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Convergence Rates of Approximate Least Squares 
Solutions of Linear Integral and Operator 

Equations of the First Kind* 

By M. Z. Nashed and Grace Wahba 

Abstract. We consider approximations {xn } obtained by moment discretization to (i) 
the minimal ?2-norm solution of XCx = y where XC is a Hilbert-Schmidt integral operator 
on ?2, and to (ii) the least squares solution of minimal 22-norm of the same equation 
when y is not in the range 6R(3C) of XC. In case (i), if y EE R(NC), then x" -3* Cty, where Xct is 
the generalized inverse of XC, and I xII-* - otherwise. Rates of convergence are given in 
this case if further Xty EE 3*(29), where 3C* is the adjoint of XC, and the Hilbert-Schmidt 
kernel of XXQ* satisfies certain smoothness conditions. In case (ii), if y EE (R(K) ( R(X)-, 
then xn -* XCty, and I xn I-* c otherwise. If further Xty EE V *C(22), then rates of con- 
vergence are given in terms of the smoothness properties of the Hilbert-Schmidt kernel of 
(XX3*)2. 

Some of these results are generalized to a class of linear operator equations on abstract 
Hilbert spaces. 

1. Introduction. It is well known that the numerical solution of the integral 
equation of the first kind 

(1.1) xCx f K(,t)x(t) dt= y 

leads to certain difficulties which are not encountered in integral equations of the 
second kind 

(1.2) (I - X'C)x = y. 

Considerable light can be shed on the problems (1.1) and (1.2) when viewed in the 
context of linear operator theory. The operator 3C in (1.1) under mild conditions is 
compact on 22[0, 1] into itself; hence, its range @(XW) is always a nonclosed subspace 
Of 22[0, 1] (unless it is a degenerate operator, i.e., @(XW) is finite dimensional). In 
contrast, 6t(I - XAW) associated with (1.2) is always a closed subspace of C2[0, 1] 
for any X. Consequently, the generalized inverse of xC (and in particular the inverse 
of xW if it exists) is unbounded and densely defined, whereas the generalized inverse 
of I - XC is bounded and everywhere defined (see [5] or [6] for amplification of these 
remarks if necessary). Also, since R(,W) is only dense in (3e*)', the orthogonal 
complement of the null space of W*, the Fredholm alternative theorem for (1.2) fails 

Received September 18, 1972. 
AMS (MOS) subject classifications (1970). Primary 45B05, 45C05, 45L10, 65F20, 65J05. 65R05; 

Secondary 45N05, 46N05, 47B10, 47B30. 
Key words and phrases. First kind integral equations, linear operator equations, moment dis- 

cretization, convergence rates, least squares solutions, generalized inverses. reproducing kernel 
Hilbert spaces, Picard criterion. 

* Sponsored by the United States Army under Contract DA-31-124-ARO-D-462 at the Mathe- 
matics Research Center, University of Wisconsin. Madison. 

Copyright ? 1974, American Mathematical Society 

69 



70 M. Z. NASHED AND GRACE WAHBA 

to apply to (1.1) and one needs a condition (Picard's criterion [12]) under which an 
element 

y E 9*)? = a(^) 

belongs to S(3C). 
From the numerical and approximation aspects of (1.1) and (1.2), the preceding 

operator-theoretic facts are reflected in the following ways. 
Firstly, the problem (1.1) is ill-posed: The solution (or generalized inverse solution) 

of (1.1) does not depend continuously on the data y in the 22-setting. This inherent 
instability also carries over to the solution of the algebraic system arising from dis- 
cretization of the integral equation, whenever one seeks greater accuracy. The 
numerical manifestation of this instability and various approaches to approximate 
numerical solutions of (1.1) have been described by many authors. We cite the recent 
works of Hanson [3] and Strand [13], where the reader may backtrack the literature 
on this subject from the bibliography cited therein; see also the comprehensive bib- 
liography on integral equations prepared recently by Noble [8]. 

Secondly, iterative methods for the solution of (1.1) exhibit convergence patterns 
which are markedly different from their counterpart for the solution of (1.2). Hellinger 
and Toeplitz remarked in [4] that a method of solution of (1.1) by iteration is not 
available. Since then several authors have analyzed the problem of convergence of 
successive approximation for (1.1). See in particular the recent paper of Diaz and 
Metcalf [2], the earlier work of Landweber, Fridman, and Bialy cited in [2] and 
[6, pp. 344-345], and [5], [13]. The method of successive approximation (with a 
parameter), steepest descent and conjugate gradient methods for least squares solutions 
of (1.1), all exhibit slow convergence patterns (as 1/n); see [5], [6], and [11]. In contrast, 
the rate of convergence of these methods to least squares solutions of (1.2) is at least 
geometric (see [5], [6], [9]). 

