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Differences of Fractional Order 

By J. B. Diaz and T. J. Osler 

Abstract. Derivatives of fractional order, D af, have been considered extensively in the 
literature. However, little attention seems to have been given to finite differences of frac- 
tional order, A af. In this paper, a definition of differences of arbitrary order is presented, 
and A af is computed for several specific functions f (Table 2.1). We find that the operator A a 
is closely related to the contour integral which defines Meijer's G-function. A Leibniz rule 
for the fractional difference of the product of two functions is discovered and used to gen- 
erate series expansions involving the special functions. 

1. Introduction. It is well known that there is a remarkable similarity between 
formulas from the differential calculus, involving the operator D = d/dz, and formulas 
from the calculus of finite differences, involving the operator A, which we define 
by Af(z) = f(z + 1) - f(z). 

In particular, we recall the following similar pairs of formulas [3]: 

( 1 .2l ) DzP = p! Zp?~ 1 p!) = pz~ uP 
( () 

p-n) I (p-n) 

(1.2) DnzP (p n)! i Z (p -n)! 

(1.3) D a = (log a)naz, Anaz = (a - )n Z; 

(1.4) DnDmJ(z) = Dn+mf(Z), 'AnA\f(z) = n+-f(Z); 

(1.5) f(Z) = Ah D a (Z - a)', f(z) = E na (z -a) 
n=O nn= n 

Zn r 

(1.6) f Df(z) dz = f(n) - f(m), >j Af(z) = f(n + 1)- f(m); 

D7f(z)g(z) = Z ( D) Dkf(z) Dkg(z), 
(1.7) k=O k 

A\ j(z)g(z) = E (;$) A\ f(z) Akg(Z + n - k). 

In these formulas, the notation z ` = z(z - 1)(z - 2) ... (z - p + 1) is used, 
with p = 0, 1, 2, . We can also define z P), for arbitrary, not necessarily integral, 
p, by z' = r(z + 1)/r(z - p + 1), in terms of Euler's gamma function. We notice 
that the powers zP play a role, relative to the operator D, which is similar to that played 
by the factorials z P' relative to the operator A. 
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There exists in the literature an extensive "calculus of fractional derivatives," 
in which the order a of the operator D' = da/(dz)a is extended to arbitrary (real 
or complex) numbers. To the best of the authors' knowledge, there does not exist 
an extensive fractional calculus for ha" but only a few scattered remarks in the 
literature ([1], [4]). It is the purpose of this paper to inquire into the feasibility of 
establishing a fractional calculus of finite differences which is comparable to the 
already existing calculus of fractional derivatives and to investigate possible 
applications. 

In the construction of the theory of fractional derivatives, the following three 
features occur: 

(1) When inventing a definition for Daf(z), for arbitrary a, it becomes apparent 
that there are several alternative definitions which are not all equivalent. Thus, 
a particular definition must be selected, and the fractional derivative calculus de- 
veloped for this choice. 

(2) Rules and formulas, similar to those studied in the classical elementary 
calculus, can be derived, which now involve derivatives of fractional order. These 
include the Leibniz rule, the chain rule, Taylor's series, etc. ([6]{13]). 

(3) The fractional calculus permits us to represent the special functions of mathe- 
matical physics in a novel way. For example, the hypergeometric function of Gauss 
is given by 

Fl(a, b rz) _? CI ' Db-C b- (1 a ). 

2F1 
C 

Z - 
r1(b) D ) 

These fractional derivative representations, when combined with general rules and 
formulas described in (2), yield interesting series and integral identities involving 
the special functions. Thus, the fractional derivative provides another tool for 
investigating the properties of the special functions. 

These same three features, mentioned above, also occur in constructing our 
theory of fractional differences. We list these three features below, and summarize 
the principal results of this paper. 

(1) The definition we select for zAf(z) can be given in two equivalent forms, 
one a series, and the other an integral: 

A/f(z) = 
( 

(-1 )k f(z + a - k) 
k=O k 

= P(a + 1) l' f(t)r(t - z - )d 
2iri rc P(t -z + 1) 

The contour C is shown in Fig. 2.1. This definition is discussed in Section 2. 
(2) In Section 4, we derive a Leibniz rule for the fractional difference of the 

product of two functions 

/A(z)g(z) = A (k) /\ f(Z) Akg(z + a - k). 

Notice that this formula, valid for arbitrary a, closely resembles the corresponding 
known formula (1.7), which is valid only for a = n = 0, 1, 2, ... . We show that, 
for suitably restricted functions f(z) and g(z), this series converges for all z in a certain 
left half-plane. 
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In proving this Leibniz rule, we make use of the following series of the Gregory- 
Newton type: 

g(z) = E A' g(z) I=zzo-n (Z -ZO) 

n=O n! 

Since the authors were unable to locate this Gregory-Newton series in the literature, 
its derivation is given in Section 3. 

(3) The fractional difference operator provides another tool for representing 
the special functions of mathematical physics. For example, 

2F1 b- 
a - a -Z t r(b - 

a 
- z) ta+z/a r(a _ Z) C Z 

b - a - zP(a - a-z) z rP(b -z) 

Further representations can be obtained from Table 2.1. 
These fractional difference representations for the special functions, when com- 

bined with the Leibniz rule, yield series expansions relating these special functions. 
These are discussed in Section 5. One of the series we obtain (Example 3) is rather 
involved, and appeared in the literature for the first time only recently. 

2. