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Convergence Rates of Parabolic Difference Schemes 
for Non-Smooth Data* 

By Vidar Thomee and Lars Wahlbin 

Abstract. Consider the approximate solution of the initial-value problem for a parabolic 
system by means of a parabolic finite difference scheme of accuracy 1A. The main result of 
the present paper is essentially that for positive time and v in W1 a with 1 < s < /L, the error 
in the maximum norm is O(hs) for small mesh-widths h. 

0. Introduction. Consider the initial-value problem for the heat equation 

(0.1) aU/at = a2U/dX2, x E R, t > 0, 

(0.2) u(x, 0) = vx, 

and a consistent single step finite-difference operator with constant coefficients, 

(0.3) Ekv(x) = E aiv(x + 1h), 
iEZ 

which is accurate of order At and parabolic in the sense of John (cf. Section 2). 
The problem of estimating, for non-smooth initial data v, the rate of convergence 

of the finite-difference solution Ek'V to the solution E(t)v of the continuous problem 
for nk = t as k and h tend to zero while X = kh-f2 is kept constant, has been discussed, 
e.g. in John [5], Juncosa and Young [6], Hedstrom [7], Kreiss, Thomee and Widlund 
[8], Ldfstrbm [9], Peetre and Thomee [10], Wasow [11], Widlund [12], [13]. In partic- 
ular, it was proved by Ldfstrdm [9] that given 1 _ p _ c, 0 < s ? At, there exists 
a constant C such that, for nk > 0, 

(0.4) 1 I Ekv - E(nk)vII ? < Ch8 I|v I I8,.. 

Here H * and I , denote the norms in Lp and in the Besov space B, , respectively 
(cf. Section 1). This result was generalized by Widlund [13] to general systems with 
variable coefficients which are parabolic in Petrovskii's sense, and correspondingly 
more general difference operators. 

It was also proved in [9] that the estimate (0.4) is best possible in the sense that 
if v is such that, for 0 < nk _ T, 

(0.5) IIEkv - E(nk)v II, < Ch8, 

then v belongs to B,8. 
In the proof of this latter result, it is essential that the estimate (0.5) holds uniformly 

for t = nk small. For p = c, we shall treat the analogous question for t bounded 
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2 ViDAR THOMEE AND LARS WAHLBIN 

away from zero. It was proved by Hedstrom [7] that the estimate (0.4) is still best 
possible in the sense that there exists a function in B.' for which the error is bounded 
below by a positive multiple of h' for a sequence of arbitrarily small h. For an indi- 
vidual v, however, we shall now only be able to prove that the estimate (0.5) implies 
that v belongs to BOo '.We shall further show the positive result that, given 1 < s _ A, 
there exists a constant C such that, for nk > 0, 

(0.6) IIEkv - E(nk)vI 1. < Ch'(nk)"'21 Iv I1,,g. 

This result is of interest for instance when data have singularities only at a finite 
number of points. Such a function in B,,' may then belong to B,"+1, but not to B,"' + 

for any E > 0 (cf. Example 1.1) so that the estimate (0.6) then shows an additional 
power of h convergence rate in the maximum norm for t bounded away from zero. 
In a special case, a similar result was proved by Juncosa and Young [6]. 

Following some preliminaries in Section 1, these results will be proved by Fourier 
methods in Section 2. In Section 3, the estimate (0.6) is generalized to the more general 
context treated by Widlund in [12] and [13]. The proof depends heavily on these papers. 

In Kreiss, Thomee and Widlund [8], it was noticed that an appropriate smoothing 
of nonsmooth initial data can improve the convergence rate for t bounded away from 
zero. In Section 4, we combine the ideas of that paper with those of Section 3. 

Throughout this paper, C and c denote large and small positive constants, respec- 
tively, not necessarily the same at different occurrences. 

