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An Extrapolated Gauss-Seidel Iteration 
for Hessenberg Matrices 

By L. J. Lardy 

Abstract. We show that for certain systems of linear equations with coefficient matrices 
of Hessenberg form it is possible to use Gaussian elimination to obtain an extrapolated 
version of the Gauss-Seidel iterative process where the iteration matrix has spectral radius 
zero. Computational aspects of the procedure are discussed. 

1. Introduction. Let A = (aii) be a nonsingular n X n matrix. We write A in 
the form A = D - F - F where D = (di ) is the diagonal matrix with dii = a i for 
i = j and di = 0 for i j I, E = (ei, ) is the strictly lower triangular matrix with 
e -at, for i < j and e = 0 for i > j, and F = (f ii) is the strictly upper trian- 
gular matrix with f ii = -ait for i > j and f i = 0 for i < j. Let C be a given n X 1 
matrix and consider the matrix equation 

(1) AX= C. 

We examine here an iterative method for obtaining a numerical solution of such an 
equation when the coefficient matrix A has Hessenberg form. The procedure can be 
viewed as a generalization of the well-known extrapolated Gauss-Seidel or SOR 
method [3]. In that method, the iteration can be expressed in the form 

(2) X(r) = M(@)X(r) + K 

where 

(3) M(@) = (D- coE) ((1 - co)D + coF), 

(4) K =(D-coE)1C, 

and c is a real nonzero relaxation parameter. The objective is then to choose a value 
for c which minimizes the spectral radius of the matrices M(@). In general, this 
optimal value of c is not readily obtainable. The method discussed here involves an 
iteration of the form (2) with M(@) expressed formally as in (3), except that the 
relaxation parameter co is taken to be a fixed n-component real vector with no zero 
component, where, for the purposes of matrix manipulation, c operates as a diagonal 
matrix. When A has Hessenberg form, an optimal relaxation vector yields a corre- 
sponding M(@) which has spectral radius zero. Indeed, we shall show that in this 
case M(@) is strictly upper triangular. 

If D is nonsingular, then, for any vector co, (D - wE) is also nonsingular and 
M(w) can be defined by (3). Multiplying both sides of the equation 
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(5) X= M(w)X+ K 

by (D - wE) yields 

(6) wAX= wC. 

Hence, if c has no zero component, Eq. (6) is equivalent to Eq. (1). Thus, if the itera- 
tion defined by (2) yields a convergent sequence, then its limit is a solution of (1). 

2. Analysis of the Method. Let the equation (1) be such that the nonsingular 
matrix A has Hessenberg form; that is, aii = 0 for i _ j + 2. Suppose that the 
associated diagonal matrix D is nonsingular and that Gaussian elimination can be 
applied in natural order to produce the matrices A (1) = A, , A . Here and below 
we follow the notation in [2, p. 30]. Set 

(7) cot = aii/a(,) for i = 1, .. , n. 

The iteration (2) with this vector c (wi) is then equivalent to the following iteration: 

(8a) xi = - E aix r1),/ a, 1, 

(8b) Xr = Xr-l) + ci - aai i _,Xx(r)l+ a.(i) for i = 2, n. 

The following two lemmas are used to establish the form of the iteration matrix 
M(co). Lemma 1 can be easily verified directly. 

LEMMA 1. Let G = (g i) be an n X n matrix with gi i i 0 and gi = 0 when either 
i < i or i > i + 1. Then G- 1 = (hi i) where 

hi 19l/ii f or ijo 

- O for i< j, (9)-oor <] 

- (1)i+i g,+?, gtt1-1 for i > j. 

LEMMA 2. Let the matrix A satisfy the conditions given at the beginning of this 
section. For 2 ? i < n and I _ j < i- 1, we have 

i-i U~ ~~) (i) 
(10) 1~2 (...1)k+i+l ak+l?k 

. . 
.ai)1 =) aii 

(I 0) ~ __(k) (TT aki k=i ak,k ... ai, i aii 

Proof. We fix i and proceed by induction. For J = i - 1 the summation in the 
left side of (10) reduces to a single term. Apply the definition of a') (see [2, p. 30]), 
and use the fact that due to the Hessenberg form of A, 

(11) (i-)Pq pq for p > j 

to observe that Eq. (10) holds for j = i - 1. 
Suppose that (10) holds for a certain j, denote the sum on the left side of Eq. (10) 

by Si(j), and consider Si(j - 1). In Si(j - 1) separate the two terms obtained for 
k = j - 1 and k = j. Observe that the sum of these terms is a multiple of a'). Now 
apply (11) to see that the entire sum S,(j - 1) is precisely the same as Si(j). An appli- 
cation of the induction hypothesis now completes the proof. 



