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Fourth Order Difference Methods for the Initial 
Boundary-Value Problem for Hyperbolic Equations 

By Joseph Oliger 

Abstract. Centered difference approximations of fourth order in space and second order 
in time are applied to the mixed initial boundary-value problem for the hyperbolic equation 
u t =-cu.. A method utilizing third order uncentered differences at the boundaries is shown 
to be stable and to retain an overall fourth order convergence estimate. Several compu- 
tational examples illustrate the success of these methods for problems with one and two 
spacial dimensions. Further examples illustrate the effects of approximations of various 
orders of accuracy used at the boundaries. 

1. Introduction. We investigate the problem of obtaining approximate solutions 
to the initial boundary-value problem for first order hyperbolic equations, e.g., 

(1.1) Ut = -cuX, c > 0, a < x < b, t > 0, 

(1.2) u(x, 0) = f W, a _ x < b, 

(1.3) u(0, t) = g(t), t > 0, 

with the compatibility condition f(O) = g(O). 
We restrict our attention to finite-difference methods and, further, to those methods 

which can easily be extended for application to large nonlinear problems in several 
space dimensions. For this reason, we use second order leap-frog differencing in time t 
since it is explicit and only requires the storage of two "levels" of the solution. We 
use the fourth order centered approximation of the first derivative in the spacial 
coordinate x. The mesh ratio should be taken small enough that the O(At2) and 
O(Ax4) error terms are of the same size. The nearly optimal properties of fourth order 
approximations have been demonstrated in [4] and [9] for the Cauchy problem 
associated with (1.1). They have been shown to be far superior to lower order approx- 
imations and only slightly inferior to sixth order approximations from the standpoint 
of computational efficiency. Furthermore, little or nothing is gained using even higher 
order approximations. So long as c - 1 = b - a, and certainly for c < I, these same 
conclusions hold for the present problem. The additional complications which arise 
in the neighborhoods of the boundaries for the problem (1.1)-(1.3) when sixth order 
methods are used seem to cancel the small advantage in computational efficiency 
that they have over fourth order methods for the Cauchy problem. 

In Section 2, we consider an extrapolation method for handling the closure problem 
at the boundaries and examine the stability of this technique. 

In Section 3, we give several computational results using the extrapolation tech- 
nique of Section 2 for scalar and vector equations in both one and two space dimen- 
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sions. We also compare several other extrapolation procedures with that discussed 
in Section 2. 

We use the theory of Gustafsson, Kreiss, and Sundstr6m [6] and assume that the 
reader is familiar with that paper. 

2. An 0(h4) Approximation with 0(h3) Extrapolation at the Boundaries. 
We want to compute an approximate solution to the problem (1.1), (1.2), (1.3) using 
difference methods. For convenience, we take a = 0 and b = 1. Let k > 0 and 
h = 1/N, N a natural number, and define a grid function v,(t) = v(vh, t) for v = 
0, 1, ... , N and t = 0, k, 2k, * v v . For 2 ? v ? N - 2, we approximate (1.1) by 
the 0(h4 + k2) difference approximation 

(2.1) v,(t + k) = v,(t - k) - c2k[4DO(h)- 3Do(2h)]v,(t) 

where DO(nh)v,(t) = (2nh)-1[v,?(t) - v,(t)]. Let X = k/h. For v = 1, N - 1, N, 
we use the following 0(h3 + k2) approximations: 

v (t + k) = v,(t - k) - cX/3 

(2.2) * {-2v^_ l(t) - 34[v^(t + k) + v,(t -k)] + 6v,+l(t) - 4 2(t)} 

for v = 1, 

v (t + k) = v,(t - k) - cX/3 

(2.3) *{Vv2(t) - 6v10(t) + 3[vv(t + k) + vv(t - k)] + 2vv+?(t)} 

for v = N- , 

vV(t + k) = vv(t - k) - cX/3 

(2.4) * {-2vv-3(t) + 9Vv-2(t) - 18vv-1(t) + -L+[vv(t + k) + vv(t -k)]} 

for v = N. 

