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Primitive Binary Polynomials 

By Wayne Stahnke 

Abstract. One primitive polynomial modulo two is listed for each degree n through 
n = 168. Each polynomial has the minimum number of terms possible for its degree. The 
method used to generate the list is described. 

Introduction. The accompanying table contains one primitive polynomial 
modulo two for each degree n, 1 < n < 168. Since the number of physical logic 
elements required to implement a given polynomial is a function of the number of 
terms in that polynomial, each entry has as few terms as possible for polynomials 
of its degree. 

Each polynomial listed for n > 1 is of one of two forms. If there exist one or more 
primitive trinomials f(x) = x' + xk + 1 the trinomial with the smallest k is listed. 
If no primitive trinomials exist, the polynomial given is of the form g(x) = xk + 
xb+a + Xb + 1, with 0 < a < b < n-a. For these polynomials, a is as small 
as possible, and for the a listed, b is as small as possible. This form was chosen because 
it corresponds to the configuration of logic elements introduced by Scholefield [1], 
which implements the reciprocal polynomial xng(x- ) using only n unit-delay elements 
and two two-input modulo-two adders. The conventional shift-register configuration 
[2] can also implement g(x) or x`g(? 1), at the expense of one additional two-input 
modulo-two adder. 

In the table, only the degrees of the individual terms of the primitive polynomials 
are listed, so that for example 

125, 108, 107, 1, 0 represents g(x) = x125 + x108 + x107 + x + 1 

The only similar table known to the author is Watson's [3] which lists one primitive 
polynomial for each degree n through n = 100, and also for n = 107 and n = 127. 
The entries in Watson's table are not of any particular form, and many of them do 
not have the minimum possible number of terms. 

The Test for Primitivity. The test for primitivity consists of four stages. The 
first two stages, which are used because of their relatively high speed, eliminate all 
of the reducible polynomials. The last two stages form a necessary and sufficient 
test for primitivity. 

In the first stage, the trial polynomial p(x) is rejected as reducible (and therefore 
not primitive) if each one of its terms is an even power of x, since in that case the 
polynomial is a square. 
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In the second stage, the greatest common divisor of p(x) and x2 + x is calculated 
for each m, 1 < m ? [n/2], using the Euclidean algorithm. The trial polynomial is 
rejected as reducible if the result is not equal to 1 for each m. This stage forms a 
necessary and sufficient test for the irreducibility of p(x) since every irreducible 
polynomial of degree m is a factor of x2m + x [4, p. 103]. 

Exponents of Terms of Primitive Binary Polynomials 

1 0 41 3 0 

2 1 0 42 23 22 1 0 

3 1 0 43 6 5 1 0 

14 1 0 44 27 26 1 0 

5 2 0 45 4 3 1 0 

6 1 0 46 2 1 20 1 0 

7 1 0 47 5 0 

8 6 5 1 0 48 28 27 1 0 

9 4 0 49 9 0 

10 3 0 50 27 26 1 0 

11 2 0 51 16 15 1 0 

12 7 4 3 0 52 3 0 

13 4 3 1 0 53 16 15 1 0 

1 4 1 2 1 1 1 0 54 37 36 1 0 

15 1 0 55 24 0 

16 5 3 2 0 56 22 21 1 0 

17 3 0 57 7 0 

18 7 0 58 19 0 

19 6 5 1 0 59 22 21 1 0 

20 3 0 60 1 0 

21 2 0 61 16 15 1 0 

22 1 0 62 57 56 1 0 

23 5 0 63 1 0 

24 4 3 1 0 64 4 3 1 0 

25 3 0 65 1 8 0 

26 8 7 1 0 66 1 0 9 1 0 

27 8 7 1 0 67 10 9 1 0 

28 3 0 68 9 0 

29 2 0 69 29 27 2 0 

30 1b 15 1 0 70 16 15 1 0 

31 3 0 71 6 0 

32 28 27 1 0 72 53 47 6 0 

33 1 3 0 73 2 5 0 

34 15 14 1 0 74 16 15 1 0 

35 2 0 75 11 10 1 0 

36 1 1 0 76 36 35 1 0 

37 12 10 2 0 77 31 30 1 0 

38 6 5 1 0 78 20 1 9 1 0 

39 4 0 79 9 0 

40 21 1 9 2 0 80 38 37 1 0 
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Exponents of Terms of Primitive Binary Polynomials 

