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Numerical Construction of Gaussian 
Quadrature Formulas for 

f (-Log x) xa f(x). dx and f E(x)* f(x) dx 

By Bernard Danloy 

Abstract. Most nonclassical Gaussian quadrature rules are difficult to construct because 
of the loss of significant digits during the generation of the associated orthogonal poly- 
nomials. But, in some particular cases, it is possible to develop stable algorithms. This is 
true for at least two well-known integrals, namely 

f -(Log x).x a* f(x) dx and f ' Em(x) f(X) dx. 

A new approach is presented, which makes use of known classical Gaussian quadratures and 
is remarkably well-conditioned since the generation of the orthogonal polynomials requires 
only the computation of discrete sums of positive quantities. Finally, some numerical results 
are given. 

1. Introduction. Let w(x) be a nonnegative weight function on (a, b) such that 
all its moments 

fb 

(1.1) Ak= J w(x).x dx, k = O 1, 2, ... 

exist. The n-point Gaussian quadrature rule associated with w(x) and (a, b) is that 
uniquely defined linear functional 

n 

(1.2) Gnu f --E i'f(Xi) 
i ~=1 

which satisfies 

rb 

(1.3) Gn = f w(x) f(x) dx 

whenever f is a polynomial of degree ? 2n - 1. 
It is a well-known result [8] that the Gaussian abscissas xi are the roots of the 

polynomials orthogonal on (a, b) with respect to w(x), and that the associated coeffi- 
cients Xi, called Christoffel constants, can also be expressed in terms of these poly- 
nomials. A direct exploitation of these results is still the most widely recommended 
procedure, even though alternative approaches have been suggested by Rutishauser 
[7], Golub and Welsch [6]. Actually, all methods make direct or indirect use of the 
orthogonal polynomials and thus require their generation if they are not known. 

Gautschi [3] was the first to consider the numerical stability of the whole problem; 
in fact, he fully elucidated the ill-conditioning of the basic problem, namely that of 
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solving the algebraic system 
n 

(1.4) >Xi =k, O _ k ? 2n - 1. 

More precisely, the loss of significant digits occurs during the orthogonalization of 
the sequence 1, x, x2, ... , i.e., while generating the orthogonal polynomials. Accord- 
ing to this result, Gautschi distinguished the following two cases: 

(a) The classical case. The orthogonal polynomials are known, and the problem 
is well-conditioned. 

(b) The nonclassical case. The orthogonal polynomials are not known and have 
to be generated. 

The latter case is obviously the more frequent, and practical algorithms would be 
very welcome. Actually, Gautschi suggested two procedures which are numerically 
stable: 

(a) The first method is based on an approximate discretization of the orthogonality 
relation [3]. This is equivalent to computing by some approximate quadrature rule 
the coefficients of the recurrence relation satisfied by the orthogonal polynomials. 
Convergence has been proved under reasonable assumptions but may be rather slow. 

(b) The second method makes use of "modified moments" [5]. Instead of the 
sequence of monomials 1, x, x2, ... , one can orthogonalize any set of linearly inde- 
pendent polynomials. In several cases, a suitable choice of this set strongly improves 
the numerical condition of the problem. The method does not involve any approxi- 
mation, but requires much skill for its practical implementation. 

The next sections consider two specific cases of Gaussian quadrature, namely 

f (-Logx).xa f(x).dx and f (x)* f(x)*dx; 

the central result is an exact discretization of the orthogonality relation, which enables 
us to generate the orthogonal polynomials in a very stable way. 

2. Orthogonal Polynomials. Given w(x) on (a, b), we can define the sequence 
{Pk(X)} k= of orthogonal polynomials with leading coefficients equal to one. These 
polynomials satisfy the recurrence relation [9] 

(2.1) Pk+1 = (x - ak)Pk(X) - 3k Pk-1(X), k > 1 

with 

(2.2) p0(x) = 1; pi(x) = x -a0. 

If we put 

rb 

(2.3) hk = j w(x) {pk(X)}2.dX, k = 0, 1, 2, *9* 

the coefficients of the recurrence relation are given by 

(2.4) Ok = 
hklhk-1, k = 1, 2, 3, 

(2.5) ak = i f W(x).X. (pk(X)} dx, k = 0, 1, 2, . 
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If a is finite, Eq. (2.1) can be replaced by the system 

(2.6) Pk+l(X) = (x - a) *rk(X) - (Yk/hk).Pk(X), k = 0, 1, 2, 

'7rk+1(X) = Pk+1(X) (hk + 1 /Yk ) * rk (X), 

with 

(2.7) 7Yk = f w(x) * (x - a) {lrk(x)} dx, 

where { -r k(X)} I=O is the set of polynomials with leading coefficients one and orthogonal 
on (a, b) with respect to the weight function w(x). (x - a). 