1. Preliminaries. We define the Fourier transform and its inverse on L,(Rd) by 

r ~~~~~~~~~~~~~d 
c'(t) = v~t) = f exp(-i(x, t))v(x) dx, (x, x f Xi (,, 

, =1 

3-1v(x) = v (x) = (2Qryd 
f exp(i(x, t))v(Q) Ad 

This definition extends to tempered distributions, in particular, to L_ 1 < p < Co 

(cf. [4, Chapter 1]). 
We shall define the Besov spaces B,' via a partition of unity on the dual Rd. An 

equivalent definition in terms of moduli of continuity in L, can be found in [9] (where 

B.' is denoted Bps ma) and a proof of the equivalence in [3]. 
Let so be a nonnegative CO function with support in {I; 2< I < 2} such that 

E op i)= 1 for p t 0. 

We set 

) = j(21) i = 1, 2, . .. 

00 

f00 ) = 1- E i Q) 
a =1 

Let 1 ? p ? o and s > 0 be given. The space BP' is the space of functions v in LP 
such that with v, = f7 * v = I '(,V ) (this notation will be used throughout this 
paper) we have 

IvIiP,. = sup 2" lIvi IP < o. 
i>( 
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The parameter s measures the smoothness of the elements in Bp8; the space Bp' 
decreases as s increases and for s integer and any E >0, we have Bp8 D Wp' D BpS4E 

where W2,8 is the Sobolev space of functions with derivatives of orders up to and 
including s in Lp. We notice that by the Sobolev embedding theorem, if v belongs 
to B,8 for some s > d, then v belongs to the set C0 of continuous functions which 
vanish at infinity and there is a constant C such that IlvIK _ CIvIVIi . 

For later reference, we present two one-dimensional examples. 
Example 1.1. Let x C CO' and x(?) # 0, and set, for o- > 0, 

Xa(X) = XX(X), x _ 0, 

=0, x < 0. 

Then x, C Bp8 if and only if s ? a- + p- 1 as is easily seen using the equivalent norm 
in B.' in terms of moduli of continuity. Many functions in applications are linear 
combinations of translates of functions of this type. 

Example 1.2. Let V be such that 1 C CO7(0, 1), and set, for a > 0, 

fa = (I exp(ix2')2 )k(x), 

so that 

Aa) = 2Oi A(t =/, Q) - 2'). 
,=0 

Notice that the supports of the different terms in qa are disjoint. It is easy to see 
that, for any p, f,, C Bp8 if and only if s < a-. This function is not likely to occur in 
applications. For a- a nonzero integer, D'- lq is continuous but DVa is nonexistent 
a.e. (cf. [1, p. 265]). 

We conclude this section with two elementary lemmas. 
LEMMA 1.1. There exists a constant C such that, for any a (E 0,- 

1l-V1(av)lIp < CM(a) livII.p P = 1, O, 

where M(a) = (|ail2 maxl al d I =Daa I2) / a 
Proof. For a (E e0, we have clearly a E L1 and, for p = 1, c, 

lVF'(av)ll I *LH ? ll' llvlla. 

Using Holder's inequality and Parseval's relation, we obtain 

I f kI(x) I dx + f ld(x)l Ix lx d dx 
J~~xi?5 ~~Xl>5 

< C had/2 Halt + a-d/2 max IDaaaII2 
aI al )d 

The lemma now follows by choosing, for a 5z? 0, 

Ild 

1= llal IIdmax llDaall2 
I a I =d 

LEMMA 1.2. For a E CO,, we have 
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I I:-'(aV)IK < (27r)Y' Iall, II/vI,. 

Proof. We have here 

*la *v//c, ? liaIlac ll/v < (27r)-d Hall, IIVIlj. 

2. The One-Dimensional Heat Equation. Consider the initial-value problem 
(0.1), (0.2) with solution 

u(x, t) E(t)v(x) - (41)1/2 f exp (> v .tD(y) dy 

= 1F'(exp(- )v)(x). 

Consider also the consistent finite-difference operator (0.3). Introducing its 
characteristic function, which we assume to be analytic, 

a(co) = E ai exp(ijw), 
jEEZ 

the discrete solution operator at t = nk can be represented as 

EkV = 1:_10(ht)n6). 

