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A Search Procedure and Lower Bound 
for Odd Perfect Numbers 

By Bryant Tuckerman 

Abstract. An infinite tree-generating "q-algorithm" is defined, which if executed would 
enumerate all odd perfect numbers (opn's). A truncated execution shows that any opn 
has either some component pa > 1018, with a even, or no divisor < 7; hence any opn must 
be > 1036. 

1. Introduction. It is unknown whether any odd perfect numbers (opn's) 
exist. For a history, see McCarthy [2]. Kanold [3] gave a lower bound of 1020 for 
possible opn's. Muskat [5] showed that every opn must have a divisor pa > 1012. 

The present paper is a condensed and clarified version of [6], which was announced 
in [7], and submitted to this journal in 1968. The completion of the requested revision 
has been delayed until now. 

The chief results are: 
(I) A "q-algorithm" is given, which defines a countably infinite tree, on which, 

if enumerated, every opn (if any) would be recognized at some node. 
(II) A finite truncation of the tree was computed, which shows that (1) every 

opn must satisfy the known restrictions defined at some one of the truncation-nodes 
implied by this tree; (2) every opn must have either (a) some component pa > U = 

1018, with a even, or (b) no prime divisor < 7; (3) hence any opn must be > u2 = 1036. 
This "1036-tree", occupying 9 pages, has been deposited in the UMT file [8] 

(and occurs in an earlier arrangement in [6]). To convey the spirit of that tree and 
of the algorithm, an analogous "10'6-tree" (based on u = 108), occupying 2 pages, 
is included in this paper. Statements about the 1036-tree will typically hold equally 
well for the 1016-tree. 

The bound of 1036 has been superseded in a recent paper by Hagis [9]. Nevertheless, 
there are enough different approaches in the two papers to warrant the present 
publication. For omitted proofs and details, see [6]. 

2. Notation. Let N, P, Q be the sets of all positive integers (n, m, h, d, etc.), 
primes (p or q), and opn's, respectively. Let a(p, n) > 0 be the multiplicity of p in n, 
and let h(p, n) = a(p, n) + 1 ? 1. With Sylvester, we call pa ,hnl > 1 a component 
of n. Let A(n) = {p: p I n}. For n > 1, define p1(n) = min {p 6 A(n)} ; the other 
p E A(n) may be numbered p2(n), * * pr (n)(n) in any convenient order. We may 
then represent n in any of the forms 

r (n) r (n) 

n= f (n)ai(n) I pi(nhi(n)-1 = fJ a(vn) = TI h(P.n)-1 

where the range of p in the last two products is indifferently P or A(n). 
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Givenpa, write h = a + 1. Then a(pa) = c_(p- 1) = (ph _ l)/(p-1) Ild FP) 
where Fd( ) is the dth cyclotomic polynomial (see Nagell [1]), and D = Id: d I h A 
d = 1.} If hi h2, then _(phl-) I _(ph2-l) (proof in [6, p. 23]). Thus in using oa(.) and 
in studying opn's, it is more effective to deal with h and its prime divisors rather 
than with a. It will prove convenient to write its prime factorization as h = qlq2 ... q8, 

where q1 ? q2< ? . q8. By the jth prime divisor of h we will mean q1. (Thus if 
h = 45 = 3 3 5, then the 1st, 2nd, 3rd prime divisors of h are 3, 3, 5.) For h = 

h(p, n), we define s(p, n) and qi(p, n) like s and q,. 
We say n, h-divides n2, n1 Ih n2, if for all p, h(p, n,) I h(p, n2); n1 q-divides n2, n1 |q n2, 

if for all p, s(p, n1) < s(p, n2) and q,(p, n,) = q,(p, n2) for 1 < j < s(p, n1). Clearly, 
ni I a n2 implies nl Ih n2. 

