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Numerical Solution of Plateau's Problem 
by a Finite Element Method 

By Masahiro Hinata, Masaaki Shimasaki and Takeshi Kiyono 

Abstract. This paper concerns the application of a finite element method to the numerical 
solution of a nonrestricted form of the Plateau problem, as well as to a free boundary prob- 
lem of Plateau type. The solutions obtained here are examined for several examples and 
are considered to be sufficiently accurate. 

It is also observed that the hysteresis effect, which is a feature of a nonlinear problem, 
appears in this problem. 

1. Introduction. Methods for the numerical solution of the Plateau problem 
have so far been examined by D. Greenspan [3], [4], using the combination technique 
of difference and variational methods, and by P. Concus [5], using a finite difference 
method. 

These two methods can be applied only to the so-called restricted form of the 
Plateau problem described by Forsythe and Wasow [2, Section 18.9], that is, to the 
problems where the boundary condition is represented by a single-valued function. 
Thus, they cannot be applied to the problem where the boundary condition is repre- 
sented by a multi-valued function, such as Courant's example described later. 

This paper shows that such multi-valued boundary-value problems can be solved 
numerically by a finite element method. In this case, two solution methods, one for 
a free boundary problem and the other in a cyclindrical coordinate system, are 
presented. 

2. Application of a Finite Element Method to the Plateau Problem. The 
Plateau problem involves finding a twice continuously differentiable function u(x, y) 
in a region D satisfying 

u(x, y) = f(x, y), ort 

(2.1) au(x, y)/ax = g(x, y) r on AD 

au(x, y)/ay = h(x, y) 

and minimizing the surface area functional 

(2.2) Ju = ff (1 + u2 + u2)1/2 dx dy, 

where f(x, y), g(x, y) and h(x, y) are single-valued functions [2, Section 18.9]. 
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FIGURE 1. A coordinate system 

A finite element method is applied to the Plateau problem in the following manner: 
Consider a linear basis function uj(x, y) written in the form 

(2.3) ui(x, y) = Aix + Biy + C,. 

The coefficients Ai, B, and C, in Eq. (2.3) can be determined by three points in 
the x-y-u space. Let D be approximated by the union of disjoint triangles T,' (j = 
1, *.. , Q). Let the three vertices of T,' in the x-y plane be Pk'(xk, Yk, 0), P,'(xl I Y, 0), 
and Pm'(xm, ym, 0) and let the three vertices of a triangle T, in the x-y-u space cor- 
responding to T1' be Pk(xk, Yk, Uk), P,(x,, Y,, u1) and Pm(Xm, Ym, Um), respectively. 
Then T, is represented in the form 

F Uk Yk 1 Xk Uk 1 Xk Yk Uk 1 Xk Yk 1 

(2.4) ui(xy)A [UL Y 1 x + xi u1 Y + xi Y1 u1 lxi Yi 1 

Yrm 1 xM Um 1 xM Ym UMr XM Ym 1 
The area of the triangle T1' is given by 

Xk Yk 1 

(2.5) fLdx dy abs xi Yi 1 

Xr Ym 1 

and the area of the polyhedral surface consisting of the T1 is given by 
Q r 

(2.6) Ju = Ju = 2 JJ (1+ Ujx + U24)1 dx dy 

Qr 
(2.7) = (1 + A2 + B2)1/2 fLJ dx dy 

Xk Yk 12 Uk Yk 1 Xk Uk 121/2 

(2.8) = X1 Yi 1 +u1 Yi 1 x+i U1 1 2 2 

1Xr Yrn Urn Yrn xrn Urn 
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FIGURE 2. Schematic view of fi(z1, Z2, ** , Zp) 

The problem of finding a twice continuously differentiable function u(x, y), 
minimizing the continuous functional Ju, can thus be approximated by that of 
finding a piecewise linear function 