We shall assume that Ek is accurate of order ,u so that 

a(co) - exp(- Xc2) = r(c) = O( I1@2+) as co -O 0. 
We shall also assume that Ek is parabolic in the sense of John [5], i.e., that there 
exists a constant c > 0 such that 

ja(w)l < exp(-cCw2) for 1 I < 7r. 

For the sake of completeness, we shall first give a proof of the sharpness of the 
O(hS) error estimate (0.4) for t 5 0 when v is allowed to vary over Bco, (cf. Hedstrom 
[7, Theorem 10.2]). 

THEOREM 2.1. Let 0 < s < ,u, and t > 0. Then there exists a function v ( Bce8 
such that 

lim sup h' lEknv - E(t)vj/cc > 0. 
h-O ; nk = t 

Proof. Without loss of generality, we take t = 1. We choose v to be the function 
A of Example 1.2, and set 

Ep,h = I I(Ek- E(l))t 11I, nk = 1. 

By Holder's inequality and application of (0.4) with p = 1, we obtain 

E2,h < ,h~Ceh < Ch'Eco h- 

The conclusion of the theorem hence follows if we can prove that 

lim sup h 'E,, > 0. 
h-O 

Using Parseval's relation, the definition of 41, and the periodicity of a, we obtain 
for any nonnegative integer m, with I, = (2tn, 2m + 1), 
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E2 h = (2Y) f. la(hi)n - exp(-02)j2 kt8(t)I2 dS 
(2.1) 

0 

? (27r)' ] a(ht - 2r). - exp(_t2)12 22sm 
- t(2 - 2m)12 dS. 

We now choose hm = (Xnm)-112 where nm is the integral part of (2r)-2X`122m so that 
127rh,,-' - 2ml < 27rX112. For t in Im it follows that jhm, - 27rl < (1 +2r X1/2)hm 
and hence for large m, by consistency, 

(2.2) inf la(hmS - 27r)nj ?_ exp(-cnmh 2 
) ? c > 0. 

Im 

Since also limmo sup,. exp(- _2) = 0, we obtain from (2.1), for large m, 

E2 h C2sm 
23 

E2,hm -> c2 > chM 9 

which concludes the proof. 
We shall now show that for an individual v, an O(hS) maximum norm convergence 

rate estimate for a fixed positive t implies that v E Boo`. 
THEOREM 2.2. Let 1 < s < ,, and t > 0. Assume that for afixedfunction v in L0. 

there is a constant C such that, for nk = t, 

IEnv - E(t)v i I _ Ch . 

Then v E Boo`. 
Proof. Without loss of generality, we take t = 1. Let f be a nonnegative C0X 

function with support in (- 1, 1) such that with fm(Q) = f(f - m) for m integer, 
00 

E fm(w) 1 
m =-a) 

For j > 0, we may then write 

(2 .3) ||i||o < 113 ( ifV) x 
2i1< = ml :!<2i + 

For the purpose of estimating the terms in (2.3), consider now j and m satisfying 

(2.4) 2i'1 < m < 2'+' 

(Negative m can be treated in the same way.) Let ji > 1 be such that for j _ jI there 
exists, for any m satisfying (2.4), an integer nm with 

(m- 1)2/(X(2wr)2) < nm < (m + 1)2/(X(2w)2). 

Setting hm = (Xnm)112, we have, for t in supp fm, 

(2.5) -2 < -2wh2 < 2. 

Let em(Q) = an'(h S) -exp(- 2). We shall show that for j large enough em- 1 exists 
on supp fm and that, with the notation of Lemma 1.1, 

(2.6) M(fme- 1) < C. 

By periodicity and (2.5), we have, in supp fm (cf. (2.2)), 

Ian-(hmi)l = lan -(hmS - 27r)l > exp(-cX 1) > 0. 

Since exp (_ 2) is small in supp fm if j is large, we see that there exists 12 > il 

such that for j > j2, em-1 exists on supp fm and 
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(2.7) 1 Ifmem 1 12 _ C. 