LEMMA. If ni jq n2, or if nl Ih n2, then ni I n2 and a(n1) I o(n2). 
This result accounts for the usefulness of the concepts Ih and Iq The proof is easy. 
In the context of opn's, we define a prime power pa > 1 to be ordinary if a 

0 mod 2 (i.e. h is odd); exceptional if p 1 mod 4, and a 1 mod 4 (i.e., h is singly 
even); inadmissible otherwise. For k = 0, 1, 2, . , define Ek = I n: exactly k of the 
components of n are exceptional, and the rest are ordinary}. Euler proved that 
Q c E1. 

3. Trees. Let C be a set of choices c; X a fixed symbol; C* = {v: v = Xclc2 *.** C1 

where ci 6 C} (I = 1, _ 0 is called the level of v); and C(.) a function C(.): C* -> 2c 
(we denote the image C(v) by C,). Then a unique tree T = Tc (.a, rooted at X, is 
defined as the smallest set T of nodes v such that X 6 T, and such that if 
v = Xc1c2 ...cl cE T, then vc = Xc1c2 ... c1c1+l 6 Tfor all c = cl+l 6 C,. 

4. Opn-Trees. We will define such a T, called an opn-tree, with the following 
properties. 

At each v E T, of level 1, there will be defined a sequence R, = (pi, , pl) of I 
restrictions (truth-valued functions) pk(n) on the variable n. Let N, = In pk(n) is 
true for all Pk 6 R '}; let Q, = N, n Q. Clearly Rx = 0, Nx = N, Qx = Q. At some v, 
it might become known that Q, = In } where n is known to be an opn. We will call 
this v an opn-node. At some other v it may become known that Q, = 0. In either 
case, v is a terminal node, and we do not branch from it. Otherwise, we will select, 
and branch on, some function fJ(n), known to be defined for all n 6 Q,, with "ade- 
quate" range C,, i.e., such that f,(Q,) C C, C C. Thus, if we define the sons of v 
to be all vc for c E C,, then at each vc we define RC = (P', ... *, pl, Pt+) where 
Pi +1(n) is 'f,(n) = c'. Clearly, { Q~, c 6 CC } is a disjoint partitioning of Q,. Hence, 
every m E Q (if any) lies on a unique path from X down T. 

At v = X, we branch on pmin(n), with C, = P - {2}. At every other v 6 T of 
level I > 0, we will branch (if at all) on q, 1(pl, n), i.e., on the jith prime divisor of 
h(pl, n), for suitable fli, j' (both depending on v) and C,. As a result, at every v = 

XC1c2 ... c*l E T of level I > 0 we will have R. = (Pl, P2, ... , Pl) where 

Pi is Pmin(n) = ci', 

Pk S qi k-(Pk-1, n) = Ck for k = 2, 3, * * , 1. 

Of course, Pk-1, ik-i, and a Ck_ were defined at Vk-1 = XC1C2 .*. .Ck-1, and Ck 6 Clk- 
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The sequence b, p2, * i - P1 may contain repetitions. Let its distinct elements, 
in order of first appearance, be Pi, P2, * , * I pr, and let A, = {pi }. The later conditions 
on branching will ensure that Pi = cl and that, for each pi, the subsequence of the 
Pk (2 ? k < 1), for which Pk-l = pi, will have consecutive values 1, 2, * . , si (i _ 1) 
of jk-1, and nondecreasing prime values of Ck. Consequently, we can replace R, 
by the equivalent 

Pmin(n) = Pi, 

qi(pi, n) = vi; for i = 1, 2, * , r; i = 1, 2, ** ,i 

where pi = cl, r and the si are known (Z s. = - 1), and the qi i are a known per- 
mutation of the Ck (k > 1); or equivalently 

Pmin(n) = Pi, 

m n, 

where m = m,= =1 phi and h Hi=, qi. 
All of I, fk-l, jk-1, Ck, r, pi, si, qii, hi, m are functions of v. Since we generally 

consider a typical v and its sons vc or father v, we omit this dependence on v from 
the notation, except that for I = 1, and m = m, it is optional. Such sets as NP, Qv, Av 
will always bear the subscript. 