The purpose of this paper is to establish the convergence of approximation schemes 
based on moment discretization to the least squares solution of minimal norm of (1.1) 
(or to the minimal norm solution if y E @(X)), and to provide sharp convergence 
rates under some mild smoothness assumptions on the function y and the kernel 
K(s, t). Furthermore we show that if the minimal norm solution is smooth, then the 
domain of SC may be viewed as a reproducing kernel Hilbert space (RKHS) and thus 
we obtain pointwise convergence in this case. 

In Section 2, we state some preliminaries about RKHS and recast Picard's criterion 
in this setting. The main convergence results for integral equations of the first kind 
are stated in Sections 3 and 4. Finally, in Section 5, some of these results are generalized 
to a class of linear operator equations on Hilbert space. 

2. Picard's Criterion in Reproducing Kernel Spaces and the Generalized 
Inverse of W. A Hilbert space SC of (real-valued) functions f on the interval T is 
said to be a reproducing kernel Hilbert space (RKHS) if all the evaluation functionals 
&tf = f(t), f C- X, for each fixed t E T are continuous. Then, by Riesz's theorem for 
each t E T, there exists a unique element, call it Qt. in aC such that 

(2.1) (f, Qt) = f(t), S 3C. 

Let 
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(2.2) Q(t, t') -= (Qt, Qt ), t' t' E T. 

Note that Q,(t') = Q(t, t') by applying (2.1) to (2.2); for this reason, Q(t, t') is called 
the reproducing kernel (RK). Let JCQ denote the RKHS with RK Q and inner product 
(, )Q. Clearly, Q(t, t') is a nonnegative definite symmetric kernel. Conversely, by 
the Aronszajn-Moore theorem (see [1]), every nonnegative definite symmetric function 
Q on T X T determines a unique Hilbert function space 5CQ for which Q is the repro- 
ducing kernel. In an RKHS, the element representing a given bounded linear functional 

q5 can be expressed by means of the RK; more precisely, +5(f) = (f, h)Q for all f E 3CQ 
where h(t) = 4(Qt), and similarly for a bounded linear operator L on 3CQ to SC<>: 

(Lf)(t) = (Lf, Qt)Q = (f, L*Qt)Q. 

Note that ?2[0, 1] is not an RKHS. If Q(t, t') is continuous on T X T (the only case 
we will consider here), then 3CQ is a space of continuous functions. To see this, note 
that 

If(t) - f(t')l = {(f, Qt - Qt )Ql -< 11fIIQ IIQt -Qt llQ, 

and 

t 
_ -Qt' 112Q = Q(t' t)-_2Q(t, tt) + Q(t', tt). 

One reason for using RKHS in approximation theory and numerical analysis is that 
strong convergence in 3CQ implies pointwise convergence, viz., 

If(t) - I(t)I = I(f - fI Qt)Q I - I If - fIIIQVIQ(t, t). 

For properties of RKHS see Aronszajn [1] and Shapiro [10]. 
For the purpose of this paper, we show that the range of a Hilbert-Schmidt 

operator applied to C2(S) is an RKHS. We shall use (., *) to denote inner product 
in 22, reserving the notation (., * )Q for inner product in RKHS, and omitting the 
subscript when there is no confusion. The 22-norm is denoted by 11 11 whereas the 
RKHS-norm is denoted by 1- IQ. 

PROPOSITION 2.1. Let S, T be intervals, and let G(t, s) be defined on T X S with 
the property that,for eachfixed t C T, G(t, s) C 22(S). Consider the family offunctions 
f defined by 

(2.3) f(t) = f G(t, s)p(s) ds =: (p)(t) 

for p C 22(S). This collection of f's is an RKHS 3CQ = 9422(S)] with RK 

(2.4) Q(t, t') = f G(t, s)G(t', s) ds 

where the inner product in 3CQ is given by 

(2.5) (fK1 f2)Q= Pl(S)p2(S) ds 

where p,(s), i = 1, 2, is the element of minimal 22(S)-norm which satisfies (2.3). 
Proof. To see that 3CQ is a Hilbert space with the given inner product, let V be 

the smallest closed subspace in 22(S) containing the functions G(t, .), t C T. Then 



72 M. Z. NASHED AND GRACE WAHBA 

for each f of the form (2.3), there is a unique p C V which satisfies (2.3), and this p is 
that element of minimal ?2(S)-norm for which (2.3) holds. This correspondence 
between 3CQ and V is linear and, in fact, is a metric isomorphism if we adopt the inner 
product (2.5). To see that Q(t, t') is the RK, we must show that (f, Qt )Q = f(t), for 
f G WCQ, t C T, where Q,(t') = Q(t, t'). Let f(t) = .f G(t, s)p(s) ds with p E V. Note 
that Qt (t) = fs G(t, s)G(t', s) ds. Letting fI = f, PI = PA f2 = QtC P2 = G(t', *) we 
get, using (2.5), 

(Ii, f2)Q - f Pl(S)P2(S) ds = (f, Qt')Q 

= f p(s)G(t', s) ds = f(t') 

so that Q is the RK for JCQ. 
PROPOSITION 2.2. Let Q(t, t') be a continuous reproducing kernel. Then 

(a) Q(t, t') = E XVcV(t)4,(t') 

converges pointwise, where I X, q},{} are the eigenvalues and orthonormalized eigen- 
functions of Q, and 2 _ = If Q2(t, t') dt dt'. 

(b) 3CQ = {f: (f, )2/v < }, 

where if X, = 0, we must have (f, q5,) = 0, and the inner product in 3CQ is given by 

(f, g)Q = _ (f, 
I 

fj(g, ck) = (Q-1'2f Q-1'2g) 

for f, g 3E CQ. 
Proof. Part (a) is simply a restatement of Mercer's theorem (see for instance [12]) 

since Q(t, t') is a nonnegative kernel. 
To prove (b) note that (Qt, 45) = XAq5(t), and 

co 
I 

co 

E - (fI, f,)(Qt, 4,) = E (f, f,)4,(t) = f(t) 
Y=1 xy v=l 

and thus (Qt, f)Q = f(t). 
We now consider the integral equation 

(2.6) (3Cx)(t) := K(t, s)x(s) ds = y(t), t G T. 

We assume that the functions kt = K(t, *) E 22(S) for t C T, and k,* = K(., s) E 

?2(T) for s C S, and the kernel Q(t, t') defined by 

(2.7) Q(t, t') = (kt, kt,) = f K(t, s)K(t', s) ds 

is continuous on T X T. Then f Tf S K2(t, s) dt ds < c, and the integral operator X 

maps 22(S) into ?2(T). It is well known that, for y E 22(T), the necessary and sufficient 
condition that y (E i(RC) belongs to R(3C) is that 



CONVERGENCE RATES OF LEAST SQUARES SOLUTIONS 73 

CO 

(2.8) E (y, )2/ K 
v=1 

where { XA } and { 1. } are the eigenvalues and orthonormalized eigenfunctions of the 
nonnegative definite symmetric Hilbert-Schmidt operator a = W}W* with kernel 
Q(t, t'). If 4), is an eigenfunction with XA = 0, then we must have (y, Go) = 0 for 
y E R(3C). Condition (2.8) is often known as Picard's criterion. Equivalent mani- 
festations of this criterion have been given recently by Diaz and Metcalf [2]. Now by 
Proposition 1.1, R(3C) is an RKHS and, in view of Proposition 2.2(b), condition 
(2.8) is equivalent to 

(2.9) y C 3CQ 

where 5CQ is the RKHS with RK Q(t, t') given by (2.7), and where the norm in 5CQ 

is given by 

I Iyj 12 = (Y +)/ 
11 

It should be noted that the introduction of RHKS and the casting of Picard's 
criterion (2.8) in the form (2.9) is not a mere formality. For one thing, (R(aC) is non- 
closed in 22(T), unless @R(X) is finite dimensional; whereas @R(X) being an RKHS is 
a closed subspace in the RKHS topology. The usefulness of RKHS in the context 
of linear integral equations is highlighted when we consider approximate methods 
in the next three sections; for then we are able to establish convergence and sharp 
rates. 