Since, by consistency, Ia'(co)I = O(Iwco) as co tends to 0, we obtain, using the period- 
icity and (2.5), 

IDem (Q)I = Inma_ 
m1(hmn)hma'(hmn) 

+ 24 
exp(-_2)1 1 -e21 < C. 

Hence 

(2.8) |ID(fmem1)I12 < C. 

Together, (2.7) and (2.8) prove (2.6). 
We now note that, for j > 2, hm < 2wx(2'1 - 1)1 < 8wx2-, and that by a simple 

application of the definition, for j > 0, M(Spc) = M(sp) = C. Hence, by Lemma 1.1, 
(2.6) and by the hypothesis of the theorem, for j > jo = max(j2, 2) with km = Xhm2 

IViF(SpjfmOIlco < M(epi)M(fmem1)II (Ekm - E(1))vII|, < Ch' < C2'is 

Since the summation in (2.3) involves less than 2.27+1 terms, we obtain 

(2.9) sup 2(S-1) iiv iII < C. 
i->io 

Further we have, since v E Look 

(2.10) max 21(s-1) IIviI < 2(io-1)(s-1) max(M(,op), M((p)) IIvI I < C. 
i<io 

Together, (2.9) and (2.10) prove the theorem. 
We now present the main result of this section which estimates the error in the 

maximum norm in terms of the smoothness of the initial data measured in L1. 
THEOREM 2.3. Let 1 < s < )u. Then there exists a constant C such that, for 

v E B18, 

IIEkv - E(nk)vIll, < Chs(nk)1/2 I vIi9,8, n = 1, 2, 3, 9.. 

Proof. Defining <-1 = 0, we have in supp fp, for j _ 0, 

i+1 

EP 1= 1. 

Hence we may write the error in the form 

Ekv - E(nk)v = f (Z ,sFh(nk) Y(Z E 1)) 

where Fh(nk)(Q) = a(h )n - exp(- nk 2). Using Lemma 1.2, we obtain 
co j+1 

IIEknv- E(nk)vII. < E Z II 1(SoiFh(nk)v&)I I 
i=O 1=i-i 

j+1 

(2.11) ~~~~< (2r) 1 E E IIliF'h(nk)I~j Ilvilll 
j=O 1-i 

< 3 .p 2(2fe)-i tr I E|pi Fth(nk) sum, 2 we lS l pre ths. 

For the purpose of estimating the terms in the latter sum, we shall prove that 
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(2.12) IlpiFcF(nk)jIl < Chs(nk)-(8+l)/2 min(l, [2i(nk)l/213?8), 2'h ? 7r/2, 

? Ch2' (nk)", 2'h > 7r/2. 

Assuming that these estimates have been proved, we obtain, since 1 < s, 
co 

E IklsoFh(nk)1112 ti 
i-o 

< Ch (nk) 1/2 (2'(nk)/2)3 
2i(nk) '1/21 

+ Chs(nk)-(s+l)/2 2 s' + Ch(nk) 1/2 Z 2f(18) 
2i (nk) '/2:1 ;2i=< r/2h 2 i ~ r /2h 

< Ch"(nk) 1/2, 

with a constant depending on s. By (2.11) this proves the theorem. 
It remains to prove the estimates (2.12). Consider first the case h2i < 7r/2. Using 

our accuracy and parabolicity assumptions, we obtain for Ih~I ? 7r, since s < 

I F h(nk)()j = i a(ht)n-m-lr(hO) exp(- mX(ht)2) 
m=O 

n-1 

< E exp(-c(n - m - 1)(h)2)C IhtI2 + exp(- mX(ht)2) 
m=O 

< Cn I ht2+ exp(-cn(h0)2) = Ch8nk I12+?8 exp(-cnkt2). 