A similar result holds if b is finite. 
Since (2.1) and (2.6) are equivalent, it follows immediately that 

(2.8) ak = Yk/hk + hk/lYk-1 + a. 

The problem of generating the orthogonal polynomials Pk(X) is to determine the coeffi- 
cients of the recurrence relation, i.e., to compute numerically the quadratures (2.3) 
and (2.5) (or (2.7)). 

It is important to realize that the use of moments should be entirely bypassed 
because of ill-conditioning. A lower estimate of the condition number for the classical 
procedure has been given by Gautschi [3]; in most cases, one must expect it to grow 
as fast as (33.97)'/n2. 

It is thus vital to find a better-conditioned approach to work out a numerical 
method for the exact computation of integrals of the type: 

(2.9) f w(x). p(x). dx, 

where p(x) is a polynomial. A partial solution will now be given. 

3. Logarithmic Weight Functions. As stated above, the construction of Gauss- 
ian rules for 

f(-Log x).xa.f(x).dx (a > - 1) 

requires a computationally suitable expression for 

(3.1) J(p) = (-Logx) xa p(x) dx (a > -1), 

where p(x) is a polynomial. 
Elementary transformations yield 

J(P) = dX.xa p(x) dt 

(3.2) =J A - dx xa * p(x) 

= f dtta f u uUa p(ut) 
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and thus, if { A,, ui } f is the N-point Gaussian quadrature formula for fJ xa f(x) dx, 
it follows that 

N N 

(3.3) J(p) = A i Ai A p(utu,) 
i 1 1=1 

for any polynomial p'x) of degree < 2N - 1. 
Thus, for any k < N, we have 

N N 

(3.4) hk = Ejj Am Ai {Pk(Ui i)}2 
t=1 1=1 

and 
N N 

(3.5) aA; = - EjE i AiAuiui{pk(u-,U)} 2. 
k t=1 2=1 

A recursive computation of the above quantities is thus trivial since, with ho, a0, hl, 
a1, ... hkl, ak-1 previously obtained, the evaluation of hk and ak only requires the 
values Pk(U U1) which are easily computed from (2.1). Similarly, (3.3) yields 

N N 

(3.6) 7k = Z E A, A jujui {rk(UUi) 
z =1 1 =1 

and the whole sequence ht, 'Yo, hl, a1, h2, 72, * can be generated by a recursive use 
of (2.6), (3.4) and (3.6). It should be stressed that this process is remarkably stable 
with respect to rounding errors since all the terms of (3.4), (3.5) and (3.6) are positive. 

Another useful expression for hk and 'Yk can be obtained as follows: Integration 
by parts yields 

(3.7) f ( Log x) {xa+l p(x)}' dx = f XP(x) dx. 

Thus, for all k < N, 
N pl 

> At * {Pk(U)}2 = J ( Log x) x {(a + 1)p2(x) + 2x p'(X).pk(x)} dX 
(3.8) 

= (2k + a + I)*hk 

Similarly, 
N 

(3.9) E Aiu *r* {k(U2)}2 = (2k + a + 2).ky- 

This second approach may seem more attractive than the first one originating from 
(3.3), since the amount of work is proportional to N instead of N2. However, its 
expected stability is a little weaker: hk does actually depend on ho, h,, -.. , h k- and 
70o, -1, ... *, Y k-l, and varies with the rounding errors which affect them. Nevertheless, 
to terms of first order, the representation (2.3) of hk is independent of such perturba- 
tions; this is also true if (3.4) is used, but is no longer valid in the case of (3.8). Although 
it was not observed for moderate values of k, (3.8) and (3.9) might thus suffer from a 
slight instability. 
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TABLE 1 

w(x) = Log(l/x), 0 < x < 1 
Coefficients of the recurrence relation 

n an 

0 .250000000000 .0000000000000 
1 .464285714286 .0486111111111 
2 .485482446456 .0586848072562 
3 .492103081871 .0607285839189 
4 .495028498758 .0614820201969 
5 .496579511644 .0618408095319 
6 .497501301305 .0620390629544 
7 .498094018204 .0621599191583 
8 .498497801978 .0622389376716 
9 .498785322656 .0622933886799 

10 .498997353167 .0623324775066 
11 .499158221678 .0623614734838 
12 .499283180216 .0623835683595 
13 .499382187671 .0624007864342 
14 .14991461972097 .0624144615353 
15 .499527212427 .0624255013029 
16 .499581244730 .0624345406235 
17 .499626499806 .0624420343142 
18 .499664782928 .0624483150597 
19 .499697457641 .0624536307243 

