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paper [1] appearing elsewhere in this issue. Here the author first assembles twelve
criteria (1)-(12), of which the first eight are classical (such as results of Euler and
others, and properties of o(-)); the ninth and tenth are proved in the present manu-
script; the eleventh is due to Muskat. The twelfth is due to Hagis and McDaniel [2],
also appearing in this issue.

The author then subdivides the set of odd perfect numbers » (if any) into cases
(or subcases), repeatedly branching and drawing conclusions, until a lower bound
2=10*’ is derived in each case. Each such lower bound is a product (or a minimum of
such products) of known factors and/or known underbounds for unknown necessary
factors of every n (if any) in this case. The tools used are judiciously chosen in each
case from the aforementioned criteria (1)-(12), results of Kanold and Norton, prop-
erties of (- ), deductions from incomplete factorizations and about sources for 3’s, etc.

The branching is done first on divisibility by various combinations of 3, 5, 7;
then, primarily, on powers or groups of powers, first of 7 or 3, and then of other
primes successively generated by o(-) and branching. Some of the above tools are
used to pre-exclude certain branches. At times, presumably for greater efficiency,
this pattern is varied by the use of other branchings, such as on 11 | n versus 11 } n.
A computer was used to find factors, generally the ones < 10°, of the relevant o(p®).

This case study is followed on page 47 by a useful outline which gives, for each
case and subcase, its name, its defining restrictions, remarks (in some cases), and the
deduced lower bound. .

The supplement (pages 64-81), which raises the lower bound to 10%, uses two
additional tools, (14) due to Tuckerman and (15) due to Robbins and to Pomerance,
together with further application of the previous methods.

The author’s paper [1] includes 11 typical cases and subcases selected and edited
from this manuscript. These illustrate most of the methods used; however, the specia-
list will want to consult the complete manuscript also.
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