Hence 

11ojiFh(nk)Ijl < Chtnk 2+s exp(-cnkt2) dt 

Chs(nk)(8+ )/2 / 2 8 exp(-cz ) dz 
12 I 5(nk) /2i+I 

<Ch 8(nk)- t 2min(l, (2 i(nk) /)+ 

This proves (2.12) in the case 2'h < 7r/2. 
Consider now the case h2' _ 7r/2. Obviously, we have 

(2.13) Isoi exp(-nkt2)II1 -? C(nk)-1/2 ? C(nk)-1/2h2'. 

In order to estimate soja(ht)', let 

Si = {m G Z; h2'-1 < 27rm < h2'+1}. 

We then have, using periodicity and parabolicity, 

11e'ia(h^)nlII < E J ko,(p)a(ht - 27rm) I dE 
mE Si Ih t-2 r.mj; 5 

(2.14) < E f exp(-cnkt2) dt 
mESi lt I=i r/h 

< C(nk) 1/2 E 1 ? C(nk)-1'2h2'. 
mESi 
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Together, (2.13) and (2.14) prove the desired inequality by use of the triangle in- 
equality. 

3. The General Parabolic Case. In this section, the object is to generalize the 
main result of Section 2, Theorem 2.3, to the case of general parabolic systems and 
difference operators. For simplicity, we consider only systems with time independent 
coefficients. 

Consider thus the initial-value problem 

(3.1) = P(x, D)u = P, Pa(x)Dau, x E Rd, t > 0, at laJs2M 

(3.2) u(x, 0) = v(x), 

where u, v are N-vectors and Pa are N X N matrices which have bounded derivatives 
of all orders. We assume that (3.1) is parabolic in Petrovskil's sense so that the 
eigenvalues X,(x, t) of (- 1)M al =2M Pa(x) a satisfy, with c > 0, 

Re X1(x, t) ? -c ItI2M for x, t E R d. 

Consider also a difference operator Ek approximating the solution operator E(k) 
of (3.1), (3.2), defined by a difference equation of the form 

A ap(x, h)(Ekv)(x + alh) = A a(x, h)v(x + f#h), 
OEZd #Ezd 

where kh2M = X = constant and a#, a#' are N X N matrices which have bounded 
derivatives of all orders in Rd X [0, ho] for some ho > 0, and of which only finitely 
many are nonzero. The operator Ek will be assumed to be accurate of order ;z so that, 
for smooth solutions u of (3.1), 

u(x, t + k) = Eku(x, t) + kO(h') as h tends to 0. 

We also assume that Ek is parabolic in the sense of John so that the eigenvalues 
yi(x, c) of the matrix 

satisfy, with c > 0, 

glu(x, )I < exp(-c wO12M) for max IwjI < r. 

In the technical work, we shall need the following norm: 

iiVII(h) = SUp hd E Iv(x + jh)I . 
xzRd jEZd 

For the transition between this norm based on Al mesh norms over translated meshes, 
and L,-norms, we have the following estimate. 

LEMMA 3.1. There exists a constant C independent of h such that, for all 
v E W d(Rd), 

IIVII(h) ?< C E al Ih Dv Ivi. 
I a I sd 
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Proof. We may assume that v is smooth. By homogeneity, it suffices to consider 
h = 1. Let Q denote a cube of side 1, centered at the origin. We then have 

Iv(O)/ < C E ID I|Dav(y)I dy. 
a a I 5d 

Hence, for any x E Rd. j E Z. 

Iv(x+i)oI?< C f i IDav(y)I dy I aY I sd w+i+Q 

and the result follows by summation over j and taking supremum in x. 
The next two lemmas contain estimates for the continuous and discrete solution 

operators which are simple consequences of known estimates for the fundamental 
solutions in the two cases. 

LEMMA 3.2. Let 0 < To < T1. Then for any a there exists a constant C such that, 
for v E CO, 

IIE(t)DaVIi| < C IlviJl, To < t < T1. 

