
MATHEMATICS OF COMPUTATION, VOLUME 28, NUMBER 125, JANUARY, 1974

Limiting Precision in Differential Equation Solvers*

By L. F. Shampine

Abstract. Machine dependent limits on the step size and local error tolerance are discussed.
By taking them into account codes can be made more robust.

Robust software for the solution of differential equations should take reasonable
action when a user requests more accuracy than it is possible to obtain in the machine's
precision. Ideally, the maximum precision possible will be obtained and requests for
more accuracy detected and handled without undue expense. One is inclined to think
that good quality codes will terminate by reaching a minimum step size when impos-
sible error requests are made, but this is not typical. It is common to find that as
tolerances are decreased past limiting precision, routines start returning worse answers
obtained at a rapidly increasing cost. Since this can be forestalled by a judicious use
of a minimum step size, we discuss the role of this parameter. We shall present two
simple requirements which greatly enhance the effectiveness of a wide variety of
differential equation solvers and illustrate their use.

Every code should have a machine dependent minimum step size, though most
do not. If a code is to advance from x to x + h, the floating-point number x + h
must be different from x. Unless Ihl > ulxl, where u is the unit roundoff of the machine,
the numbers cannot be distinguished. In addition to this fundamental requirement,
one has to consider the fact that the code will be calling a routine to evaluate the
differential equation for various arguments. Adams codes evaluate only at x and
x + h, so no additional requirement is placed on h but this is not true of all methods.
For example, the Runge-Kutta-Fehlberg (4, 5) pair evaluates the differential equation
at x + 12h/13 and x + h. Even if one evaluates these arguments exactly, their dif-
ference of h/13 must be greater than a unit roundoff in order to distinguish them so
one must require at least IhI > 13ulx + hl. The details of the method permit one to
determine rather precise limits on the step size in this way. This is unduly optimistic
though, since one needs a few digits' difference between arguments to distinguish them
in practice, just how much depending on the differential equation and how it is
programmed. In the variable order code STEP [1], which uses a divided difference
form of the Adams methods, we have required

(1) hI _> 4uIxI

to provide a measure of additional protection.

Received March 19, 1973.
AMS (MOS) subject classifications (1970). Primary 65L05, 65G05.
Key words and phrases. Limiting precision, local error, minimum step size, robust software,

roundoff.
* This work was supported by the United States Atomic Energy Commission.

Copyright i 1974, American Mathematical Society

141

142 L. F. SHAMPINE

To illustrate limitations, we use the problem of two bodies in circular motion

(2) Y1 = Y2, y 1 (O) = 0,

Y2 = Y1, Y2(O) = 1,

which is to be integrated over [0, l6ir] using an absolute error test. An IBM 360/67
in single precision has u 9.5E-7 and a CDC 6600 has u 7.1E-15. Using an Adams
code with the requirement (1), we find that at l6ir the step size must be at least 1.9E-4
and 1.4E-12, respectively, on these machines.

Many codes allow the user to specify a minimum step size, the principal aims
being to control the work and to detect trouble spots during an integration. As
applied by a sophisticated user, especially during repeated integrations of a problem,
control of the minimum step size can be informative. However, we feel few users
care about the step sizes taken as long as their code solves the problem with adequate
accuracy and reasonable cost. Few users have the knowledge about their problem to
specify a good minimum step size, especially since it changes as an integration pro-
gresses. This objection is particularly forceful in the context of variable order Adams
codes which may require extremely small steps in a perfectly ordinary computation.
In this context, a minimum step size is singularly unsuccessful in controlling the work
since it can allow enormous amounts of work with an entirely reasonable minimum
step size. Counting function calls or steps is so easy and precise as a control on the
work that this justification of a minimum step size need not be taken seriously. For
these reasons, a number of codes, including those of the author [1], [3], do not allow
the user to specify a minimum step size. Regardless of the code structure in this
respect, if a user cannot be expected to choose reasonable error tolerances, he can
hardly be expected to choose an appropriate minimum step size.

The problem to be solved is

Y1 = f1(X, Y1, Y2, * YN), y1(a) = A1,

A2 = fX, Y1, Y2, * YN), y2(a) = A2,

YN = fN(X, Y1, Y2, * YN), YN(a) = AN.

We are concerned with numerical methods which advance from approximate solution
components y2i y,(xn) to Y.+,i y-(x. + h) by a formula of the form yn+l' =

yn' + hV. Error is measured with respect to a weight vector with components wi in
a suitable norm, usually L2 or L,. To be specific, let us suppose L2 is used since it
is the more common. The user specifies a local error tolerance e. The local error in the
ith solution component in stepping to xn+1 is estimated by len+1i and controlled so that

N \1/2

at each step. For convenience, we shall write expressions like this as ||le||K < e.
(This is error per step control; the analysis is much the same for error per unit step,
I lel K $ Ih le, which is the other common criterion.)

A local error of no more than e is permitted in advancing from xR to xn+, in

PRECISION IN DIFFERENTIAL EQUATION SOLVERS 143

exact arithmetic. There is, however, an additional error in the step due to the use of
floating-point arithmetic. We cannot ask for more than the correctly rounded values
Y.+1i, which is to say, we cannot anticipate that the addition of y7i to hfV can be done
with less than a unit roundoff in the answer Y.+i'. Adjusting the step size affects only
the discretization error of the method, le.+,'. Consequently, it is pointless for a user
to ask a code to adjust h in an attempt to make the total error arising in a step less
than the roundoff error from the addition. That is, if e < ullynd 11K, the user has
clearly asked for too much accuracy. Indeed, unless the local error permitted is rather
larger than this roundoff error, one will see no effect due to changing the step size.
So, one ought, for example, to keep e > 2uJlyn+1JI-.