The approximations that we study will converge to the generalized inverse of aC, 
and, in case y E R(3C), to the minimal norm solution of (2.6). We now describe the 
generalized inverse for our setting. Suppose first that y E R(3C). Then there exists a 
unique element of minimal norm in 22(S) which satisfies 3Cx = y. This element may 
be obtained as follows. Let V be the closure of the span of { k: t E T} in 22(S) and 
P, be the projection operator onto V. Note that 0R(3C) = V' since v ? 0R(3C) if and 
only if (v, kt) = 0, t E T. Thus if x is any element in 22(S) satisfying (2.6), Pvx is the 
unique solution of minimal norm. Denote P~x by 3ty. The domain of V& may be 
extended to R(3C) (3 R(3C)' by defining aCty = actyo where y = yo + Yi, Yo EE G(3) 
and Yi EE (3C)'. Thus x = aCty is the unique element in 22(S) of minimal 22-norm 
for which I lIy - Cxl I attains its infimum. 

3. Convergence of Approximations to Minimal-Norm Solution of 3Cx = y. 
We consider first the case when y E G(3C), but 3C is not necessarily one-to-one. 
Suppose that y(t) is known on the set T, = { tl t2 . * * , tn } C T and consider the set 
of linear equations obtained by moment discretization on T, of (2.6): 

1 

(3.1) ] K(ti s)x(s) ds = y(ti), i = 1, ,n. 

We introduce the notation Ki = K(ti, ) = k,(.), yi = y(t) and rewrite (3.1) in 
the form 

(Ki, x) = yi, i- 1, * , n. 

Define the operator n: 2?2(S) -- R' by 
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(K1, x) Y1 

enx= 
and Yn = L1, 

(Kn x) n 

(3.2) e7nx = Yn . 

Since (R(Cn) is finite dimensional, the generalized inverse et exists on R n and the set 
of all least squares solutions of (3.2) is given by 

Sn = On Yn ? O(e10). 
In particular, xn = en tYn is the element of minimal 2,(S)-norm which minimizes 
I Ix- X Yn In. We consider convergence of { xn } to aCty for y E D(3Ct) = (F(3C) 0 

The solution xn is given explicitly by 

(3.3) xn(j) = (Y1, Y2, * , Yn)Qn(kt1, kt2, * . *, ktn)'9 

where Qn is the n X n matrix whose ijth element is given by Q(ti, t{) of (2.7) and the 
prime denotes transpose. We shall assume that the set {kt t (E Tn} is linearly 
independent for every finite n. This is not a serious restriction, for if there exist con- 
stants cl, *., cn, not all zero, for which En=lcikt = 0, then every y (E G(RC) 
would satisfy t=1ciy(ti) = 0. Under this assumption, Q t becomes Qn-7. Let 

(3.4) An SUP inf It-tI 
tET tiETn 

Note that if limne 'An = 0, then Un Tn is dense in T. We now state the first converg- 
ence theorem. 

THEOREM 3.1. (a) If Q(t, t') is continuous on T X T and iy E R(3C), then 

(3.5) HM Ijxn - 3Cyjj = O0 
A n-? 

where An is defined as in (3.4). 
(b) If y E (R(3C), Sty E 3C*(242(T)), or equivalently y E 4(212(7)), and Q(t, t') 

satisfies 
(i) (9'/at')Q(t, t') exists and is continuous on T X Tfor t $ t', 1 = 0, 1, 2, * , 2m, 

(91/at1)Q(t, t') exists and is continuous on T X Tfor / = 0, 1, 2, * , 2m - 2; and 
02m-1 02m-1 

(ii) limrnt~m-l Q(t, t') and urn 0t2i1 Q(t, t') 

exist and are boundedfor all t' E T, then 

(3.6) I IXn - 3CtY I = O(Anm). 

(c) If y does not coincide with some element yo E (R(3C) on JUn Tn, then l x7nI l> o . 
Proof. (a) Let Qt(.) be that function on T defined by Qt(.) = Q(t, .). By proper- 

ties of RKHS, we have Qt E 5CQ for all t E T, and (Qt, h)Q = h(t) for h E ,CQ t E T. 
This shows that the set { Qt: t E T} spans 3CQ, and (Qt. Qt )Q = Q(t, t'). Thus there 
exists an isometric isomorphism between 5CQ and V generated by the correspondence 

(3.7) Qt E 3CQ - kt E V. 
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To see this, note that (Qt, Qt )Q = Q(t, t') = (ks, kt,) for t, t' E T. Further note 
that Qt = 3ckt so that 3CtQt = kt, since kt E V, and y E 3%CQ - x E V by the corre- 
spondence (3.7) if and only if y = 3Cx, x = 3Cty. 