Corresponding to (1.2), we use 

(2.5) vV(O) = f(vh), v = 0, 1, * , N, 

and, corresponding to (1.3), we use 

(2.6) vo(t) = g(t), t = 0, k, 2k, 

In order to uniquely determine the solution to our difference equations, we assume 
that we have a sufficiently accurate approximation to the solution u(x, t) at t = k, 
say w(x), and set 

(2.7) vV(k) = w(vh), v = 0, 1, *., N, 

assuming the compatibility relation w(O) = g(k). 
We now investigate the stability of the method defined by (2.1)-(2.7). We use the 

stability Definition 3.3 of Gustafsson et al. [6]. In [6], it is established (Theorem 5.4) 
that the stability of two related quarter-plane problems is equivalent to stability for 
the two-boundary problem for the Definition 3.3. These two problems are simply 
obtained by removing one or the other of the boundaries and extending the domain 
to i c, as is appropriate. 
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The related right quarter-plane problem consists of Eqs. (2.2), (2.6) and (2.1) for 
v= 2, 3, * . . and (2.5), (2.7) for v = 0, 1, 2, * . . . For convenience, we replace the related 
left quarter-plane problem by an equivalent right quarter-plane problem. We consider 
c < Oand use(2.1)for v = 2, 3, * * *, (2.7)for v- 0,1, 2, ,(2.5), 

vy(t + k)= v(t - k) - cX/3 

(2.8) * -- s[v,(t + k) + v,(t - k)J + 18v,+1(t)- 9v,+2(t) + 2v,+3(t)l 

for V = 0, 

and (2.2) for v 1. This completes the definition of the two related problems. We 
will refer to the first of these as the inflow problem and to the second as the outflow 
problem. 

Hereafter, we always make the 
Assumption 2.1. The mesh ratio X is taken to be positive and such that (2.1) 

is stable for the Cauchy problem, i.e., 0 < Icl X < {cl Xma . 0.7287. 
In [6], it is shown that stability for the quarter-plane problem is equivalent to 

certain properties of a determinental equation. We now derive these determinantal 
equations for our two quarter-plane problems. 

Corresponding to Eq. (2.1), there is the resolvent equation 

(2.1r) Z6,-2- 8zV,1 + 6/cX (Z2 _ 1)V, + 8ZA+1 -zt3+2 = 0 

with characteristic equation 

(2.1 c) P(K) = z - 8ZK + 6/cX.(Z - 1)K2 + 8ZK3 - ZK4 

Equation (2.8) has resolvent and characteristic equations 

(2.8r) 3/cX -[(1 + 1 cX/6) - (1 - lcX/6)21V, 
18zu v + 1 + 9zzv + 2 -2ZV&+3 = 0, 

(2.8C) Q1(K) = 3/cX [(1 + I lcX/6) - (1 - IlcX/6)Z2] - 18ZK + 9ZK2 - 2ZK3, 

and for Eq. (2.2) we have the resolvent and characteristic equations 

(2.2r) 2zVb1 + 3/cX * [(1 + cX/2) - (1- cX/2z23 V-6zO,~1 + ZtX+2 0, 

(2.2C) Q2(K) = 2z + 3/cX. [(1 + cX/2) - (1 - cX/2)Z2 ]K - 6zK2 + ZK. 

To continue, we need 
LEMMA 2.1. Let z be a complex number. For jzj > 1, the roots of Eq. (2.1c) 

split into two groups M1 = [Kl(Z), K2(Z)] and M2 = [K3(Z), K4(Z)] such that 
(a) I Kj(Z)| <5 1, I K2(Z)| _ I1, 
(b) | K3(Z)| >_ 1, | K4(Z)| >_ 11 

where the Ki, i = 1, * , 4, are continuousfunctions of z. Both the inequalities of (a) and 
of (b) can be taken strictly if Izj > 1 or, for z = e and a = [6 sin(O)/c X], the in- 
equality a2 > 9 + 24 \/6 holds. Furthermore, at least one of the inequalities in (a) 
and in (b) can always be taken strictly. 