4. Generalization. The above results can easily be extended to more general 
cases involving either a more general weight function or a smaller range of integration: 

(a) f (-Logx)rn-xa f(x).dx, m = 1, 2, 3, 

The transformations performed under (3.2) can be repeated m times and yield a 
(m + 1)-tuple quadrature. This approach is rather expensive and probably impractical 
if m is large. If m = 2, one gets 

j (-Log x)2. x * p(x).dx = 2 f dt.ta du-ua f dx xa - p(xut) 
(4.1) 

N N N 

= 2 E E EA A A AkP(UiUiuk). 
s=1 i=1 k=1 

Obviously, (4.1) enjoys the same interesting properties as (3.3) and leads to a very 
well-conditioned procedure: 

(b) (- Log x)-x - f(x) -dx, 0 < E_< 1. 

Here too, a very similar treatment produces 

fE (-Log x) * xa * p(x) * dx 
(4.2)? 

= Ea+l {(-Log E) f X.p(Ex) dx + f dx.Xa f dt tap(Ext)} 

and application of a suitable Gaussian formula again yields a discrete sum of positive 
terms. 
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TABLE 2 
w(x) = Log(l/x), 0 < x < 1 
10-point Gaussian quadrature 

xi xi 

.904263096219(-2) .120955131955 

.539712662225(-1) .186363542564 

.135311824639 .195660873278 

.247052416287 .173577142183 

.380212539609 .135695672995 

.523792317972 .936467585381(-1) 

.665775205517 .557877273514(-1) 

.794190416012 .271598108992(-1) 

.898161091219 .951518260284(-2) 

.968847988719 .163815763360(-2) 

20-point Gaussian quadrature 

Xi xi 

.258832795592(-2) .431427521332(-1) 

.152096623496(-1) .753837099086(-1) 

.385365503721(-1) .930532674517(-1) 

.721816138158 (-1) .101456711850 

.115460526488 .103201762056 

.167442856275 .100022549805 

.226983787260 .932597993003 (-1) 

.292754960941 .840289528720(-1) 

.363277429858 .732855891300(-1) 

.436957140091 .618503369137(-1) 

.512122594679 .504166044385(-1) 

.587064044915 .395513700052(-1) 

.660073413315 .296940778958(-1) 

.72914814083930 . 211563153554(-1) 

.793709671987 .141237329390(-1) 

.851280892789 . 8660974500433 (-2) 

.900879680854 .471994014620(-2) 

.941369749129 .215139740396(-2) 

.971822741075 .719728214653(-3) 

.9915380811439 .120427676330(-3) 

5. The Exponential Integral as Weight Function. In the theory of radiations 
[1], one encounters quadratures of the form 

(5 .1 ) f Em(x) * f(x) - dx (m > 0), 

where Em(x) is the exponential integral 

(5.2) Em(X) = f dt = Xrn- f m du. 

All moments exist and the generation of the orthogonal polynomials only requires 
a convenient representation for 

(E 
(5.3) AP) E. |E(x) p(x) ̂ dx. 
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TABLE 3 
cao -Z t 

w(x) = El(x) =f dt, O < x < co 
1 

Coefficients of the recurrence relation 

n n 

0 .500000000000 .000000000000 
1 .230000000000(+1) .416666666667 
2 .423469387755(+1) .261333333333 (+1) 
3 .619917288995(+1) .675494793836(+1) 
4 .817602876377 (+1) .128700101592 (+2) 
5 .101594224559(+2) .209689946964(+2) 
6 .121467630339(+2) .310570066309(+2) 
7 .141367011214 (+2) .431369541345(+2) 
8 .161284556528(+2) .572106684370(+2) 
9 .181215390823(+2) . 732793862 452(+2) 

10 .201156292899(+2) .913439870981(+2) 
11 .221105037868(+2) .111405121907(+3) 
12 .241060033128 (+2) .133463287826(+3) 
13 .261020104696(+2) .157518874426(+3) 
14 .280984365631(+2) .183572193521(+3) 
15 .300952131707 (+2) .211623499185(+3) 
16 .320922865502(+2) .241673001620(+3) 
17 .340896138248 (+2) .273720877032(+3) 
18 .360871603136(+2) .307767274831(+3) 
19 . 3808 48976220(+2) . 343812322983(+3) 

Elementary transformations yield 

J(p) = f 
- p(x) Xm Jl dt-e t/tm 

co -t rt 

(5.4) = f dt.t- dx.xml1p(x) 

= f dtet f du Um-l* p(ut). 