It follows that, for y E i(3C), 

(3.8) l jx, - 3Cty |- y - PT.YIIQ 

where PTjY is given by 

(3.9) PTJY = 3CXn = (Yr ** Yn)n(Qt 1, * ... , Qtxn 

and is the projection (in 5CQ) of y onto the subspace spanned by { Qt: t E Tn }. If Q 
is continuous and limn-O A7n = 0, then span { Qt: t (E Ljn Tn } is dense in 3CQ; thus 
imAnO IIY - PTjYIIQ = 0, and using (3.8) it follows that (3.5) holds. 

(b) For y E (R(3) and 3Cty E 3C*(42(T), we may write Sty = 3*p, y = WW*p 
for some p E 22(T) and hence 

(3.10) y(t) f Q(t, t')p(t') dt'. 

For y of the form (3.10), the proof of Theorem 1 of [14] applies directly to give 

(3.11) lI1 - PTnY|IQ = O(A ). 

Then (3.6) follows from (3.8) and (3.11). 
To prove (c) we show that if limA.,o II xn II is finite, then y must coincide with an 

element of 3CQ = GR(3C) for t E Un,= Tn. From (3.3) and the fact (Qt, Q )Q = 

Q(t, t') = (kt, kt ), we get 

I jXn| 2 = (Y(t), * y(tn))Qn (y(tl), y(tn)Y 

Denote 3Cxn by wn. Then I Iwwn I = I Ixn I . Note also that wn is the element of minimal 
3CQ-norm which satisfies wn(t) = y(t), t E Tn. Without loss of generality, we may 
assume that Tn C Tn+m and thus PT.Wn+m =wn. Then II wnIIQ, n = 1, 2, *.., is a 
nondecreasing sequence, and II wn+m - wn I = I IWn+m I I - I wn I II2. Therefore, if 
lim . I wn I I Q is finite, then { wn } is a Cauchy sequence in 3CQ which has a limit w 
in 3CQ. Now, strong convergence in 3CQ implies pointwise convergence, so that we must 
have y(t) = i1'(t) for t E Tn I n = 1, 2, * . . Since Ix Ij = IIwnIIQ, part (c) is proved. 

The proof of Theorem 3.1 does not require 51(5C) = ?2. (See Section 5, and [14].) 
As an application of Theorem 3.1, we consider the case when u = acty is a continuously 
differentiable function on [0, 1]. Without loss of generality, we may take u(0) = 0 
(since 

f K(t, s)[u(s) -a] ds = y(t) - a f K(t, s) ds 

and we may solve 

J K(t, s)i(s) ds = 5(t) 

instead of the original equation). 
We consider the problem: Find un(s) to minimize f' [u'(s)]2 ds subject to u(0) = 0 

and 
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f K(t, s)u(s) ds = y(t), t 7'Tn = {t, ** tn} C [0, 1]. 

We now show that this problem can be recast in the setting of RKHS and establish 
convergence of { u } on the basis of Theorem 3.1. 

Let 3CR be the space of all absolutely continuous functions x with derivatives 
in ?,[0, 1], and x(O) = 0. The space 3CR is an RKHS with inner product 

(X1, X2)R = X'(s)x(s) ds 

and reproducing kernel 

R(s, s') = min(s, s'). 

Let ne(s) = JO K(t, t')R8(t') dt. Then, for x E JCR, we have 

(3.12) f K(t, s)x(s) ds = (-t, X)R. 

To show (3.12), we note that 

nt(S) = f K(t, t') min(s, t') dt' 

= 1i t'K(t, t') dt' + s I K(t, t) dt' 
0 ~~~~~~~~~~~8 

and (d/ds)-j(s) = f K(t, u) du, which we shall denote by r,(s). Then 

(0t, X)R - ) d t(s)x'(s) ds = It (s)X'(s) ds 

- [ K(t, s)x(s) ds. 

Now, the element of minimal 3CR-norm which satisfies (77, X)R = At), for t E Tn, is 

U.(s) = (nt(S), * * * , nt.(s))Qn (y(t1), * * , Y (0)I 

where Q,, is the n X n matrix whose ijth entry is given by 

.61 

Q(ti, ti) = , nt) - I't(s)r t(s) ds. 