5. The Computation of a(m). For I = 1, a(m) = m = 1. For I > 1, we are 
assisted in calculating a(m) by the assumed previous factorization of oa(m-), where 
m- = mr-. For that i such that pi = Pb-1, write p for pi, s for si, q for qi , h for h,/q. 
Then p appears in m- as ph- l (possibly asp0 = 1) and in m as phq- l. Thus, a(m)/a(m-) 
= a(p )/a(ph) = ( 

-q 1 )/(ph - 1) = HdED Fd(p), where D = {d: d I hq A 
d 4 h }. The factorization of a(m) may therefore be found from that of o(m-) and of 
each Fd(p). In the important special case s = 1, h = 1, p 4 m- we have simply 
a(m)/a(m-) = a(p" 1) = F,(p). In the 1036-tree, only this case arose. 

If we define b(p, m) = a(p, a(m)), then a(m) = ip pb(m). Define B, = {p # 

2: b(p, m) > 0}. We will ensure, inductively, that m E E0 U E1. (For I < 1, m = 
1 E Eo.) If m E Eo then no qi; = 2, and b(2, m) = 0. If m E E1, then just one 
qii = 2, for some i, and j = 1; pi is the exceptional prime, and b(2, m) = 1. 

6. More Details on Branching. At each node v = X we define a set P, of p 
which are admissible to be p = Pl. If I = 1, let P, = {Pi}, where p1 = cl. If I > 1, 
let P. = {p 7 2: b(p, m) > a(p, m)}1, i.e., the set of p = 2 which are "over-generated" 
by o-(.). The proof of our next result may be found on p. 29 of [6]. 

THEOREM. If /, > 1, and PV = 0, then m = mv is an opn, and Qv = {m}. Thus v 
is an opn-node. 

Otherwise, consider any p 6 Pv 7 0. For every n 6 QV, a(p, n) = b(p, n) > 
b(p, m). If I > 1, b(p, m) > a(p, m). Hence, a(p, n) > a(p, m). The latter also holds 
for I = 1. Thus, h(p, n) > h(p, m); and since m q n, s(p, n) > s(p, m). 
Thus, qs (p, m) + i(p, n) is defined for all n E Q,, so that it is admissible to branch on 
it. There are two cases. 

If p X~ A, (in particular, if I = 1), then s(p, m) = 0. It is thus admissible to branch 
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on q1(p, n), with C, = P if p is admissible as the exceptional prime, i.e., if p _1 mod 4 
and m E E0. Otherwise, C = P - {2}. 

If p E AP, say p = pi, then s(pi, m) = si > 0. It is then admissible to branch on 
q8~i+l(p, n), with C, = {q E P: q 5 2 A q _ q,8j}. 

The use of any of the above p as pf preserves, at all vc, the properties assumed 
at v. In particular, if c = 2, then v E0 and v2 E E1; otherwise, v and vc both belong 
to E0 or both belong to E1. Thus the property m E E0 U E1 at v is preserved at all vc. 

Any well-defined global selection rule(s) (i.e., for all v E T) for P C P, X 0 
will define a particular tree. A set of such rules is given on p. 40 of [6]. In the 1036-tree, 
these rules always reduced (for I > 1) to P = maxip 6 (BV - B,-)}; and always 
p X Ap. Hence, the branching was always on ql(fi, n), so that always s= 1, pI = pi, 
h = q,1 (i = 1, 2, , r), r = I-1; but the more general case may be needed for 
the infinite tree. 

Thus an opn-tree is defined. Its previously assumed properties hold, by induction 
on 1. It is enumerable, in fact by various admissible sequences, in which the father 
v of any vc is processed before vc. 

If n is any opn, it lies on a unique path from X, and will be recognized at the 
node v on this path which has level I = 1 + EZ, s(p, n). 