Proof. This lemma has been proven for izi > 1 in [6]. Let z = etG. We can then 
equivalently write P(K) = 0 as 

P1()= 1 - 8K + i(l 2/cX) sin OK + 8K3 - K = 0. 
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It then is easily verified that P,(K) = 0 =X P1(i-') = 0, i.e., the roots of P,(K) are 
symmetric in the unit circle. The lemma then follows from a lengthy but straight- 
forward computation based on a theorem of Cohn (see Marden [10, Theorem 45.2]) 
and Theorem 5.1 of Miller [11]. 

LEMMA 2.2. The elements of M1 are distinct for Izi _ 1, except for the single 
value z0 which is the root of Z2 _ cX 6(-36 + 96 V6)1/2 Z - 1 = 0, such that IZol > 1. 

Proof. We can equivalently examine the roots of 

P2(K) = 1- 8K + OK2 + 8K3 - K 

where j3 = (Z2 _ 1) (6cXz)-'. Let R[P2(K), P2A(K)] be the Bezout resultant of P2(K) 
and P2'(K). It is then necessary that R vanish at multiple roots of P2(K) (Theorem 5 of 
Collins [1]). We have computed R utilizing the algorithm of Collins ([1], [2]): 

R = -4 - 7212 + 54000 
which has roots 

(1 = (-36 + 96 V/6)1/2, /3 = i(36 + 96 V/6)112, 

(2 = -(-36 + 96 V6)112, (4 = -i(36 + 96 V6)112. 

If we then examine the associated roots Ki of the quartic P2 and the associated roots z 
of the quadratic defining j3, we find that (31 yields K1 = K2, K1 1 < 1; (2 yields K3 = K4, 

IK31 >1, K1 9 K2; 3 yields jKuj < 1, K2 = K3, 1K21 = 1, IK41 > land 34 yields jKuj < 1, 
K2 = 3 IK21 = 1, I K41 > 1. (Liberty has been taken to number these roots somewhat 
arbitrarily.) It therefore follows that it is only (31 which leads to K1 = K2. The quadratic 
for z has one root inside and one root outside the unit circle. The lemma follows. 

Let z be a fixed complex number, jzi > 1, and K1 and K2 the two roots of (2.lc) 
belonging to M1, on the unit disk. We first consider the case z $ z0 and hence K1 $ K2. 

The general solution for either the inflow or outflow problem is then of the form 
VI = plK1l + P2K2'. Then the determinantal equation (see Eq. (10.3) of [6]) associated 
with our inflow problem is 

(2.9a) D1(z) det [ =Q2(K2) - Q2(K1) = O 

,Q2(Kl) Q2(K2)J 

and that associated with our outflow problem is 

(2.1Oa) D2(z) -dt {=1(K1) Qi(Ic)] - Ql(Kl)Q2(K2) - Q1(K2)Q2(K1) = 0 

Q2(K1) Q2(K2), 

For z = zo, we have K1 = K2 and thus the general form of the solutions is 
VP-= (P1 + Vp2)K1. Let 

+ 2 3 
Q3(K) = -18ZK + 18ZK - 6ZK and 

Q4(K) = (3/cX)[(1 + cX/2) - (1 - cX/2)z2]K- 12ZK + 3ZK3. 