Q 
(2.9) O(x, y) = E Ui(X, y)4>D(x, y), 

i =1 

where 

(2.10) 4((x, y) = 1 in T, 

4D(x, y) = 0 out of T, 

minimizing the functional Ju. 
The following fact should be noted. In the finite element method, it is not necessary 

to fix the T,', or the division of D; it is only necessary to minimize the functional 
JA, treating the Pt's as unknown points in the (x, y, u)-space. This flexibility is useful 
in solving various problems, such as free boundary problems. If the variational 
point Pi(xi, yi, us) is selected in the direction (at, ji, yi) from the point (xi0, Yi0, ui0), 
that is 

(2.11) Xi -actzX + XT, Yi = f3Zi + )t, Ui = 'yzi + Ui, 

where at2 + j32 + 'yi2 = 1, then the necessary condition for minimizing Ju is given by 

(2.12) aJUlaZi f = 0 (i = 1 P). 

A numerical analyst can choose the direction of variation in a manner best suited 
to his problem. 

Equations (2.12) are nonlinear algebraic equations, which may be solved iteratively 
by the generalized Newton method, in which the (n + I)th approximation zi(n+1) 

to zi is determined by 
(n+ l) (n + l ) (n) (n) (n) (n+ 1) (n) fi (ZI s s Zia1 s Zi , Z+1, ZP 

(2.13) Zi Zs (fi a (Z( n+l1) ( n+l1) ( n) ( n) z( n) ) d 

(i = I I .. I p); 
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FIGURE 3. Contour with a multi-valued boundary condition 

here co is a relaxation parameter which when sufficiently small results in convergence. 
We now consider fA and afi/az, in Eq. (2.13). A simple computation gives the 

following result: 

(2.14) IfAl < M1, 

(2.15) M2 > (Ofi/a4z) > 0, 

where M1 and M2 are constants. 
An outline of fi as a function of z, is shown in Fig. 2. This figure shows that when 

afi/az, is extremely small, the generalized Newton method diverges. 

3. A Free Boundary Problem. Minimal surface problems with multi-valued 
boundary conditions cannot be solved numerically by the usual finite difference 
method [3]-[5]. Certain types of such problems, however, can be reduced to free 
boundary problems with single-valued boundary conditions. We will now examine 
such free boundary problems using the finite element method of the previous section. 
Consider the contour shown in Fig. 3. If 0 > 7r/2, the contour cannot be projected 
in a single-valued fashion and a boundary-value function is not single-valued. To 
avoid the adverse condition of multi-valuedness, the surface was cut with the plane 
x = 0, taking advantage of the symmetry of the solution (see Fig. 4). Treating only 
the space x > 0 the surface under consideration becomes a single-valued function 
of u and y, while the cross section of the surface and the u-y plane becomes an un- 
known boundary curve (the free boundary F in Fig. 4). 

As boundary conditions, we have 

x = r sin(7r- 0) on y = O < u _L, 

(y-r cos(rr -O))2 +x 2 =r2, X >O, y > O on u = O or L, 
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FIGURE 4. A free boundary scheme 

and, on the free boundary, treating the unknown surface as a function of x and u, 
we have 

ay/ax= Oonx= O, O u< < L. 

Using the symmetry with respect to u = L/2, the boundary conditions are eventually 
given by 

(3.1) x = resin 0 on y = O and O < u < L/2, 

(3.2) X2 + (y + r cos 0)2 = r2 on u = O, x _ O, y _ 0, 

(3.3) ay/au =O on x =O.O < u < L/2, 

(3.4) ax/au =O on u =L/2, O < y < H, 

where the unknown height H from the plane y = 0, i.e., the x-u plane, is determined 
by solving the above boundary problem. 

On the free boundary F, the unknown variables are YMi (j = 1, , N), while 
in the region D, the unknown variables are xi (j = 1, * . , p -N). Then the y- 
component of the point on the curve F must be largest in y-components of points 
in D which have the same u-component, and in the present program, y, is given by 

(3.5) Yi = YM, Y O/YM,0 

(see Fig. 5). Thus, the division of the region varies during the generalized Newton 
iterations and this flexibility is the key to the successful investigation of the free 
boundary problem. 