We assume that Q(t, t) is continuous and that lim,,o AQn = 0 (cf. (3.4)). Then, as in 
Theorem 3.1. we have lu,, - vjTYIIR -* 0 as n --* o. and thus 

[u'(s) - u'(s)]2 ds 0. 

Furthermore. we aiso get pointwise convergence: 

IU,,(S) - U(S)jI _ |fu,, - Un uIIk IIRR un - UIR V\IS [=XI 0 

since IlR.l = R(s. s) = s. 
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4. Convergence to 3ty for y = (R(3C) D R(3C)'. We consider now the case 
y T R(3C), and seek approximations to aCty, the least squares solution of minimal 
norm of (2.6). Note that aty is also the minimal norm solution of the equation 

(4.1) 3C*3CX= 3C*Y 

for y E 5(3Ct). Furthermore. it is easy to show that (,W*3W)tW*y = aty on 1y(3t). 
Let Q = 3V"3C, and w = 3C*y. The Hilbert-Schmidt operator Q has the kernel 

Q(s, s') = (k*, k*) = f K(t, s)K(t, s') dt. 

Let xn be the element of minimal 2,(S)-norm which minimizes 
n 

E[(CX)(Si)- W(Si)]2, i-i1 

where Sn- {S= , I s *, sn} C S. 
By our previous assumptions, the function q8, defined by q8(s') = Q(s, s'), is in 

?2(S) for each s E S. If we assume that the set { q. s E Sn, } is linearly independent 
for every finite n, then xn is given by 

(4.2) Xn = (w1, w2, , Wn)Pn (8 1, i4,, , 48Y ) 

where Pn is the n X n matrix with ijth element given by P(si, s,), 

P(S, s') = (., = f A(s, u)Q(s', u) du 

and wi = (3C*y)(sj). Note that if x E span{ q8: s Sn} and w = 3C*3Cx, then x =xn 

Let 

An sup inf is -si1, 
aES SiESn 

and let (P be the Hilbert-Schmidt operator with kernel P(s, s'). 
THEOREM 4.1. (a) If P(s, s') is continuous on S X S and y E (R(3C) (R(C)', 

and xn is given by (4.2), then 

(4.3) Irn I IX - 1WY1 = 0. 
A n-0 

(b) If y E (R(3C) G) (R(3C)', xty E 3C*3C(-C2(S)), or equivalently w EE W(22(S)) 
and P(s, s') satisfies (i) and (ii) of Theorem 3.1 for some m, then 

(4.4) |x - 3Cy| = (A) 

(c) If y Ef G(3C) ) (R(3C)', then I IxII -|+ c as An -+0. 
Proof. This is a restatement of Theorem 3.1 when Q is replaced by P, y E 3CQ 

is replaced by w E 3Ce, where 3Cp is the RKHS of functions on S with reproducing 
kernel P. Note that w = aC*y is in the space 3Cp (which is the same as R(XC*XC)) if 
and only if y E D(xt). 

5. Generalizations to Linear Operator Equations. We note that some of the 
results of Sections 3 and 4 hold when 22(S) is replaced by a general Hilbert space. 
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Let X be an arbitrary Hilbert space, with inner product (, )x, let a be a linear 
operator mapping X into the real-valued functions on T with the property that 

(5.1) l(ax)(t)l < Mt H1xsx, t E T, x E X. 

Then there exists a family { at t E T} of elements in X with the property that 

(ax)(t) = (at, x)x, t E T, x E X. 

Let Q(t, t') = (at, ,x, t, t' E T. Then Q is a nonnegative definite symmetric kernel 
on T X T and by the same argument as before, it is easy to see that a(X) = JCQ, when 
JCQ is the RKHS with RK Q. For y E JCQ, let xn, be that element in X of minimal 
norm which satisfies 

(a3x.)(t) =y(t), t E Tn- 

Then 

Xn= (YI, Y2, , Yn)Qn'(atl, at 2 at n, 

where we are assuming that the set { at t E Tn } is linearly independent; and Qn is the 
n X n matrix with ijth entry given by Q(ti, ti) = (a, at ). Letting x = aty be the 
unique element of minimal X-norm for which ax = y, we easily see that Theorem 3.1 
then holds with no change, except that (3.5) and (3.6) become, respectively, 

Iir | xJ - at'Y|x = 0, |fXn - at'Yf|x = O(AnL) 

If X possesses an RK, then the norm convergence in X implies pointwise con- 
vergence. For suitable choice of the RK, a large class of operators have the property 
(5.1) including differential, integral, and integro-differential operators (see [14], [15]). 