The determinantal equation associated with the inflow problem is then, at z = z", 

(2.9b) D1(zo) 8 det { 1 i Q4(Kl) = 0 
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and that associated with the outflow problem is 

(2.1Ob) D2(zo) - det {l(Kl) :(:2 - Ql(KI)Q4(Kl) - Q2(KI)Q3(KI) = 0. 
Q2(Kl) Q4(K1) 

D1 and D2 are now defined for all z such that Izi > 1. 
It is shown in [6] that a necessary and sufficient condition for stability is that the 

associated determinantal equation has no roots z with Izi > 1. 
Let R[Bl(xl, * * *, xj), B2(xl, * * *, xj)] be the Bezout resultant of the polynomials 

B1 and B2 in the n complex variables xl, * , xn, with respect to the variable x,. 
Since KI1(z) and K2(Z) are roots of P[K(z)], we form resultant systems with P. D1 

and D2. P. D1 and D2 are polynomials in the variables X, z, Ki and K2. The resultant 
system for the inflow problem is 

(2.11) R1(X, z) = R{P(X, z, K1), R[P(X, z, K2), D1(X, z, Ki,2) 

and that for the outflow problem is 

(2.12) R2(X, z) = R{P(X, z, K1), R[P(X, z, K2), D2(X, Z, K,2)]}. 

We can now state 
THEOREM (2.1). Let X be fixed. Then, for this X, the inflow or outflow problem is 

stable by Definition 3.3 of [6] iffor the associated Ri given by (2.11) or (2.12) we have 
Ri(X, z) = 0 

(a) Izi < 1, or 
(b) IzI > 1 and not both Ki*, i- 1, 2, belong to M1 where the Ki* are the two roots 

common to P(z) and D1(z). 
Proof. Theorem 5 of Collins [1] implies that conditions (a) and (b) imply Di(z) F 0 

for IzI > 1. The theorem then follows from Chapter 13 of [6]. 
The equations P, D1 and D2 can be written as polynomials with integer coefficients 

and, consequently, the Ri can be computed exactly on a digital computer using, e.g., 
the algorithm of Collins ([1], [2]). This is quite important since these polynomials are 
of quite high order and hand computation is out of the question. 

We were unable to .verify the conditions (a) and (b) of Theorem 2.1 directly and 
were forced to verify them computationally. We proceeded in the following manner. 
First, we computed the roots of the Ri(X) obtained using the Di defined by (2.9a) and 
(2.10a), zii(X), for fixed X. Then, for each root jzi1(X)j ! 1, we computed the 
KZi[zi (X)], i = 1, 2, and then verified the fact that they did not satisfy Di by substitution. 
For the case z = zo, we solved for Ki = K2 and verified that Ri $ 0 by substitution. This 
process was carried out for a distribution of X values for 0 < I clX < Icl Xmax. The 
algorithm of Jenkins and Traub [7] was used for all of the root-finding problems. 

Within the underlying computational uncertainties of the computational verifica- 
tion of (a) and (b) of Theorem 2.1, we can state 

Result 2.1. The difference approximation given by Eqs. (2.1)-(2.7) is stable. 
Kreiss [8] has shown that consistent extrapolation techniques at the time level t 

at the outflow boundary (x = b in our example) are unstable when used with leap-frog 
time differencing and the usual O(h2 + k2) leap-frog scheme in the interior. It is 
easily seen that the same result is also true here. If uncentered, second, third, or 
fourth order approximations are used instead of (2.3) and (2.4) without the time 
average at the point vQ(t) the necessary condition for stability given in Lemma 10.3 
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of [6] is violated at the point z = 1. This is easily seen since the characteristic equation 
(2.1c) of (2.1) has the root K = 1 at z = 1 and the coefficients of the consistent un- 
centered operators sum to 0. Therefore, the time averages in (2.3) and (2.4) are essen- 
tial. We have done test calculations which indicate that the time average in the right- 
hand side of (2.2) used on the inflow boundary is not necessary. However, it is con- 
venient to be able to use the same formula at the point next to the boundary for 
both inflow and outflow. This is particularly true for certain vector equations when 
it can reduce the number of operators that need to be coded. For this reason we have 
not made an extensive study of the use of the formula obtained by eliminating the 
time average in (2.2). 