Thus, if { Ai, ui} f and { Bi, vi} l are N-point Gaussian formulas for, respectively, 
fl 

Xi-1 f(x)* dx and f 
- 

e-& f(x) dx, it follows that 

N N 

(5.5) J(p) = > > AiB p(uiv7) 
i81 i-i 

for any polynomial p(x) of degree ? 2N - 1. 
Using (5.5), it is then easy to compute hk, Yk, ak, and 13k (k ? N - 1), and well- 

conditioning is guaranteed since the summation involves only positive quantities. 
As was done in the third section, another useful expression can be obtained: 

Integration by parts gives 

(5.6) E(x) {x p(x)}'dx = - x E'(x) p(x) dx. 

But from (5.1) one can derive 
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TABLE 4 

w(x) = El(x)= t dt, 0 < x < co 

10-point Gaussian quadrature 

X. 

.762404872624(-1) .485707599602 

.525005762690 .357347318586 

.143921959617 (+1) .127267083774 

.286324173848 (+1) .263265788641(-1) 

.484664684765 (+1) .314097760897 (-2) 

. 7L4594L0513320(+1) . 20386680294L2(-3) 

.108101228402(+2) .648957008433(-5) 

.150823083551(+2) .848669062576(-7) 

.206311914914 (+2) .324960593979(-9) 

.28369394L625L4(+2) .156050745676(-12) 

20-point Gaussian quadrature 

X. 

.415731018684(-1) .330068388136 

. 27L423964L0181 .335018800621 

.735213024633 .202727089842 
* 1436464L82057 ( +1) . 906794L137819(-1) 
* 23868L4236390(+1) .311926475044(-1) 
* 3599494 938617 (+1) . 830681682L460(-2) 
; 507042045L480(+1) .170519552143 (-2) 
.682474522008(+1) .267192385286(-3) 
.887199456612 (+1) .315225257509(-4) 
.112296313102 (+2) .275116436420(-5) 
.139195560950(+2) .173736449646(-6) 
.169695733188 (+2) .771970107104 (-8) 
.204155650908(+2) .232856519358(-9) 
.24304L8836079(+2) .454955059531(-11) 
.287019535563(+2) .540355193304(-13) 
.336981998188 (+2) .356730027303 (-15) 
.394313665944(+2) .1144 794L98566(-17) 
.461284475183 (+2) .143415823640(-20) 
.542229680449(+2) .463374056292(-24) 
.648259442473(+2) .136239857196(-28) 

(5.7) x Em(x) = (m - 1) Em(x) - eX. 

Combining (5.6) and (5.7) yields 

(5.8) f Em(x) Imap(x) + x p'(x)} dx = fe p(x)dx. 

Then, Gauss-Laguerre integration gives, for all k < N, 
N or 

(5 9) Z Bi {pk(vi)} = J Em(x).{ m * p2(X) + 2x * pk(x) * pk(x)} dx 

= (2k + m)hk 

and similarly 
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N 

(5.10) EBali f7rA(Vi)2 = (2k + m + l)Yk 
= 1 

The latter formulas are clearly attractive, but, for the same reason as the one explained 
at the end of the third section, they might be slightly less reliable than (5.5) if k 
is large. 

6. Numerical Results. Using the above procedures, orthogonal polynomials of 
degree up to 40 were generated for both kinds of quadrature considered. The roots of 
these polynomials were then found by a standard procedure and the associated 
Christoffel constants were computed using a computationally optimized representa- 
tion [2]. Listed below are the first twenty coefficients of the recurrence relation and the 
10- and 20-point Gaussian formulas for w(x) = Log(l/x), 0 < x < 1, and for w(x) = 

E1(x), 0 < x < co. Computations were performed with 48-bit floating-point arith- 
metic, but the last two decimal digits have been dropped since round-off might 
affect them. 

7. Conclusion. The above results completely agree with those of Stroud and 
Secrest [8]. Some errors were found in the values published by Gautschi [4], but they 
affect only the last one or two digits and are likely to result either from the underlying 
approximation or from some numerical round-off. 

It should be emphasized that we completely avoided unnecessary loss of significant 
digits and that, unlike Stroud and Secrest, we were able to get highly accurate results 
without any use of multiple-precision arithmetic. Our approach is at the same time 
rather inexpensive and completely reliable; it unfortunately depends on the specific 
quadrature considered, especially on the weight function, but seems to be the best 
procedure, whenever it is feasible. Its application to some other quadratures is 
presently under investigation. 
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