We now describe some numerical examples. Here 

us = jAu, Au = L/(2N), j= O, 1, .N, 

and 
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FIGURE 5. Division of the region for the free boundary problem 

FIGURE 6. Two directions of projection for the case 0e-/2 

yi,0-=r{l - cos(iAG)}, AA = O/M, i = 0, 1, .@- , M. 

Example 1. 0 = 7r/2, r = 1.0, L = 1.0. This boundary-value problem was 
first solved numerically in direction A (see Fig. 6) using Greenspan's method for 
which a theoretical analysis is given in [6]. The problem was then solved in direction B 
with the present free boundary program. For comparison, numerical results given 
by these two methods are seen in Table 1, where the initial approximations are both 
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TABLE 1. Comparison of two methods 

A B 

H 0.8552107 0.8551592 

Area (1/4) 0.7571279 0.7571000 

Relaxation parameter 1.2* 1.2* 

Iterations to convergence 144 221 

Number of arc divisions: M(AO) 15(60) 15(60) 

Number of L/2 divisions: N 7 7 

* In this table, the initial relaxation parameter is 1.2, and 5, the termination parameter for 
iterations is 10-7. When maxj1j,,j z -(n )-zi(n)I < 5, the iteration process is stopped. 

cylindrical, namely 

(3.6) x2 + y2 = 1, y > 0,0? u < L, 

Example 2. Catenoid. The second example is that of the catenoid. The soap 
film with this boundary condition is shown in Fig. 7. This problem can also be solved 
as a free boundary problem with boundary conditions (3.2)-(3.4) and the Neumann 
condition 

(3.1') ax/ay = 0 on y = 0 and 0 _ u _ L/2 

in place of (3.1); here 0 = Ir/2. 
L and a in Fig. 7 are connected by the relation 

L 

a 

FIGURE 7. Catenoid 
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TABLE 2. Comparison of two values of a 

a 

Value from free 
L/2 Value from Eq. (3.7) boundary program 

0.3 0.9523568 0.9520186 

0.4 0.9107381 0.9100505 

0.5 0.8483438 0.8470727 

0.6 0.7450713 0.7423604 

0.63 0.6937394 0.6894363 

0.66 0.5941309 0.5739461 

0.67 no value no value 

(3.7) a cosh(La/2)= 1 

and L must necessarily satisfy the relation 

(3.8) L/2 ? Xo,/cosh X0, 

where X0 is the root of the equation 

(3.9) X = coth X. 

It is seen that X0 is nearly equal to 1.2, SO that X0,/cosh X0 is nearly equal to 0.66. 
For comparison, two computed values of a are given in Table 2. One value was 
obtained from Eq. (3.7) and the other was computed as H using the present free 
boundary program (Au = 0.1, AO = 10?). In this case again, the results of the present 
computer programs are close to the actual values. 

Example 3. An example of R. Courant. We now apply the finite element method 
to the interesting contour shown in Figs. 8, 9, and Fig. 3, for 0 > 7r/2. The soap 
film problem may have two different solutions, depending on the length of the line L 
and the angle of arc 0 (0 > xr/2) (see Figs. 8, 9). Let 0 = 57r/6, r = 1.0 and L vary 
in Fig. 3. This boundary may sometimes be spanned by two different soap films 

FIGURE 8. A solution of the soap film problem FIGURE 9. Another solution of the soap film problem 
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FIGURE 10. Relation between L and H 
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FIGURE 11. Relation between L and 1/4 of the total area 

which we will now compute with the present free boundary program. The relation 
between L and H, obtained by numerical computation, is shown in Fig. 10 and the 
relation between L and 1/4 of the total area in Fig. 11. Figures 10 and 11 show 
the hysteresis effect, which is a feature of a nonlinear problem. 