Proof Under our assumptions the initial-value problem (3.1), (3.2) has a funda- 
mental solution r(x, t, y) such that (cf. [2, pp. 260-261]), 

D?P(x, t, y)/ < Ct c)/(2M) ( 

Now 

E(t)Dav(x) = / r(x, t, y)DaV(y) dy = (-1)aI f DIr(x, t, y)v(y) dy, 

and the result follows immediately. 
In the following discrete analogue of Lemma 3.2, we use the notation 

a= 0h ... * h with ah, ,v(X) = (v(x + he,) - v(x))/h. 

LEMMA 3.3. Let 0 < To < T1. Then, for any a, there exists a constant C such that, 
for v ? e0o, 

jjEkOh|'Vf I I C I IVI I(h), To < nk < T1. 

Proof. Here, there exists a discrete fundamental solution rh(x, nk, y) such that 
(cf. [12]) 

fOZa, rh(x, nk, y)I < C((n + l)k)(d+ aI)/(2M)I 

so that, by summation by parts, 

EkO, V(X) = hd rh(x, nk, y)O,'v(y) 
UEz+hZd 

( 1) h Eh aah,1rh(X, nk, y)v(y), 
yEx+hZd 

and again the result follows immediately. 
As a final preparation for the main result, we quote the following crucial estimate 

[13, Theorem 3]. 
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LEMMA 3.4. Let 0 < To < T1. Then, there exists a constant C such that if v ? C0o 
and v'Q) = O for max, Ih~iI > _7r, then 

IIEkv - E(nk)v II1 < Chm IvII0, To < nk < T1. 

We now state and prove the generalization of Theorem 2.3. 
THEOREM 3.1. Let d < s < ,u, and 0 < To < T1. Then, there exists a constant C 

such that, for v C B18, 

IIEkv - E(nk)vIIO. < Ch' I|vIi,8, To < nk < T1. 

Proof. We find easily, for a I< d, 
j+1 j+1 

(3) IIDvil = | 1(a p ? C E M(Qa(Pl) II VIIl 
(3.3) I~~~~~~~~~~~~i-11~- 

< C2"a |IviI| l1 

Put Fh(nk)v = Ek'v - E(nk)v. 
For j with h2' < 7r/2, we have v'i = 0 when max, Ihi, > 7r, so that for such j 

we have, by Lemma 3.4 and (3.3), 

Fh (nk)vI i I , < Ch' IIvj iI 1 < ChI IIVjIIWd < Ch"2id Ivni I 1 

< Ch82- ils-d lvll. 

On the other hand, when h2' > 7r/2, we have, by Lemma 3.3 (with a = 0), Lemma 
3.1 and (3.3), 

IIEvkilII. < C IIViII(h) < C E h'ac IIDaV|IIl 
I a j<d 

(3.5) < C E (h2')'' I1vill, ? C(h2i)d I vwll 
I a I d 

< Chd 2-i(s,-d) IIV l '. 
g 

Also, for these j, we have, by Lemma 3.2, 

(3.6) IE(nk)viII. < C I|vill, < C28 IIvIIls. 

Altogether, we obtain, by (3.4), (3.5) and (3.6), 

IIFh(nk)vl1I. < E IIFh(nk)viII,,o 
i =o 

_ C'hs 2- (s-d) + hd f2 2-i(s-d) + 2-i} 
h2l -< r/2 h2i > 7r/2 h2i > 7r/2 

< Ch8 11vI1j,., 

which proves the theorem. 

4. Smoothing of Initial Data. In this section, we adapt to the present context 

the analysis in [8]. We begin by introducing a modification of the definition of a 

smoothing operator in that paper: A family of linear translation invariant operators 

Mh, 0 < h < ho, which is uniformly bounded in L.,, is called a family of smoothing 
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operators of orders (A, v) if, for some number a with 0 < a _ 7r/2, there are linear 
translation invariant operators Bh, o(O) (IOal = A) and Bh, '1) (j ai = v) which are uni- 
formly bounded in L1 for h < ho and such that 