It should also be noted that we are sacrificing one order of accuracy at the bound- 
aries. Recent convergence results of Gustafsson [5] establish that it is often possible 
to use approximations of one order lower accuracy on the boundary and still retain 
the convergence rate of the more accurate interior approximation. The fact that 
Dj(z) 5 0 for jzj ? 1 fulfills the hypotheses of Gustafsson's Theorem 2.1 [5] and 
hence establishes that the two quarter-plane problems associated with this method 
have 0(h4) convergence rates. Our experiments in Section 3 agree with this convergence 
result. These experiments also show that the use of 0(h2) approximations at the 
boundary yields significantly larger errors and indicates loss of the 0(h4) convergence 
rate. 

3. Computational Results. In our first set of computations, we compute 
approximate solutions to the problem (l.l)-(l.3) with a = 0, b = 1, c = 1, f(x), the 
initial data, defined by 

f(x) = sin(47rx) 

and the boundary data 

g(t)= f(-t). 

This problem has the solution 

u(x, t) = f(x - t) 

which is 1-periodic in both x and t. Thus, we can equivalently solve (1.1) with initial 
data (1.2) and replace the boundary condition (1.3) by the periodicity condition 

u(0, t) = u(1, t). 

We can compute a solution to this periodic boundary problem by approximating 
(1.1) by (2.1) in the net points v = 0, 1, - * , N - 1, using vN(t) = v0(t), Eq. (2.7), and 
extrapolating outside the interval [0, 1] by the periodicity relation v,(t) = V +N(t)- 

We should hope that the extrapolation method given by (2.1)-(2.7) would, for small t, 
yield as accurate results as we obtain from the calculation of the equivalent periodic 
boundary problem. For large t, we should expect our extrapolation procedure to 
yield more accurate results since there should be less accumulated error. We have 
performed these computations with N = 20, X = 4, and using the solution u(x, k) = 

f(xp - k) = v,(k) for (2.7). We have chosen X = 4 so that the 0(h4) and 0(k2) error 
terms are approximately of the same magnitude. The errors in these and subsequent 
computations of this same problem are given in Table 3.1. This periodic boundary 
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TABLE 3.1 

M ethod livVH12 le, 12 1le,11. liv,112 !le,12 IleJ10. 

t=0.5 t= 1.0 
Cl 7.07-1 4.00-3 5.40-3 7.07-1 8.01-3 1.08-2 
C2 7.12-1 9.69-3 2.34-2 7.08-1 1.34-2 2.51-2 
C3 7.12-1 1.01-2 2.24-2 7.16-1 1.94-2 4.37-2 
C4 6.98-1 8.35-2 1.49-1 6.76-1 1.28-1 2.24-1 
C5 6.98-1 2.42-1 4.25-1 6.94-1 3.87-1 8.28-1 

t= 2.0 t= 4.0 
Cl 7.07-1 1.60-2 2.16-2 7.07-1 3.20-2 4.32-2 
C2 6.96-1 1.30-2 2.04-2 6.96-1 1.25-2 2.28-2 
C3 7.14-1 2.73-2 4.18-2 7.13-1 2.72-2 4.33-2 
C4 6.25-1 1.88-1 3.31-1 6.16-1 1.75-1 3.02-1 
C5 7.33-1 4.44-1 9.68-1 6.90-1 4.80-1 1.05 

computation is called Cl and the computation using the uncentered difference equa- 
tions (2.2)-(2.4) is called C2. These results confirm our expectations. 