7. Contradiction-Nodes. This tree can be pruned, during construction, by 
taking into consideration two conditions which can give contradictions to n E Q^, 
thus showing that Q, = 0, so that we can make v a terminal node. These are dis- 
cussed in the next two paragraphs. 

For every p E B,, p la(m)j a(n) = 2n, for all n E Q,. Hence if ] p C B, such 
that p < pi, this contradicts Pi = pmi (n), and we have a least-element-contradiction- 
node at v. 

Forevery n E Q,, (1) m ,n, (2)a(m) I 2n, (3)n E El. LetN = I{n: (1) A (2) A 
(n E E) A (n E E1 if m C E1)}1, where E = Uk=0 Ek. Let m' = mintn E N1,} = 

gcd { n E N, }; m' is readily determined by its { a(p, m') } in terms of { a(p, m) } and 
{b(p, m)}1. (Cf. [6, pp. 37-39]; and note, for example, that 2 = a(p, m) < b(p, m) (_ 8) 
implies a(p, m') = 32 - 1 = 8, a strong contribution to m', and to oa(m')/m', especially 
for p = 3.) Now m' j n for all n E Q,. If we compute or(m')/2m', and if this is > 1, 
then m' is abundant, and so are its multiples n. Hence, Q2 = 0, and v is an abundance- 
contradiction-node. (The 1036-tree was first computed without the use of abundance- 
contradictions and had about twice as many nodes, and about twice the depth, 
as with their use.) 

Although not used as such in [6], the above m' is a lower bound for all n E Q,; 
and a "better" bound is m" = min{n: (1) A (2) A (n6 El1)}, which is >m'if m' X E1. 

8. Truncated Execution. For computation, the opn-tree must be truncated 
to a finite tree. For simplicity, and because the chief computational effort was in 
factoring large F,(p), it was decided to truncate primarily by omitting all vq (truncation 
nodes) for which p- 1 > u or > 2'"2u, according as hq is odd, or even and > 2, for 
a chosen u. Any opn at such a node is > u2. To obtain the same bound at level 1, 
we used results of Norton [4] and derived (pp. 35-36 of [6]) these lower bounds 
w(pmin(n)): w(3) = 103; w(5) = 1013; w(7) = 104; w(11) = 1090; w(13) = 10154; etc. 
We let Xp be truncation nodes as soon as w(p) > u2. Using u = 1018 and then u = 108, 
with max(pmin) = 5 in both cases, yielded the 1036- and 106-trees. 
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ODD-PERFECT-NUMBER SEARCH TREE TO 10**16 

(REPRESENTATIVE OF SEARCH TREE TO 10**36) 