GAUSS-SEIDEL ITERATION FOR HESSENBERG MATRICES 923 

THEOREM. Let the matrix A satisfy the conditions given at the beginning of this 
section. Let w be the vector determined by (7) and let M(w) denote the iteration matrix 
defined as in (3). Then M(w) has strictly upper triangular form. Thus M(w) has spectral 
radius zero and M(c)' = 0. 

Proof. Since w1 = 1, the first column of the matrix (1 - w)D + wF vanishes 
and it follows from the definition of M(w) that its first column also vanishes. We show 
next that the diagonal entries of M(w) vanish. Using the definitions of w and M(W) 
and then Lemma I to determine (D- wE)- 1, we find that for i = 2, ,n the ith 
diagonal element of M(w) can be written in the form 

i -1 
ij ( i+k kiklk. . ai ,-w ai m = k 

( 
ok+1ak+1,k w(a1,i1 (_ ak) + 

(1 
- 

k=1 akbk *.*.* aj, i aii 

= Si(M) + (1 - Wi) 

= 0, 

where Si(l) denotes the sum appearing on the left in Eq. (10) and we used (7) and 
also Lemma 2. 

If i > 1 > 1, then the element in the ith row and the jth column can be expressed as 

i-i 

Mii= E ( 1)i+k COk+iak+lk ciaii-1 (- kak, ) 
k=1 akk ... aj, i 

+ (1 -co')a..(-1)j+ 7+1 * * 
ai... aii 

coi+jaj+, ...* Coaii-1)i~i Si(1) + (1 - CO) 

= 0, 

where again S,(l) denotes a sum as in (10) and we used (7) together with Lemma 2. 
It is possible to view the above method as a special case of a more general class 

of iterative methods where the iteration matrix has spectral radius equal to zero. 
Suppose that A is a nonsingular matrix which, we shall assume, can be reduced to the 
upper triangular matrix A ( by elementary row operations without the use of row 
interchanges. From the triangular reduction procedure, we obtain in the usual way 
a matrix T such that TA = A n. If Dn is the diagonal matrix formed using the diagonal 
elements of A (n, then the equation 

X = (I - D-1TA)X + D_1TC 

is equivalent to the equation AX = C. Clearly, I - D-1 TA is a strictly upper triangular 
matrix. Now, if A is a Hessenberg matrix, one can use Lemma 1 and induction on the 
rows of T to show that (I - 1 = T, and then it is easy to deduce that M(W) = 
I- Dn-TA. Thus, the iteration (8) can be viewed as Gauss-Seidel iteration applied 
to the equation A WX = TC. 

3. Remarks on Numerical Aspects of the Method. To begin with, we comment 
on the number of operations required by the method to obtain the solution. It follows 
from the strictly upper triangular form of M(w) that theoretically xn2) is exact, xn)1 is 
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exact, and in general Xnr+l) is exact. Thus, the complete cycle indicated in (8) is not 
necessary and we might modify the method by successively terminating the calcula- 
tions one step earlier. However, it is not difficult to convince oneself that even with 
this modification the number of multiplications required to obtain xl, ., n) 

after the relaxation vector has been calculated is not competetive with back substitu- 
tion. Since it is necessary to reduce the matrix to triangular form in order to determine 
c, it is then more economical to proceed with back substitution to obtain the solution. 

Regarding accuracy, the method appears to be quite comparable with Gaussian 
elimination. Results from a limited number of experiments using the method for 
ill-conditioned systems suggest that with respect to both efficiency and accuracy it is 
preferable to use the partial step modification of the algorithm indicated above rather 
than the total step version. The computation of xt, x,2,1 , (n) will be called 
one cycle of the partial step method. Either version of the algorithm would appear to 
be natural for refining the solution obtained from back substitution. Here we have 
observed that for ill-conditioned matrices there is some improvement in the accuracy 
of the solution in the earlier iterates, but in order to produce substantial improvement 
it has been necessary to calculate the vector of iterates in double precision. Wilkinson 
[4] points out that for Hessenberg matrices, Gaussian elimination followed by back 
substitution is quite accurate, so that with single precision a substantial improvement 
in accuracy would probably not be expected. However, the total step version of the 
algorithm does not always sustain an improvement of accuracy throughout the later 
iterations as indicated by the computational results presented in Table II. 