We next compare our 0(h3 + k2) equations at the boundary with an O(h4 + k2) 
method. We replace Eqs. (2.2)(2.4) by 

v (t + k) v,(t - k) 

(3.1) - (X/12)[-6v,,1(t) - 20v,(t) + 36v,+1(t) - 12v,+2(t) + 2v,+3(t)] 

at v 1, 

v (t + k) = v(t - k) 

(3.2) - (X/ 12){ -2vv-3(t) + 12v,, 2(t) 

- 36v,-,(t) + 1O[v,(t + k) + v,(t - k)] + 6v,+i(t)} 

at v = N - 1, 

v,,(t + k) v,(t - k) 

(3.3)- (X/12){6vv 4(t) - 32vv-3(t) 

+ 72v,,2(t) - 96v,,l(t) + 25[v>(t + k) + v>(t - k)]} 

at v = N. 

We call this computation C3. We only have experimental evidence for the stability 
of this method. Because of obvious drawbacks, further investigation did not seem 
worthwhile. We see that there is no loss in accuracy resulting from the use of the 0(h3) 
equations at the boundaries. It should be noted that Eq. (3.1) does not have v,(t) 
replaced by a time average as in (2.2) but that (3.2) and (3.3) do have v,(t) replaced by 
a time average. This is essential. If v,(t) is replaced by [v,(t + k) + v,(t- k)]/2 
in (3.1), the resulting method is unstable. This has been found to be true by means 
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of test computations of the problem now being discussed. We commented earlier 
on (3.2) and (3.3). Thus, using 0(h4) approximations at the boundary, we must use 
different operators at the first point inside the boundary for inflow and outflow 
boundaries. This is contrary to the case where we use 0(h3) approximations and is a 
definite disadvantage. 

We next examine the effect of replacing (2.2)-(2.5) by lower order approximations. 
We use the 0(h' + k2) approximation 

(3.4) vy(t + k) = v,(t - k) - [v,+1(t) -v,-(t)] 

for v = 1, N - 1 and the 0(h + k2) approximation 

(3.5) vy(t + k) = t- k) - 2X{[v,(t + k) + v,(t - k)]/2 -v,_(t)) 

for v = N. We call this computation C4. The fact that (3.5) is only first order in h 
instead of second order seems to have no effect, as we have verified by other experi- 
ments using 0(h2) extrapolations at the boundary point. We choose to use (3.5), 
which is due to Arne Sundstr6m, since it seems to be the best extrapolation to use 
with (3.4). 

For comparison purposes, we also include an 0(h2 + k2) computation. We use 
the method due to Sundstrom and shown to be stable in Elvius and Sundstrom [3]. 
This method uses (3.4) for v = 1, 2, * *, N - 1 and (3.5) for v = N. We call this 
computation C5. 

Let e,(t) = u(x,, t) - v(t), v = 0, 1, * * *, N, be the error at the Ath grid point. 
Define norms by 

N 

I1v (t)I2 = h E Iv,(t)12 and IIv,(t)II, = max Iv,(t)I 
v-O 

In our tables we notate x. lO by x + n. For the initial function we have 

I v,(0)112 = 0.707. 

We next test the 0(h3) boundary approximations for a problem with reflective 
boundary conditions. We use two scalar equations coupled at the boundaries. Let 
w(x, t) = [u(x, t), v(x, t)]'. This problem is given by 

(3.6) Wt = [ ?Iw 0<x < 1, t_ 0, 
0 1, 

with initial data w(x, 0) = U(x), 0]' where 

f(x) = 1 - (20/3)d, if d < 0.15, 

= 0, if d _ 0.15, 

for d = Ix- and boundary conditions 

(3.7) u(0, t) = v(0, t), v(1, t) = u(1, t). 

We approximate (3.6) by (2.1) for 2 ? _ ? N - 2. We approximate ut -ux at 
V = 1, N - 1, N by (2.2), (2.3) and (2.4), respectively. We approximate vt = v x at 
v = 1, 2, N - 1 by (2.8), (2.2) and (2.3), respectively. If we denote the solutions of our 
difference approximation by W,(t) = [UQ(t), V,(t)]', the boundary conditions (3.7) 
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become 

UO(t) = VO(t), VN(t) = UN(t). 