81 4 0 125 1 08 1 07 1 0 

8 2 38 35 3 0 126 37 36 1 0 

83 46 45 1 0 127 1 0 

84 1 3 0 1 28 29 27 2 0 

85 28 27 1 0 129 5 0 

86 13 12 1 0 130 3 0 

87 1 3 0 1 31 48 47 1 0 

88 72 71 1 0 132 29 0 

89 38 0 1 33 52 51 1 0 

90 19 18 1 0 134 57 0 

91 84 83 1 0 135 1 1 0 

92 13 12 1 0 136 126 125 1 0 

93 2 0 137 21 0 

94 21 0 1 38 8 7 1 0 

95 11 0 139 8 5 3 0 

96 49 47 2 0 140 29 0 

97 6 0 141 32 31 1 0 

98 11 0 142 21 0 

99 47 45 2 0 143 21 20 1 0 

100 37 0 144 70 69 1 0 

101 7 6 1 0 145 52 0 

102 77 76 1 0 146 60 59 1 0 

103 9 0 147 38 37 1 0 

104 11 10 1 0 148 27 0 

105 16 0 149 110 109 1 0 

106 15 0 150 53 0 

107 65 63 2 0 151 3 0 

108 31 0 152 66 65 1 0 

109 7 6 1 0 153 1 0 

110 13 12 1 0 154 129 127 2 0 

111 10 0 155 32 31 1 0 

112 45 43 2 0 156 116 115 1 0 

113 9 0 157 27 26 1 0 

114 82 81 1 0 158 27 26 1 0 

115 15 14 1 0 159 31 0 

116 71 70 1 0 160 19 18 1 0 

117 20 18 2 0 161 18 0 

118 33 0 162 88 87 1 0 

119 8 0 163 60 59 1 0 

120 118 111 7 0 164 14 13 1 0 

121 18 0 165 31 30 1 0 

122 60 59 1 0 166 39 38 1 0 

123 2 0 167 6 0 

124 37 0 168 17 15 2 0 



980 WAYNE STAHNKE 

If the trial polynomial is irreducible, the test goes forward to the third stage, which 
verifies that p(x) divides x2 + x, which is equivalent to saying that the period of 
p(x) divides 2n _ 1. This must be true since it has already been established that p(x) 
is irreducible, so this stage checks for possible machine errors of certain types in the 
second stage. 

If 2n - 1 is prime, the trial polynomial is primitive. If 2' - 1 is composite, how- 
ever, the period of p(x) may be a factor of 2n - 1. This possibility is tried in the 
fourth stage in which X 

(2,1n-, mod p(x) is calculated for each prime factor q of 
2- _ 1. If the result is 1 for any q, the trial polynomial is not primitive. 

If the trial polynomial survives all four stages of the test, it is primitive, which is 
checked by repeating the third and fourth stages of the test on the reciprocal poly- 
nomial xnp(x ') 

The program was run on the IBM 360/67 at Fairchild Semiconductor. At the 
beginning of each computer run, the factors of 2n _ 1 were multiplied together for 
each n and it was verified that their product was actually 2n - 1. No machine errors 
were encountered in any of the computer runs. All of the trinomials were checked 
against the list of Zierler and Brillhart [5], and all of the polynomials of degree 
n _ 19 were checked against Marsh's list [6]. There were no discrepancies. 

The factors of 2n - 1 were taken from Riesel [7] and checked against other sources 
in the literature ([8], [9], [10], [11], [12], [13], [14]) with a few exceptions. The factori- 
zations for n = 125, 137, 139, 141, 143, 145, 149, 157, 161 and 167 were furnished 
by John Brillhart, with whose kind permission they were used to complete the pre- 
paration of the table. 

Fairchild Semiconductor 
464 Ellis Street 
Mountain View, California 94040 

1. P. H. R. SCHOLEFIELD, "Shift registers generating maximum-length sequences," Elec- 
tronic Technology, v. 37, 1960, pp. 389-394. 

2. S. W. GOLOMB, Shift Register Sequences, Holden-Day, San Francisco, Calif., 1967. 
MR 39 #3906. 

3. E. J. WATSON, "Primitive polynomials (Mod 2)," Math. Comp., v. 16, 1962, pp. 
368-369. MR 26 #5764. 

4. E. R. BERLEKAMP, Algebraic Coding Theory, McGraw-Hill, New York, 1968. MR 
38 #6873. 

5. N. ZIERLER & J. BRILLHART, "On primitive trinomials (Mod 2)," Information Control, 
v. 13, 1968, pp. 541-554; II, v. 14, 1969, pp. 566-569. MR 38 #5750; MR 39 #5521. 

6. R. W. MARSH, Table of Irreducible Polynomials Over GF(2) Through Degree 19, 
Office of Technical Services, Department of Commerce, Washington, D. C., October 24, 1957. 

7. H. RIESEL, En Bok om Primtal [A Book on Prime Numbers], Studentlitteratur, Lund, 
1968. (Swedish) MR 42 #4507. 

8. J. BRILLHART, "Some miscellaneous factorizations," Math. Camp., v. 17, 1963, pp. 
447-450. 

9. J. BRILLHART & J. L. SELFRIDGE, "Some factorizations of 2" ? 1 and related results," 
Math. Comp., v. 21, 1967, pp. 87-96. MR 37 #131. 

10. K. R. ISEMONGER, "Complete factorization of 2159 - 1," Math. Camp., v. 15, 1961, pp. 
295-296. MR 23 #A1577. 

11. K. R. ISEMONGER, "Some additional factorizations of 2' ? 1," Math. Camp., v. 19, 
1965, pp. 145-146. MR 30 # 1081. 

12. M. KRAITCHIK, Introduction 2 la Theorie des Nombres, Gauthier-Villars, Paris, 1952. 
MR 14, 535. 

13. M. KRAITCHIK, "On the factorization of 2' ? 1,,' Scripta Math., v. 18, 1952, pp. 
39-52. MR 14, 121. 

14. R. M. ROBINSON, "Some factorizations of numbers of the form 2' + 1," MTAC, 
v. 11, 1957, pp. 265-268. MR 20 #832. 


	Cit r326_c338: 