Suppose now that X and Y are Hilbert spaces of real-valued functions on S and T, 
respectively. Let a be a linear operator on X into Y. Let at be the generalized inverse 
of a, defined on R1(a) ? 1(a)'. 

If a* ax has the property that 

l(a*ax)(S)l < M, ffXIfX, S E S, x E X, 
then there exists a family { q,: s E S} in X with the property 

(a*ax)(s) = (O, X)X, s E S, x E X. 

Let xn be the element of minimal X-norm which satisfies 

(a1*a(Xn)(s) = W(S), S = Sn, 

where w(s) = (a*y)(s). Then xn is given by 

Xn = (WIs W2, 
'' 
* ** Wn)Pn 1(4,, 48q21 

.. 
I an) 

where Pn is the n X n matrix with ijth element given by P(si, s1), P(s, s') = (qin qs >x. 

Theorem 4.1 then holds for this case with (4.3) and (4.4) replaced by 

lim Ifxf - aytfylx = 0 and lfxf - at'ylx = ?(A-), 

respectively. 
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6. Practical Considerations. Some comments on part (c) of Theorem 3.1 are in 
order. Both conceptually and practically, y can fail to be "in" GI(3C) in several ways. 
The notion of a generalized inverse 3Cty for y E GI(3C) @ (R(3C)' was considered in 
Section 4. In [7], the following situation is considered: It is assumed that y = acx + i, 
where x is in an RKHS 3,CR of real-valued functions on S, and t E 3CP, where 3C, is 
an RKHS of real-valued functions on T which is not contained in 3CQ _ C(3CR). 
The "desired" solution x is taken as the (unique) solution to the minimization problem: 
Find x E 3CR to min Jy(x) where 

Jv(x) = I ly - 3Cx 1P + I Ixl 12 

where II Ip, ||H||R are the norms in 3Cp and 3CR and iigiip2 is interpreted as co if 
g (E aCp. Approximations x, to x are found and convergence rates obtained for the 
case (Q + PXt, t') is a smooth kernel. 

A practical case is the situation where 

(6.1) y(tA) = (Kx)(ti) + E(t4), i = 1, 2, n, 

where { (ti) I are realizations of some "noise" random variables { E(ti)} n_ 
. This 

is an appropriate description if (3Cx)(ti) is measured with some experimental error. 
Assume that EE(ti) = 0, i = 1, 2, * * , n, EE(ti)E(t1) = 0, ti 0 t1, and EE2(t ) = a 
where E is mathematical expectation. In this case, as n becomes large, the vector 
(yt1), y(t2), * *, y(t)) begins to look less and less like the restriction of an element 
of 3CQ. This model also describes roundoff error, if (3Cx)(ti+1) - (Cx)(ti) tends to be 
larger than, say, 3a, and if further the roundoff contribution to the overall error is 
not negligible compared to the "projection error" given by (3.6). The situation (6.1) 
is considered in [16]. In [16] it is assumed that x E CR, an RKHS of real-valued 
functions on S, and the approximate solution xn ,, is taken to be the solution to the 
problem: Find x E 3CR to min J,, 

" (x) where 

n 
(6.2) Jvfl) (x) = - E (y(ti) - (3Cx)(ti))2 + X I IX |R1, n = 

where X is to be found. 
X is chosen to minimize a bound on Elixn, - - tg IR X depends on n, and a2 as 

well as (generally unknown) properties of g =Cx. If g is known to be very smooth, 
a2 is fixed, but X is allowed to vary appropriately, then convergence will obtain. 
Rates are given. These results apply to the situation of Section 3 if we replace IlXiiR 
in (6.2) by IlxiI. Then the solution xn , to: Find x E 22 to min J,("f (x) where 

Jvn(x) = - ( (y(ti) - (X)(ti))2 + X I IxI I 
n __ 

is 

XnX^(s - (YI, Y2, , Yn)(Qn + nXI)Y'(kt1, kt2, . * , ktn). 

The expected mean square error Ellxn,, - Wtg 12 is of larger order than the error 
of (3.6). We must interpret the present results to apply to the situation where the 
contribution of roundoff and/or experimental errors are controlled so as to be small 
compared to the contribution of the projection error. 
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