NODE L E F 

0 - ALL ODD PERFECT NUMBERS 
3 1 - LEAST ELEMENT 3, HENCE N > 10**3 
33 2 - FE 3,3) = 13 
332 3 * F( 2,13) = 2.7 '7' 
3323 4 F( 3,7) = 3.19 
33233 5 F( 3,19) = 3.127 
332333 6 F( 3,127) = 3.5419 
3323333 7 F( 3,5419) 3.31.313.1009 
3323333* 3**8.(7.19.31)**2.13**1 +.024283 
33235 5 F( 5,19) = 151.911 
332353 6 F( 3,911) = 830833 
33237 5 F( 7,19) = 701.70841 
3325 4 F( 5,7) = 2801 
33253 5 F( 3,2801) = 37.43.4933 
332533 6 F( 3,4933) = 3.127.193.331 '331' 
3325333 7 F( 3,331) = 3.7.5233 
33253333 8 F( 3,5233) = 3.7.31.42073 
33253333* 3**8.7**4.(31.37)**2.13**1 "331" +.000601 
3327 4 F( 7,7) = 29.4733 
33273 5 F( 3,4733) = 22406023 "7"1 
333 3 - F( 3,13) = 3.61 
3332 4 * F( 2,61) = 2.31 '31' 
33323 5 F( 3,31) = 3.331 '331' 
333233 6 F( 3,331) = 3.7.5233 
3332333 7 FE 3,5233) = 3.7.31.42073 "331" 
33325 5 F( 5,31) = 5.11.17351 
33325* (3.5.11.13)**2 1"31" +.063835 
3333 4 - F( 3,61) = 3.13.97 
33332 5 * F( 2,97) = 2.7**2 '7' 
333323 6 F( 3,7) = 3.19 
333323* 3**8.(7.13.19.61)**2 +.013531 
333325 6 F( 5,7) = 2801 
3333253 7 F( 3,2801) = 37.43.4933 
33332533 8 FE 3,4933) = 3.127.193.331 
33332533* 3**8.7**4.(13.37.43.61)**2 +.013367 
333327 6 F( 7,7) = 29.4733 
3333273 7 F( 3,4733) = 22406023 "7" 
33333 5 - F( 3,97) = 3.3169 
333332 6 * FE 2,3169) = 2.5.317 
333332* 3**8.(5.13)**2 +.006965 
333333 6 - F( 3,3169) = 3.3348577 
3333332 7 * F( 2,3348577) = 2.1674289 
33335 5 - F( 5,97) = 11.31.262321 
333352 6 * F( 2,262321) = 2.31.4231 
3333523 7 F( 3,4231) = 3.601.9931 
33335233 8 FE 3,9931) = 3.211.155821 
3335 4 - F( 5,61) = 5.131.21491 

The number of nodes in the 1036-tree could have been reduced somewhat, and 
the amount of computation reduced somewhat more, by using the mi" mentioned 
earlier. This was not done, partly for simplicity, partly to obtain the statement 
pa > u = 1018 in the Introduction, and partly not to limit the search for possible 
opn's unnecessarily soon. 

9. Description of the Listings. The nodes are in lexicographic order. The 
field "NODE" shows cIc2 * c1 (omitting X), with the primes 11, 13, 17, -.. ab- 
breviated as A, B, C, ... . "L" shows 1. "E" contains (-, *, blank) according as 
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335 3 - F( 5,13) = 30941 
3352 4 * F( 2,30941) = 2.3**4.191 
33523 5 F( 3,191) = 7.13**2.31 '31' 
335233 6 F( 3,31) = 3.331 '331' 
3352333 7 F( 3,331) = 3.7.5233 
33523333 8 F( 3,5233) = 3.7.31.42073 "331" 
335235 6 F( 5,31) = 5.11.17351 
335235* (3.5.11.13)**2 "31" +.063835 
337 3 - F( 7,13) = 5229043 
35 2 - F( 5,3) = 11**2 
353 3 - F( 3,11) = 7.19 
353* 3**4.(7.11.19)**2 +.007905 
355 3 - F( 5,11) = 5.3221 
3552 4 * F( 2,3221) = 2.3**2.179 
3552* (3.11)**4.5**2 +.018609 
3553 4 - F( 3,3221) = 10378063 
357 3 - F( 7,11) = 43.45319 
37 2 - F( 7,3) = 1093 
372 3 * F( 2,1093) = 2.547 
3723 4 F( 3,547) = 3.163.613 
37233 5 F( 3,613) = 3.7.17923 
373 3 - F( 3,1093) = 3.398581 
3732 4 * F( 2,398581) = 2.17.19.617 
37323 5 F( 3,617) = 97.3931 
373233 6 F( 3,3931) = 3.7.31.23743 
373233* 3**6.(7.17.19.31)**2 +.010190 
3A 2 - F(11,3) = 23.3851 
3A3 3 - F( 3,3851) = 13.1141081 
3A32 4 * F( 2,1141081) = 2.337.1693 
3A323 5 F( 3,1693) 3.13.151.487 
3A3233 6 F( 3,487) 3.7.11317 
3A3233* 3**10.(7.13.23.151.337.487.1693.3851)**2 +.000022 
3B 2 - F(13,3) = 797161 
3B2 3 * F( 2,797161) = 2.398581 
3C 2 - F(17,3) = 1871.34511 
5 1 - LEAST ELEMENT 5, HENCE N > 10**13 
52 2 * F( 2,5) = 2.3 3<5 
53 2 - F( 3,5) = 31 
533 3 - F( 3,31) = 3. 3<5 
535 3 - F( 5,31) = 5.11.17351 
55 2 - F( 5,5) = 11.71 
553 3 - F( 3,71) = 5113 
5532 4 * F( 2,5113) = 2.2557 
55323 5 F( 3,2557) = 3. 3<5 
5533 4 - F( 3,5113) = 3. 3<5 
555 3 - F( 5,71) = 5.11.211.2221 
5552 4 * F( 2,2221) = 2.11.101 
55523 5 F( 3,101) = 10303 
5553 4 - F( 3,2221) = 3. 3<5 
57 2 - F( 7,5) = 19531 
5A 2 - F(11,5) = 12207031 
7+ 1 - LEAST ELEMENT >= 7, HENCE N > 10**41 