The computations presented below were performed on an IBM 370 computer 
using single precision unless otherwise indicated. The results in Table I and Table II 
were obtained using systems of the form 

n n- I .. 2 1 n(n + 1)/2 ] 

n- I n- I *- 2 1 (n - 1)(n + 2)/2 

(12) 0 n-2 . 2 1 X= (n-2)(n + 1)/2 

Thus all components of the exact solution are one. 
In Table I we take n = 6 and use the total step version of the algorithm. The results 

in the upper rows are the computed iterates obtained with an initial vector zero. 
The results in the lower rows are the computed iterates obtained using the solution 
computed by back substitution as the initial vector. 

When the total step version of the iterative scheme was applied to the system (12) 
with n = 8 and the solution computed by back substitution as initial approximation, 
the first iteration improved the accuracy but then the accuracy declined noticeably. 
The partial step version performed somewhat better. The first column of Table II 
contains the solution computed by back substitution, while the first and eighth iterates 
computed using this initial approximation and the total step version are given in the 
second and third columns respectively. One cycle of the partial step version was 
applied with the solution from back substitution as initial approximation and these 
results are given in column four of Table II. 
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TABLE I 

X(?) X(1) X(2) X(3) X(4) X(6) X(6) 

0 3.500000 -0.2333313 3.499901 0.0002154 1.166312 1.000377 
0 2.999997 -0.9999781 1.999908 0.8001690 0.9997560 1.000212 
0 2.500006 0.0000353 1.249947 1.000145 0.9997767 1.000022 
0 1.999944 0.6666622 0.9998132 1.000061 1.000032 1.000144 
0 1.500175 1.000123 1.000224 1.000131 0.9992709 0.9992094 
0 0.9996924 1.000060 0.9994917 1.000247 1.001211 1.000370 

0.9999879 0.9999898 1.000094 0.9995711 1.000547 0.9996770 1.000383 
1.000074 1.000063 1.000176 0.9996626 1.000335 0.9999480 1.000410 
0.9996946 0.9997684 0.9999889 0.9995621 0.9999018 0.9998327 1.000334 
1.000913 1.000625 1.000609 1.000047 1.000251 1.000045 1.000539 
0.9981725 0.9990394 0.9999549 0.9999534 0.9991996 0.9992082 0.9998519 
1.001828 1.000093 0.9999977 1.000094 1.001506 1.000077 1.000218 

TABLE II 

X(?) X(l) X(8) (8) 

0.9999982 0.9999982 0.9746984 0.9999981 
0.9999872 0.9999861 0.9869528 1.000000 
1.000081 1.000072 0.9943312 1.000053 
0.9995853 0.9996368 0.9976511 0.9997644 
1.001658 1.001409 0.9983439 0.9977849 
0.9950189 0.9960259 0.9976821 1.003881 
1.009962 1.006941 1.001415 1.000993 
0.9900382 0.9960770 0.9978753 0.9960770 

A class of ill-conditioned tridiagonal matrices has been introduced by Dorr in [1]. 
We obtain an example from this class by taking n - 20, E = .01, and h = .05. Then 
for 1 < i < 10, let ai = -E/h2 and ci = -E/h2 + i - 10, while for I < i < 20, 
let ai = - E/h2 + i - 10 and ci = - E/h2. The tridiagonal coefficient matrix A is 
then obtained by defining the nonzero elements as follows: 

aji = -(ai + ci), 1 < i < 20, 

ajj+j = ci, 1 < i < 20, 

ai+,,i = ai+1, 1 < i < 20. 

We define the column vector C' so that again all components of the exact solution 
of AX = C' are one. Thus, cl = -a,, cl = 0, 1 < i < 20, and cl0 = -c20. With this 
system, Gaussian elimination, the calculation of the relaxation parameters, and back 
substitution were performed in single precision and the resulting solution was accurate 
to three digits in all components with a typical component being x1o = 0.9995323. 
Using this approximate solution as an initial vector, two cycles of the partial step 
algorithm were computed using a double-precision iteration vector. After the first 
cycle, each component had the value 0.9999998 and after the second cycle each com- 
ponent had the value 0.9999999. 
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