There is room for considerable variation in applying this test. It is inconvenient
to work with yn+li since it is not immediately available. Typically, at limiting precision,

JhVI << Wly1 so that lyn+,'l ylyl gives a convenient substitute. It is also possible to
actually estimate the error of addition in forming yn+,' but it is better to be con-
servative and to assume a unit roundoff. After trying various possibilities, we found
a simple application to work about as well as any. An important consideration is
that production codes choose their step sizes so that the predicted error is less than
a fraction of e to reduce failures. For example, STEP and the variable order code
DVDQ [2], which uses the difference form of the Adams methods, aim at 0.1 e and
accept errors of e. The Runge-Kutta-Fehlberg code RKF [3] uses 0.8 times the step
estimated to give an error of e. Since it is a fourth-order code using error per unit
step, this corresponds to aiming at (0.8)4e. The code DIFSUB [4] using the Nordsieck
form of the Adams methods varies the fraction depending on the order and on whether
the order is being changed. This is particularly inconvenient for our test. When at
order k it aims at (1/1.2)k+ e; an adequate test can be devised by ignoring potential
changes of order during the step.

The test we suggest is that if a user calls a code with a tolerance such that the
code will aim at an error smaller than 2uJ ylJJK in stepping from xn, to xn, + h, the
code should reject the tolerance and report a value which is permissible. There are
two main reasons for this second test. On machines with short word lengths it is easy
to ask for too much accuracy accidentally. If one seeks maximum accuracy, the test
allows him to ask the integrator for the best it can do. As an example, if STEP or
DVDQ is called to solve (2), the smallest permissible tolerance e satisfies 0.1 E =
2u |I1yolI = 2u hence 1 = 1.9E-6 on the IBM 360/67 and 1.4E-14 on the CDC 6600.
For this particular problem, the true solution has y12(x) + y22(x) _ 1, hence yI lJ K 1
for all n and this limit on e holds at every step. In general, one must ascertain an
appropriate limit at each step.

The problem (2) is one of Krogh's set of test problems [5]. Illustrative computations
using DIFSUB and a CDC 6600 on the whole set can be obtained from the author.
DIFSUB was used because it is widely known and easily available. To make testing
easy, we put a short code "in front of" DIFSUB which imposed the minimum step
size (1) and made optional the use of the second requirement, namely that the code
not aim at a tolerance smaller than 2u yntj K. In all the test problems, the maximum
accuracy possible is obtained and the cost is stabilized. We report here the results
with and without the optional control on the tolerance e for problem (2). The errors
are the maximum encountered at any step during the integration over the specified
interval. Cost is measured by the number of derivative evaluations ND.

144 L. F. SHAMPINE

(0,2r) (0, 6r) (0, 16w)
error ND error ND error ND

without control
IE-12 3E-10 493 3E-9 1348 3E-8 3487
IE-13 2E-11 631 2E-10 1774 2E-9 4624
lE-14 7E-11 1617 6E-10 4924 4E-9 13023
lE-15 5E-10 9216 4E-9 28206 3E-8 75409

with control
IE-12 3E-10 493 3E-9 1348 3E-8 3487
IE-13 2E-11 632 2E-10 1772 2E-9 4619
IE-14 5E-12 674 6E-11 1871 6E-10 4868
lE-15 3E-12 656 7E-11 1849 6E-10 4826

We stress that there are other limitations imposed by the precision and that the
two pointed out here are simple necessary conditions and no panacea. Other devices
which depend on the method, e.g. [6], [7], [8], for detecting and controlling the effects
of limited precision should also be considered when very accurate results are desired.
The codes RKF and STEP have the first, respectively both, requirements written into
them. The usefulness and effectiveness of the two tests have been demonstrated in
steady use of these codes in both academic and industrial environments. Considering
how easy they are to incorporate and how cheap they are, we commend the tests
for general use.

Applied Mathematics Division 5121
Sandia Laboratories
Albuquerque, New Mexico 87115

1. L. F. SHAMPINE & M. K. GORDON, Computer Solution of Ordinary Differential Equa-
tions: Initial Value Problems, Freeman, San Francisco, 1974.

2. F. T. KROGH, VODG/SVDQ/DVDQ-Variable Order Integrators for the Numerical
Solution of Ordinary Differential Equations, TU Doc. No. CP-2308, NPO-11643, May 1969,
Jet Propulsion Laboratory, Pasadena, California.

3. L. F. SHAMPINE & R. C. ALLEN, Numerical Computing: An Introduction, Saunders,
Philadelphia, Pa., 1973.

4. C. W. GEAR, Numerical Initial Value Problems in Ordinary Differential Equations,
Prentice-Hall, Englewood Cliffs, N.J., 1971.

5. F. T. KROGH, "On testing a subroutine for the numerical integration of ordinary
differential equations," JACM. (To appear.)

6. F. T. KROGH, Changing Stepsize in the Integration of Differential Equations Using
Modified Divided Differences, Proc. Conference on the Numerical Solution of Ordinary
Differential Equations (Austin, Texas, Oct. 1972), Lecture Notes in Math., Springer-Verlag.
(To appear.)

7. E. VITASEK, The Numerical Stability in Solution of Differential Equations, Proc.
Conf. Numerical Solution of Differential Equations (Dundee, Scotland, 1969), Springer,
Berlin, 1969, pp. 87-111. MR 42 #2681.

8. E. K. BLUM, "A modification of the Runge-Kutta fourth-order method," Math. Comp.,
v. 16, 1962, pp. 176-187. MR 26 #3190.

