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Vector-Valued Approximation 
and its Application to Fitting 
Exponential Decay Curves* 

By Geneva G. Belford 

Abstract. This paper deals with characterization of best approximations to vector-valued 
functions. The approximations are themselves vector-valued functions with components 
depending nonlinearly on the approximation parameters. The constraint is imposed that 
certain of the parameters should be identical for all components. An application to exponen- 
tial approximation is discussed in some detail. 

1. Introduction. The work reported in this paper was motivated by the following 
problem: Suppose a set of experimentally determined exponential decay curves is given. 
It is desired to approximate the curves by functions of the form a exp(fx), where 
A should be the same for the entire set of curves and a may vary from curve to curve. 
The problem is to determine how such approximation might best be made. This 
problem arises in a number of physical situations. In chemical kinetics, for example, 
monitoring of a chemical reaction which obeys a first-order rate law leads to just 
such exponential data, from which one wishes to extract a best A although the initial 
amount of material (a) varies from experiment to experiment. 

In a previous paper [1], this type of constrained vector-valued approximation was 
studied for the simpler situation where the approximating functions depend linearly 
on the parameters. In this paper, results for nonlinear approximation are presented. 
Section 2 contains a precise formulation of the problem and a characterization theorem 
applicable to the construction of best approximations from general classes of nonlinear 
families. In Section 3, the particular problem discussed in the preceding paragraph 
is taken up. A very simple alternation theorem is obtained, as well as an interesting 
theorem on uniqueness. 

2. Formulation of the Problem and a Characterization Theorem. Let 
g1, g2, * * * , g1 be a given set of real functions continuous on a closed interval I of the 
real line and let g denote the i-dimensional vector-valued function with components 
{gi 1. Let V be an n-parameter family of functions in C(I). Denote an arbitrary element 
of Vby 4(a1, ... , an; x), where (a1, - , an) E Rn is the parameter vector, and assume 
that 4 depends continuously on the ai as well as on x. For any integer m (O _ m _ n), 
we then define the family of approximating vectors 
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F = {(f1(a, x), f2(a, x), , f1(a, x)): 

a = (all, a12, am, a21, * - 2m, * alm, am+,, , an) R 

q = m(l - 1) + n, and fi(a, x) = q5(ail, - am+,, , an; X)}. 

For example, the approximating family for a set of exponential decay curves (as 
described in the introduction) would be defined by q = a, exp(a2x) and m = 1. 
In order to avoid the double-subscript notation, we will henceforth write a = 

(a,, a2, . . 
*, aq). 

The norm used in this paper is the usual uniform norm; that is, if f is any vector- 
valued function with components fi in C(I), the norm N(f) is defined by 

N(f) = max |1filf 

where = maxz,, ft(x)j. An element f in F is then called a best approximation 
to g from F if 

N(g - f) = inf N(g - f) p(g). 
fG F 

One does not in general expect the existence of such a best approximation, since 
best approximations to a single function from nonlinear families often fail to exist. 
Uniqueness of the best approximation is also the exception rather than the rule, as is 
the case for the simpler situation when F is a linear subspace [1]. Comments on 
existence and uniqueness can be provided in particular cases, however, as will be 
seen in the next section. 

In order to obtain characterization results, we first define the notion of "extremal." 
Definition 1. The pair (x, k) is called an extremal of the approximation f(a, ) 

to g if 

Igk(x) - fk(a, x)I = N(g - f(a, )) 

Let Ek(a)= {x: (x, k) is an extremal }. 
Assuming that the partial derivatives Ofk(a, x)/Oai all exist and are continuous 

for (a, x) C R' X I, we then extend the representation condition of Krabs [4] to the 
vectorial case as follows. 

Definition 2. The family F is said to satisfy the representation condition if, 
for every pair of functions f(a, x), f(b, x) in F, there exist real numbers c,(a, b) 
(j = 1, , q) and functions 4Ik(a, b; x) (k = 1, , 1) positive on I such that 

(1) fk(a, x) - fk(b, x) = Ak(a, b; x) c(a, b) (a,X) for k = 1, . 
i=1 0aej 

Extending familiar arguments given by Meinardus [5] and Krabs [4] for single function 
approximation, one then obtains the characterization theorem: 

THEOREM 1. Let F satisfy the representation condition and suppose that p(g) > 0. 
Then f(a, x) is a best approximation to g if and only if there exists no b = (f#, , da) 

C Rq such that, for all k and all x E Ek(a), 

a 

(2) [gA; W fja, X)] Ej o3 Efka, x)/Jogay > O . 
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3. Application to Constrained Exponential Approximation. In this section, we 
consider the particular case of approximation by one-term exponentials (elements of 
E1 = { a exp(fx): (a, ,3) E R2 }), with the exponential factor : constrained to be the 
same for all components. That is, as noted before, we take fk = ak exp(aqx) for 
k = 1, *I* , I = q -1; the resulting family of vector-valued approximating functions 
will be denoted by Fexp. For simplicity, we shall take the interval I to be [0, 1]. The 
existence of best approximations from Fexp is readily demonstrated. The compactness 
of any bounded set If: f E Fex; N(f) < MI is easily deduced from the known com- 
pactness result for I = 1 [6]. The usual existence argument then goes through. 

