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An Implicit Fourth Order 
Difference Method for Viscous Flows* 

By Daniel S. Watanabe and J. Richard Flood 

Abstract. A new implicit finite-difference scheme for viscous flows is presented. The 
scheme is based on Simpson's rule and two-point Hermite interpolation, is uniformly 
accurate to fourth order in time and space, and is unconditionally stable according to a 
Fourier stability analysis. Numerical solutions of Burger's equation are presented to illustrate 
the order and accuracy of the scheme. 

1. Introduction. The invention of the electronic digital computer stimulated the 
intensive development of numerical methods for the solution of fluid flow problems. 
The majority of the methods first developed were explicit and of low order because 
their utility on the small slow early computers derived from their simplicity. This 
trend has continued to the present, despite the accuracy of high order schemes and 
the unconditional stability of implicit schemes. The new parallel and pipeline com- 
puters, however, have spurred interest in complex difference methods by making 
feasible the large calculations required by such schemes. Recently Rusanov [5] and 
Burstein and Mirin [2] have studied explicit third order schemes for hyperbolic 
systems, while Zwas and Abarbanel [6] have developed an explicit fourth order 
method for special hyperbolic systems. We present in this paper a new unconditionally 
stable implicit scheme for viscous flows which is uniformly accurate to fourth order 
in time and space. 

We first describe the method and examine the local truncation error. We then 
present a linearized stability analysis of the scheme. Finally, we present several 
examples to illustrate the accuracy and stability of the method. 

2. Difference Scheme. Consider the initial-value problem 

Ut = f(u, u., Up)I 
(1) u(x, O) = g(x), -o < x < cx, 

u(x + L, t) = u(x, t). 

Here, u is an unknown vector function of x and t, f is a given nonlinear vector function 
of u, ux, and ux, and g is a given vector function of x. We assume the periodicity 
condition in lieu of boundary conditions. Rather than make specific differentiability 
assumptions, we shall assume that u has derivatives of any order required. 
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The integration of (1) from t to t + At yields 

u(x, t + At) = u(x, t) + f(u, ux, uXX) ds. 

We can discretize this equation by approximating the integral by a quadrature formula 
employing nodes in the interval [t, t + At]. Approximations at the interior nodes to u, 
and hence f, can then be obtained from u and ut at times t and t + At through Hermite 
interpolation. Since the error in Hermite interpolation is of O(At4), we should employ 
a quadrature formula with error of O(At5). Simpson's rule is such a formula and, 
moreover, employs only one interior node, thus minimizing the number of inter- 
polations. Of course, f cannot be computed exactly because it involves derivatives 
of u with respect to x. However, we can approximate f by replacing ux and u~x by 
appropriate difference quotients. If these quotients are chosen as the centered five- 
point formulae, the overall accuracy of the scheme is preserved. 

We seek a mesh function U which approximates the exact solution u on the mesh 

{x+j = i iL\x, tn, = nLt; i, n = 0, 1, 2,5 * * . 

We shall restrict our attention to meshes where Ax = At/r = A for some positive 
constant r. Let u2' and Uj' denote the values of u and U at the mesh point (x,, t), 
and let 

fd(U) = f(u, dXu, dXu), fD(U) = f(u, DX u DXu) 

where d = 8/8x, dx2 = 82/8x2, and DX and D.2 are the corresponding five-point 
centered difference quotients 

DXui = (Ui-2 - 8u%-1 + 8ui+l - ui+2)/12LAx, 

xUi = (-U,-2 + 16u,1 - 30ui + 16ul - u,+2)/12Ax2. 

The method is defined by 

(2a) i= Ui ? (Lt/6)[fD( Ui) + 4fD( I /) ? fD( Ui )] 

(2b) U = ( U ? Ui1)/2 + 
(Lt/8)[fD(U) -) 

i = 0, 1, *, I- 1; n = O. 1, * 

where I = L/l/x. These equations define a system of nonlinear algebraic equations 
which must be solved at each time step through some iterative procedure. 

The local truncation error is defined by 

(3) e(u) = U fd(U) ds - (zAt/6)[fD(uD) + 4fD(a ) ? fD(U)]I, 
tn 

where the spatial indices are suppressed for convenience. Our choice of D. and D,2 
implies that 

DXU = dxu- _ 4d5u/3O + o(6)5 

DX U = dxU- _A4dxU/9O + Q(A6). 

Substituting this result in f l)(u) and expanding, we find that 
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(4) fD(U) = fd(U) - L c(X, U) + 0(, ), 

where 

a(x, u) = (&/&UX)fd(u) dxu/3O + (&/&uxx)fd(u) d u/9O. 

It follows from (2b), (4), and the two-point Hermite interpolation formula 
n+1/2 =Un+ ?+(n n1 't U+/ u = (u7+ u 1)/2 + (Lt/8) dt - un') + Lt4dtun"2/384 + O(At6) 

that the interpolate 7n+ 1/2 satisfies 

rn+ n+1= /2 _ 1(x, ) + )(\) 

where 

:(x, u) = r4d4un+1/2/384 + (rA/8)[a(x, Un) - a(x, un+1)]. 

Clearly, 
n+1/2 

dxUn+1/2 _ dxo(X) =Dd a- L4d~3x U) ? O(zA4), 
2 n+ 1/2 2 n+ 1/2 _ 4d2o(X) =X , du -U ' L~df(,U) -I- O(z,), 

and hence as before 

(5) fD(U ) = fd(Un+1/2) + O(LA4). 

Since the error in Simpson's rule is of O(A5), it follows from (3), (4), and (5) that 
e(u) = O(A5), and the scheme is uniformly accurate to fourth order in time and space. 

3. Stability. We shall examine the stability of the scheme (2) by applying it to 
the system of linear partial differential equations 

(6) ut = Auxx + Bus, 

where A and B are constant matrices such that the matrix C, defined by 

(7) C = aA + iAxfB 

with a = (-15 + 16 cos 0 - cos 24))/6, f = (8 sin 0 - sin 24))/6, has eigenvalues 
c = X + iji, satisfying X ? 0 for 0 < 0 < 2r. This assumption is satisfied, for example, 
by the linearized Navier-Stokes equations for which u = [p, v, p]T and 

O 0 01 -v -p o] 
A = K 0 4/(3 Re p) 0 B = -v -1/p 

--,yp/(Re pr P2) 0 y/(Re Pr p) 0 -yp -v 

where p, v, and p are the density, velocity, and pressure per unit volume, Re and Pr 
are the Reynolds and Prandtl numbers, and Py is the ratio of specific heats. For the 
case of viscosity without heat conduction where Pr = c, the eigenvalues of C are 
easily determined and are 

Cl = -izXxv, 

C2 = 2a/(3 Re p) - iVxffv ? [4a2/(9 Re2 p2) _ 02zAX2Yp/p]1/2. 
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Since a < 0 and p, p > 0, the assumption is clearly satisfied. For the more realistic 
case where Pr = 1, we chose not to calculate the eigenvalues but to demonstrate 
using the Routh-Hurwitz conditions that the eigenvalues have nonpositive real parts. 
The calculation is straightforward but extremely tedious and hence is omitted. 

We follow von Neumann and assume a perturbation of the form un = ti exp (iwx). 
Setting fI (u) = ADx2u + BDxu and substituting the perturbation in (2), we find that 
the amplitude of the perturbation satisfies 

n+1 n tnl= Gtn 

where the amplification matrix G has the form 

(8) G = (I - eC/2 + 62C2/12)- (I + EC/2 + E2C2/12) 

with 4 = coAx and e = At/Ax2. A simple calculation shows that the eigenvalues 
g of G satisfy 

1g12 = [V + Xe + X(X2 + 2)63/121/[v - XE - X(X2 + M2)E3 12], 

where v > 0. Since X ? 0 by hypothesis, it follows that JgJ < 1 for any Ait and Ax, 
and the method is unconditionally stable. 

The system of nonlinear equations (2) must be solved carefully to maintain the 
stability of the method. We have solved this system using successive substitution, 
nonlinear overrelaxation, and Broyden's quasi-Newton method [1]. Unfortunately, 
the first two methods often converged only for At = O(Ax2), nullifying the main 
advantage of the scheme. Broyden's method, however, worked well, always allowing 
us to take At = O(Ax). 

Our discussion of the order and stability of the method is valid only for problems 
with periodic boundary conditions. In a general initial-boundary-value problem, our 
scheme, like other high order schemes, cannot be applied at the nodes adjacent to 
the boundaries. There are several ways to handle these critical nodes. For example, 
we might use appropriate uncentered difference equations, or employ extrapolation 
to generate any values required by the centered equations at fictitious nodes outside 
the boundaries. It is easy to invent methods based on these ideas, but they often 
place undesirable restrictions on the time step. This important problem merits further 
study. 

