 1)’ for k=2,3,---.

Jes1Gs, ) =0 fork=1,---,m— 1.

The following theorem establishes when J,...(p, q) is nonzero.
THEOREM 4. Assume

) (x* — sx — O™ is a factor of P.(x),

(i) (x* — sx — )" is not a factor of P.(x),
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(iii)) x> — sx — t = (x — a)(x — B).
Then J,...(s, t) # 0 if and only if P, _,,.(a) #~ 0 and P, _,,.(B) # 0.
Proof.

L U 01 = L7306, OF = AT s, 0 AT a5, 0

(AT = [ATeian + SATE + 1A 0] AT,
= [A25, 1 — sArom: Avgn — A,

= [475.)F — @+ B AT AT s + B [A1H,)
= o — AT g ATETIE — AT + AT
= Pron(@) Pacsn(B).

The conclusion now follows immediately. Q.E.D.

As an immediate consequence of this theorem, we have the following corollary.

COROLLARY 2. Under assumptions (i), (ii) and (iii) of Theorem 4, J,,..(s, t) = 0 if
and only if o and B are real and one of the following conditions occurs:

(@) « = B and « is of odd multiplicity.

(b) a # B and m = multiplicity of « < multiplicity of B.

Newton’s method, when applied to (9), converges quadratically for sufficiently
close initial guesses provided its Jacobian determinant at the solution is nonzero. The
corrections, Ap and Ag, are given by

m

Ap = Ty @) [42—2m® Ar’:‘jll—Zm — Al ome Ar+2lm]’
m+1 B
an
m m m+1 m m+1
Aq = J (p q) [An+l—2m' An+l—2m - An+2—2m' An 2m],
m+1 >

where the A are evaluated at (p, g).

Under the conditions of Theorem 4, if we knew the value of m we could solve (9)
remembering that a solution of (5) is a solution of (9), but not conversely. Since in
practice m is not known in advance, we use an approximation to s which is improved
as the iteration continues. The following steps are suggested:

1. Given an initial guess, (p,, ¢,), evaluate the 4;.

2. Estimate the value of m by considering Theorem 3.

3. Using this estimate in (11), calculate Ap and Ag, and form the next iterate
P =Dpo+ Ap,q4 = qo + Aq.

4. Repeat the above using (p, q) as a new initial guess.

In effect we solve system (10) at first with k < m, and finally with k£ = m (i.e.,
system (9)). When k < m, system (10) has a zero Jacobian determinant at the solution
(s, 7) by Corollary 1. In this case, Newton’s method is not quadratically convergent.
In practice, however, only a few iterations per system need be taken before (9) is
considered.

5. Results. The following criterion to determine m has been used with success:
p is taken as an approximation to m in case
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(12) | Ariion] = lanl-e, and  [dnisn| = lag| e
fork =1, -+, u. (e = 107* is a reasonable choice.)

This criterion in conjunction with the aforementioned root-finding algorithm
was tested with 100 arbitrarily selected polynomials of degrees between 4 and 24
having multiple quadratic factors. This provided 175 test cases involving quadratic
factors with multiplicity. Convergence was achieved in 103 instances (599%,) (see Table
1a). Divergence was noted only after seven attempts with various initial guesses,
(o, 4o), failed to produce a sequence which approached the proper solution. Excluding
divergent cases, convergence was achieved 769, of the time. Bairstow’s method was
far inferior to the modified method. Typical results are shown in Table 2.

Clearly, the choice of criterion to determine multiplicity affects the overall per-
formance of the algorithm since, as noted previously, convergence is less than quad-
ratic when k < m. It would appear, therefore, that the correct value of the multiplicity
should be used as soon as possible. Experience has shown, however, that the regions
of convergence differ when m is known as compared to when m is calculated using
(12). Closer initial guesses may be required when m is known.

For example, consider the results for the polynomial (x* + 9)* (x — 3)° (x — 2)
given in Table 3. For case (b) when m is known, convergence is to an extraneous solu-
tion. A closer initial guess is required to achieve convergence to the desired quadratic
(case (d)). Case (a) shows that by using a sequence of approximations to m in lieu
of a closer guess, the desired convergence may also be obtained. Usually when m is
calculated, more iterations are necessary to obtain convergence than when m is
known (cases (c) and (d)). (Similar results were observed for Rall’s method which is
described in Section 6.)

2

6. The Relationship to Rall’s Method. Using the notation of Section 3, Rall’s
method [4] provides corrections

bncn—3 - bn—lcn—2 bn—lcn—l _ bncn—2
(13) Ap = m—5 s Ag = m—3 '
Cr—g2 — Cp_1Cp—3 Ca—2 ™ Cp—1Cn—3

From Theorem 2 we see that (11) involves (m — 1)st and mth order partial derivatives
of b, and b,_,, whereas (6) and (13) involve only b,, b,_, and their first-order partials.
Clearly, using the recursion of Definition 1, (11) costs more to compute than (13).
Analogous to Section 2, however, we may have to calculate higher order partial
derivatives anyway in order to determine m using Theorem 3. If such were the case,
suppose we have determined that 4%, ,_,, and A%, ,_,, are negligible fork =1, - - -, m,
but are not negligible when k = m + 1 (ie., 47", and 4", are not negligible).
The quantities 47, sy Arvo_oms Ar'oms Ar'an, and A7N ., are required to form Ap
and Ag using (11). All but the last of these have been computed. The quantities re-
quired by (13) are available so the extra cost in using (11) instead of (13) is the com-
putation of A ,,.. Both (11) and (13) are quadratically convergent, so it would
appear that (13) is preferable in light of its lesser cost. We claim, however, that numeri-
cal difficulties are possible as the denominator in (13) approaches zero.

The method was tested with the previously mentioned data set both with m as-
sumed and with m calculated using (12) (see Table 1b). In the former case, convergence
occurred in only three instances. Failure due to small (less than or equal to 6 = 0.5

X 107* in magnitude) divisors in (13) occurred in 109 cases (62%). In such instances
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iteration was resumed to insure that the choice of § did not bias the results. Failure
was recognized only at the occurrence of an exponent underflow or overflow (this,
in fact, never took place). Of the 109 cases, 85 resulted in divergence, 20 involved
sequences which approached the solution very slowly, while for the remaining 4
convergence actually took place (see Table 1c). Thus, continued iteration did not prove
to be profitable. Results were slightly better when m was computed, but the overall
behavior was essentially the same.

Typical results are shown in Table 4. Here Rall’s method with m assumed begins
to converge. The denominator of (13) is less than 0.5 X 107° in magnitude when the
third iterate is computed. Subsequently, the sequences diverge. For comparison
purposes we consider the modified Bairstow method under the same conditions.
Convergence is obtained after five iterations. We note, however, that the second
iterate is less accurate than the second iterate of Rall’s method ((6.00067, —9.00220)
vs. (5.99995, —8.99985)). Nevertheless, greater accuracy is ultimately achieved using
the modified Bairstow method. Similar results are obtained when m is calculated
using (12). Note, however, that the denominator of (13) does not become less than
0.5 X 107® in magnitude.
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