We define the nth norm N"' of solutions, the nth refinement R n and the nth 
eigenvalue 7 ", by 

P \1/2 
(3.10) N(n)= (E (z~n) 12 

(3.11) R (n) = abs(Nfn - N 

and 

(3.12) = (n) _ R n (n) (n- n 
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FIGURE 12. A solution for L = 1.5 obtained by starting from an initial approximation of the cylinder 
x2 + (y + cos (57r/6))2 = 1 
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FIGURE 13. A solution for L = 1.6 obtained by starting from an initial approximation of the cylinder 
x2 + (y + cos (57r/6))2 = 1 



56 MASAHIRO HINATA, MASAAKI SHIMASAKI AND TAKESHI KIYONO 

U1.5 

1.866 

y 

(n) 

11 1.0 0.9 0.8 0.7 0.6 

20 
cn) 

40 - 

60 *; t X 
-1 -l2 0-3 104 5 

R (n) 

FIGURE 14. Another solution for L = 1.5. This solution can be obtained by using the solution for 
L = 1.6 shown in Fig. 16 as a starting approximation for this problem 

respectively, where p is the number of all unknown variables zi. We show the starting 
approximation, the final approximate solution (converged) and R"', v "n) in each 
iteration for two different solutions for L = 1.5 in Figs. 12 and 14, respectively, 
where a = 10' . The solution for L = 1.5, shown in Fig. 14, was obtained starting 
from the final solution for L = 1.6 shown in Fig. 13. 

4. Cylindrical Coordinate System. We next consider the foregoing problem 
in cylindrical coordinates. 

To avoid the boundary condition function being two-valued, this boundary is 
cut with the plane u = u, (O 5 U, < L) (see Fig. 15) and a cross section is shown in 
Fig. 16. 
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FIGURE 15. Cylindrical coordinate system for the example of R. Courant 

y 
1.866 

0 X ij X 

FIGURE 16. The cross section at u - uj 

The unknown variable zi in this case is Ri, , as shown in Fig. 16, and it is connected 
with xi i and y,, i by 

(4.1) xi, = Rj,i cosmic Y, i = Ri, isin 'pi. 

Hence, 
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FIGURE 17. Relation between L and H 

aJu aJu dxi,, + OJu dy i, 

(4.2) aRi, i xiti dRi, I y ,i dRi,; 

3Ju aJu . 
= ax os s. + a~ sin sPi = o. ,-x COS 'P, +ySl ~0 

For the comparison of a free boundary program and cylindrical coordinate 
system program (u; = Lj/12, sp, = (7r/2)i/15), numerical results of height H and 
4 of the total area are given in Table 3, where r = 1.0, 0 = 57r/6 and L varies. 

TABLE 3. Comparison of two methods 

C: cylindrical coordinate system 
F: free boundary program 

L/2 H 4 of the total area 

C 1.447441 1.678319 
0.7 

F 1.448845 1.678424 

0.75 C 1.256070 1.766360 

over F 1.260619 1.766551 

0.75 C 0.254281 1.754237 

under F 0.262425 1.756422 

C 0.2141318 1.782874 
0.8 

F 0.197830 1.785275 
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FIGURE 18. The region where two different solutions exist 

As shown in Table 3, the two values of I of the total area by the two methods 
are in mutual agreement within 0.2% relative error and the values of H within 3.5% 
for L/2 < 0.75 and 8.3% for L/2 = 0.8. This fact would imply that the solution to 
Courant's problem presented here has sufficient accuracy. 

5. Result of a More General From of R. Courant's Problem. Next, consider a 
more general form of Courant's problem. Here, 0 is also taken to be a variable as 
well as L. r = 1.0 was chosen. 

Taking 0 as a parameter, the relations between length L and height H are given 
in Fig. 17. 

The region where the boundary has two solutions is given in Fig. 18. 

6. Summary. It is shown that finite element methods are applicable to the 
Plateau problem. The variational direction suited to the problem can be selected 
in the finite element method and even the free boundary problem, which has been 
difficult to solve numerically, can be solved by the finite element method. 

Even though the error analysis of the method presented here is yet to be fully 
examined, the examples considered give an insight into the accuracy of the computer 
program presented here. It is considered that the method has sufficient accuracy 
from a practical point of view. 

All the computations were carried out using the FACOM 230-60 computer system 
at the Data Processing Center, Kyoto University. 
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