4. Numerical Examples. We have tested our scheme on a variety of problems 
and present here selected results to illustrate the accuracy and stability of the method. 

Burger's equation is often used as a model for the one-dimensional time-dependent 
Navier-Stokes equations. It approximates to first order the motion of a plane wave 
of small but finite amplitude. The equation takes account of convection and diffusion, 
and has the form 

ut + (U2 /2) = u.., 

where u is the excess wavelet velocity, and X is the diffusivity of sound. 
We studied Burger's equation subject to the initial condition 

u(x, T) = sin hrx, -o < x < co 

This problem has the exact solution 
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u(x, t)- - 2X4x(x, t)/1(x, t), 

where 
00 

e"O(x, t) = Io(M) + 2 E Ih(M) exp(- Xn27r2t) cos n7rx, 
n=1 

1A = l/(27rX), and In is the modified Bessel function of order n. The solution has a 
period L of 2 and is antisymmetric with respect to the lines x = 0, ?1, ?2, 
Hence, we need only consider the interval 0 ? x ? 1. We computed the solution of this 
problem on the region 0 < x < 1, 0 < t < 1 for X = .05, and Ax = At = .05, 
.025, and .0125. 

We also studied Burger's equation subject to the initial condition 

u(x, O) = 2ch(-x), -o < x < , 

where h is Heaviside's step function. The solution is a shock-like wave moving with 
velocity c. For computational convenience, we transformed the space coordinate into 
a coordinate moving with velocity c. In this new coordinate, the solution is 

u(x, t) = 2c/[1 + exp(cx/X) erfc[-(x + ct)/(2 V/(Xt))]/erfc[(x - ct)/(2 V/(Xt))]]. 

We computed the solution of the transformed problem on the region -1 < x < 1 
.05 < t < 3.05 for X = .1, c = .5, and At = Ax = .2, .1, and .05. The initial and 
boundary values, including those at the fictitious nodes outside the boundaries, were 
obtained from the exact solution. The calculation was started at t = .05, rather 
than t = 0, to preserve the order of the scheme. It should be noted, however, that 
the method produces smooth solutions when started with the step function. 

Table 1 lists the error norms and computed orders 

rjA/) = ln(I Ie(za)I Iq/ Ie(A/2) I Iq)/1n(2), 

where e, = u,- U1, and the sum is taken over the m interior nodes. The computed 

TABLE 1. Error norms and computed orders 

problem time 'A jell I jell2 1Jel 1. r, r2 rc 

1 1.00 .0500 7.77-5 1.52-4 5.06-4 
3.9 3.9 3.8 

.0250 5.19-6 1.04-5 3.65-5 
4.0 4.0 3.9 

.0125 3.31-7 6.67-7 2.37-6 
2 3.05 .2000 6.88-4 9.41-4 1.81-3 

3.7 3.8 3.8 
.1000 5.31-5 6.98-5 1.34-4 

4.0 3.9 3.7 
.0500 3.43-6 4.58-6 1.03-5 
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TABLE 2. Comparison of explicit and implicit methods 

method Ax At error time 

present .1000 .02500 3.5-4 1.0 
Rubin and Burstein .0100 .00005 3.4-4 190.3 
present .0909... .02000 2.0-4 1.4 
MacCormack .0100 .00005 1.8-4 149.7 

orders should be 4 in both problems since the centered formulae are applied at each 
node. The scheme clearly fulfills our expectations. 

We tested the stability of the scheme by solving the first problem with At >> Ax. 
As expected, it worked extremely well. For example, for X = .1 we used At/Ax = 
.6/.01 = 60 without any difficulty. In each case, the maximum allowable time step 
appeared to be governed only by the allowable discretization error. 

The maximum allowable time step for explicit schemes is generally directly 
proportional to Ax2 and inversely proportional to the viscosity. This restriction, 
coupled with the fine spatial meshes required by low order methods to achieve high 
accuracy, makes explicit low order schemes inefficient for highly viscous flows. Our 
scheme, however, is well suited to such problems. To illustrate this fact, we computed 
the solution of the first problem on the region 0 < x < 1, 0 < t < .2 for X = 1 using 
MacCormack's [3] and Rubin and Burnstein's [4] explicit second order methods and 
our scheme. The largest time step consistent with stability was used for each explicit 
method. The solutions are compared in Table 2. The errors listed are maximum relative 
errors and the time unit is equivalent to .2 seconds on an IBM 360/75. 
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