the exceptional prime has (not yet, just, already) been chosen. "F" shows F(q, p) = 

F,(p) and its factorization, performed on an IBM 7094. If v has an abundance- 
contradiction, the succeeding line v* shows an abundant mn i m', and the value of 
ln(o-(r)/2m) > 0. For a fuller explanation, see pp. 37-39 and 45 of [6]. I am indebted 
to a referee for four minor corrections to the hand-computed fm-. Least-element- 
contradictions are indicated by "3 < 5". Any branch-nodes not shown, of other 
than terminal nodes, are truncation nodes. The presentation of the 1036-tree [8] 
completes the demonstration of the assertions in the Introduction. 

For p = 7, 31, 331 there are 2, 2, 3 nodes v " 9 ' having the same branching func- 
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tion, range, and pmini() for each i. For example, at both v '7,1) _ X332 and v (7,2) = 

X33332, the branching is on q1(7, n). For any such p, the subtrees rooted at each 
v U?i) will have identical branchings and factorizations (at least initially), aside from 
abundance-contradictions which merely cause different prunings of these subtrees. 

The major benefit of identifying these subtrees is to eliminate duplicate execution 
of some factorizations. A lesser potential benefit could be to shorten the listings. 
In [6], some shortening was obtained by "overlaying" all the subtrees for each such p 
onto one of them, on which the separate cases were carried along. In the present 
listings, for greater clarity these subtrees have not been overlaid. However, each 
has been demarcated by 'p' at its root, and "p" at its lexicographically last node. 

Some space, but not much computation, could be saved by subsuming the cases 
for such a p into one appropriate new case (represented on a separate tree) which 
includes appropriate common restrictions. For example, the cases for p = 7 could 
be subsumed into a case with the restrictions Pmin(n) = 3, m = 32-(131 or 97') la n 
(hence m E EA), 2'. 31.7 .131 u (n); branch on q,(7, n). Analogs of ml and ml" could 
be defined; for example, let m'-m" = 32.72. 13' at the root. 

10. A Comparison. The above q-algorithm is a modification of a simpler 
"a-algorithm" [6] which uses branchings on a(p, n). The "complication" is more 
than compensated for by the fewer branches and factorizations. For example, with 
u = 1018, the branches at X3, with p = 3, are reduced from 18 cases of pa < U to 
11 cases of p"' < u; at X33, with p = 13, from 12 cases to 7; at X5, with = 5, 
from 19 cases to 9. Each omitted case, i.e., one for which h = a + 1 is composite, 
is subsumed in the case of the least q I h, with retention of the useful common fac- 
torization of F,(p), and omission of the not-yet-needed further branching and com- 
putation. 

I am indebted to a referee for significant stylistic improvements. 
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