(i) Mhv = v + h' E DaBh?) v if v(t) = 0 forh hI > 25, 
I a I -i 

(ii) Mhv = hp ? aBh")v if (6) = 0 for h 1 < 'S. 
I am 

2 
1alI-v 

(Recall that a,, denotes divided forward differences.) 
The difference compared to the definition in [8] consists in the fact that here we 

allow two parameters A and v, whereas in [8] it was assumed that ;z = v. It is easy 
to show, for instance, that in one dimension the averaging operator 

h/2 

Mhv(x) = V1 j v(x - y) dy 
(4.1) -h/2 

= il(2 sin 

is of orders (2, 1), and the weighted averaging operator 

(4.2) Mhv(x) = h' f (I - [h 1y1)v(x - y) dy = iF(2 sin f 

has orders (2, 2). 
The main result in [8] is then that under the general assumptions of Section 3, 

if T is positive and if Mh has orders (;i, ;i) where ;i is the order of accuracy of the 
difference operator, then there exists a constant C such that, for v c CO, 

(4.3) IIEMhv - E(nk)vI|a, < Ch(nk)& /(2M) IIV||I., 0 < nk < T. 

We shall now prove a result which shows that in certain cases the second smoothing 
parameter v may be reduced without loss of convergence rates. In particular, if we 
consider the function x, of Example 1.1 with 0 < a < 1 and a difference operator of 
accuracy ;i = 2, then (4.3) shows that we get second-order convergence for times 
bounded away from zero by applying first the smoothing operator (4.2) of orders 
(2, 2), whereas the following theorem shows that second-order convergence is attained 
already by the operator (4.1) of orders (2, 1). 

THEOREM 4.1. Let the general asswnptions of Section 3 hold. Let d < s < 
0 < To < T1, and asswne that Mh has orders (A, v), where A is the order of accuracy of 
the difference operator and v _ A - s. Then there exists a constant C such that, for 
v C , 

jEkMhv - E(nk)v I I < Chg I|vI I,8, To < nk < T,. 

Proof. Consider first j such that h2' < &. Using Lemma 3.4 and the fact that 
Mh is bounded and translation invariant, and the same argument as in (3.4), we get 

I I(E - E(nk))Mhvj I Ic < Ch" I I Mhvi I 1 < Ch" I IvII. 

=< Ch'A2- j'-d) 1 lVl11'.. 

For these j, using (i) and Lemma 3.2 we further have (note that since supp(Bh,a ()Vji) 

is compact, DaBh x(?0vj exists) 
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iiE(nk)(Mh - I)vjiI. < ChA I IiE(nk)DaB'O'vjiI. 
I CY I = 

< ChI I iiBh? vill < Chu Ilvill, < ChA2 tV lviii,. 
I a I =j 

Together, these estimates imply that, for h2' < 6, 

(4.4) ii(EL.Mh - E(nk))vjiI _,, < Chu2 i(8 d) IlIVI ,8. 

To estimate the same quantity for h2' > 3, we first use (ii) and Lemmas 3.3 and 
3.1, and get 

i|EkMhvijI|| < Ch 2 iiEahBh1 v i I < Ch E iiBh Vjii(h 
I a j =; j Id I I 

(4.5) <- Chv 
P h1#1 IID#Bh(,')vjIlj <- Ch (h2 )d 

IIVilIl 

< Ch- +d2-i(s-d) lv II ,. 

Let A denote the Laplacian, and let m be a nonnegative integer with 2m + s >- ,. 
By Lemmas 3.2 and 1.1 we then also obtain, for h2' > 5, 

| gE(nk)vjII < le -|E(nk)/\7m5:-'(lt-m )1 

i+1 

(4.6) < C II| 1 (II-2mVi)II| < C E M(p1 ItK2m) IIviIj| 
I-i- 

< C2- '2~~ ||V||l' S< C2-" ||v|| s. 

Altogether, we obtain, by (4.4), (4.5) and (4.6), 

El Mhv - E(nk)vI||. 

< C hfA E 
2-j(s-d) + hA-s+d E 2- i(s-d) + Z 2 11v Iv1 ,s 

h2l s3 h2l >5 h2i> ) 

< Ch|I 1v1,,s, 

which concludes the proof of the theorem. 
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