We complete the approximating equations by setting 

W (k) = [I(x.-k)] 

The results of this computation are given in Table 3.2. We used N = 50 and X = 1. 
We define 

I W"(t)l 
2 

I= IU.(t)1 2 + I V"(t)l 2 

and 

le,(t)12 = Iu(x", t)- U(t)12 + Iv(x,, t) - V,(t)I2. 
We conclude with two computations in two space dimensions. We have no proof 

of stability for these methods but stability is indicated. There is evidence that some 
two-dimensional computations are unstable when methods analogous to those used 
here are used. In these cases, the algorithms can often be stabilized by adding one- 
dimensional dissipative operators acting on the coordinate tangential to the boundary. 

We first consider 

(3.8) we= [-1 0jWv+ fI 0]l t 

where w(x, y, t) = [u(x, y, t), v(x, y, t)]'. The initial data 

W(X, y, 0) = Anx, Y)} 

where 

(3.9) f(x, y) = 1 - (20/3)d, if d < .15, 
= 0, if d _ .15, 

and d [(x - 1)2 + (y _ 1)2]1/2. The boundary conditions are 

(3.10) u(x, 0, t) = v(x, 0, ), 0 < x < 1, u(l, y,t) = u(0 y, t), 0 < y < 1, 

v(x, I, t) = v(x, 0, t), 0 < x ? 1, v(1, y, t)= v(0, y, t), 0 : Y y 1. 

TABLE 3.2 

t I I IW ,(01 12 111e,()1 112 111e,(01 I I. 

0.0 3.18-1 0.0 0.0 
1.0 3.18-1 3.40-2 1.04-1 
2.0 3.18-1 3.31-2 6.81-2 
3.0 3.19-1 3.61-2 8.48-2 
4.0 3.20-1 4.93-2 1.24-1 
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TABLE 3.3 

t I IIW Y, .A()1 112 Hie,, . 0 1 1||2 Hie,, .(0 II)|| 

0.0 1.09-1 0.0 0.0 
1.0 1.09-1 1.12-2 1.43-1 
2.0 1.09-1 1.47-2 1.35-1 
3.0 1.09-1 1.88-2 1.29-1 
4.0 1.10-1 2.40-2 1.64-1 

TABLE 3.4 

t IIIW Y,,,Agg2 

0.0 1.09-1 
1.0 1.11-1 
2.0 1.12-1 
3.0 1.12-1 
4.0 1.13-1 

Thus, we have reflective boundary conditions in the y-direction and periodic boundary 
conditions in the x-direction. We use equal grid intervals in the x- and y-coordinates, 
h = 1/N, N = 50 and take X = -. We again use an O(h4 + k2) approximation in the 
interior and 0(h3 + k2) approximations near the boundaries y = 0 and y = 1. We 
approximate the a, operator here exactly as we approximated the a- operator in 
our last example and the a. operator here is approximated with our usual centered 
0(h4) approximation and the periodicity condition in the x-coordinate in the neigh- 
borhoods of the boundaries x = 0 and x = 1. We use the solution w(x, y, k) = 
U(x - k, y - k), 0]' as our approximation at time t = k. Results of this computation 
are given in Table 3.3. 

Let WY, 4(t) = [U,, (t), V, ,(t)], U, 4(t) - U(vh, ph, t), V, (t) = V(vh, ph, t) 
be the solution to the difference approximation and define IW, 2 and le,,,2 as 
before. Define norms for a scalar grid function by 

N N 

jV,, 1 12 = h2 E EvV,, = max Iv ,,I. 
Y-i M=1 1Yv5N;1A5 N 

For our last computation, we computed an approximate solution of the equation 

we= [ 0 + [ W, 0? x ? 1, 0 ? y :;< 1, t O0, 

with the same initial and boundary conditions as in the previous example. We used the 
same grid and analogous difference approximations. We give III W ,,112 for this 
computation in Table 3.4. 
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