In order to apply Theorem 1, we must first verify that the representation condition 
holds for Fep. (The smoothness condition prefacing Definition 2 is clearly satisfied.) 
The representation condition is known to hold for exponential functions [4], but 
extension from scalar to vector-valued functions is certainly not obvious, because of 
the requirement that the coefficients c, not vary with k. Letting a = (a1, ., aq) 
and b = (A3, - *, 03), we need (from (1)) 

(3) ak exp(aqx) - 13k exp(3qX) = exp(alx)41tk(a, b; x){ck(a, b) + akcq(a, b)x} 

for k = 1, 2, -- , q- 1. 

For ?4,k to be nonvanishing on [0, 1] as required, the linear factor on the right (in braces) 
must have a zero at the same point as does the left side. This condition leads to 

(4) Ck/Cq = ?ak log(ak/10k)/Q(q - a) (k = 1, 2, ... , q - 1). 

(Equation (4) is obtained under the assumptions that akl.k > 0 (k 1, * *, q - 1) 
and 0l, - a, $ 0. The other cases are readily handled by similar arguments.) Further- 
more, the positivity of l4k requires also that the signs of both sides of (3) should match 
at any point x~. Taking x. = 0, we arrive at the condition 

(5) sgn(ak - k) = sgn(Ck) (k = 1, * . . , q - 1). 

Now since sgn(aAk - Ak) = sgn[aAk log(ak/k)], it is clear that by choosing any C, 

such that sgn c,, = sgn(q - a,) and then solving (4) for cl , , Cq-,, a set of 
scalars cl, -*. , Cq, satisfying (4) and (5) may be found. The functions k(a, b) are then 
defined to be 

ak exp(aX) - 13k exp(j3,X) 
exp(aqx) {CA; + akcx I 

k = 1, .., 
q - 1, 

and the representation condition is verified. 
Theorem I therefore is applicable. In order to deduce an alternation theorem from 

it, we first note the following familiar facts. Firstly, consistency or inconsistency of 
the inequalities (2) does not depend on the magnitude of the approximation error 
(N(g - f(a, - ))) but only on the signs sgn[gk(x) - fk(a, x)], which we shall denote 
by Ak(x). Secondly, a necessary and sufficient condition for the inconsistency of the 
set of inequalities (2) (where (x, k) runs over all extremals) is that the origin 0 = 
(0. , 0) of RJ should lie in the convex hull of the set of q-vectors 

(6) S = {(X)(k -a 
- x) .. . dk(a x)) (x, k) is an extremal}. 
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(This result on linear inequalities may be found in Cheney's book [3, p. 19].) Finally, 
note that by Caratheodory's theorem [3, p. 17] the condition that the origin 0 of R' 
should be in the convex hull of S may be replaced by the condition that 0 should be 
a convex linear combination of some q + 1 (or fewer) elements of S. For our ex- 
ponential approximation, then, the condition is that there exist extremals (xki, k) 
(with k = 1, . , 1, i = 1, * * , Vk, and Elk Vk < q + 1) and nonnegative constants 
Xjk satisfying Zk >i Xki = 1 such that 

E XkiOki exp(aqXk,,) 0 (k = 1 ' q - 1), 
(7) i= 

q-1 Pk 

Z EI 0,X ,Xkj,~akXki exp(aqXk i) ? 0 
k=1 i=l 

(Here we have used O'ki to denote Tk(Xki).) Of course, only those extremals (xki, k) 
for which Xki is nonzero play a role in actually characterizing a best approximation. 
Thus, one immediately sees from (7) that any k for which Vk = 1 does not enter into 
the characterization. Considering the various possibilities involving indices k for which 
Vk > 1, one quickly arrives at the following alternation theorem. 

THEOREM 2. The vector-valued function f is a best approximation from Fex, to g 
on [0, 1] if and only if one of the following conditions holds. 

(I) For some index k, fk is a best unconstrained approximation to gk from E1 (i.e., 
there are three points of alternation if ak X 0 and two points of alternation if ak = 0 

[5, P. 178]) and |jg9k - fkII = N(g - f). 
(II) There exist two indices (say k = 1, 2) with four associated extremals (x11, 1), 

(X12, 1), (X21, 2), (X22, 2) such that a,1 0, a2 X 0, Xll < x12, x21 < x22, and 

ala2= -1, 

a212= 1, 

a'l 1021= -sgn(a, a2). 

Example. Let g = (1, x). The best approximation from Fe,, to g on [0, 1] is given 
by fl = 23eO f2 = 3e2X with A-log 2. One readily verifies that N(f - g) = 3, ex- 
tremals are (0, 1), (1, 1), (0, 2), (1, 2), and the alternation requirements of condition (II) 
of Theorem 2 are satisfied. 

The problem of finding a best approximation to a general g is simplified enormously 
by the knowledge (from Theorem 2) that one need not consider more than two of the 
component functions simultaneously. Notice that the key problem is to determine 
a best aq, since then a set of ak's may be determined from the condition that ak exp(aqx) 
should be the best approximation to gk from the linear family { a exp(aqx): a E R }. 
Thus one would proceed by constructing best unconstrained approximations from 
E1 to each gk. If none of the exponential factors obtained in this way serves as a best aq, 
the next step is to examine all pairs gk,, gk . For many of these pairs, the best approx- 
imation is characterized by condition (I) of Theorem 2 and is therefore of no further 
interest. If best approximations fk,, fk. characterized by condition (II) are then con- 
structed for the remaining pairs, one of these necessarily yields a best aQ. 

This last step-construction of best approximations to a pair of functions {g1, g2}- 

deserves further discussion. We have first tried the straightforward approach based 
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on the fact that if (2) has a solution, a better approximation may be constructed from 
that solution. That is, with any extremal (x, k) of an approximation f(a, x) there is 
associated a linear inequality (from (2)) of the form 

(8) o,,(x) {f a + /3askX } > 0 

If the set of all such linear inequalities (associated with all extremals) has a solution 
/,, 2i, /3, then, for some E > 0, f(a', x) provides a better approximation, where 
a' = (a, + efli, a2 + 0/2, a3 + E/33). Thus by iteratively searching for extremals, 
solving inequalities (8), and correcting the approximation, one may hope to arrive 
eventually at a best approximation. In trials, this method has never failed to converge. 
A Remez-type algorithm has also been coded and limited trials to date show rapid 
convergence. 

Further computational details and test results are available in [2]. One test may 
be worth mentioning here. We artificially generated "experimental" data by adding 
random errors e (1 El < .01) to a set of three exponential curves of the form a&e- with 
a = 0.5, 1.0, 1.5. ("Data" points were computed for 20 equally spaced x-values 
on [0, 2].) Our program, which identified extremals with a tolerance of i0', recovered 
the exponential factor : = -1 as -1.0000. The traditional way of analyzing ex- 
ponential data (least-squares straight-line fit to the logarithms of the function values) 
led to /3 = -0.9988. The difference is largely ascribable to the weighting induced by 
taking logarithms; direct least-squares fitting of exponentials is, however, a trouble- 
some nonlinear problem even for a single function. Simultaneous uniform approxima- 
tion appears to be a very practicable alternative. 

Finally, we take up the question of uniqueness. It is obvious that the factors 
ak (k = 1, 2, * * *, q - 1) are not in general unique. However, it is likely to be the 
parameter aq that is of principal interest, and, as the following theorem shows, this 
parameter is (with a trivial exception) uniquely determined. 

THEOREM 3. Let f(a, x) be a best approximation from Fexp to g. Let a = (a,, * - -, a. 

Suppose that either (i) condition (I) of Theorem 2 holds for some k such that ak id 0, or 
(ii) condition (II) of Theorem 2 holds for some pair of indices ki, k2 such that ak, # 0, 

ak, 5 0. Then if f(b, x), with b = (/1, * - *, Oq) is any other best approximation, a, = ,8a. 

Proof. If (i) holds, the result is an immediate consequence of the uniqueness of 
best approximants from E [5, p. 178]. Now suppose that (ii) holds and for brevity 
let k, = 1, k2 = 2. Assuming that a, a2 > 0, either the following set of inequalities 
or the set with all inequalities reversed must hold. 

(9) /1 exp(Oqx,) - a, exp(aCx,,) -0, 

(10) /1 exp(/,xl2)- a, exp(axl2) < 0, 

(11) /2 exp(0,2x2)- a2 exp(aqxX21) 0, 

(12) /2 exp(/,2X22)- a2 exp(aX22) >_ O 

If equality holds in all four cases, then clearly aq = /3,. Hence, assume that one of 
these, say (9), is a strict inequality. Under the assumption that a, > 0, (9) and (10) 
can only be compatible if 

exp [(a.q - /3q)Xl ] < exp [(a,, - /3q)X12], 

or, since xi, < XI2, a, - /3Q > 0. But if aq - /,, > 0, (11) and (12) are inconsistent. 
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Reversing all inequalities or making the other assumptions on the signs of a,, a2 

leads in the same way to inconsistency if at least one inequality is strict. Hence, 
we conclude that the equalities hold, and a, = /3q. 

The argument above also shows that a1 = 0, and a2 = 12. Therefore although the 
coefficients a,, (k = 1, * * *, q - 1) are in general not all unique, certain of the a,'s, 
in particular those entering into the characterization of a best approximation, are 
unique. 

The theorem of Section 2 should also be found useful in constructing constrained 
vector approximations based on nonlinear families other than E1. The especially 
simple alternation theorem for Fexp depends heavily, however, on the nice properties 
of the exponential function and the fact that each f, depends on only two parameters. 
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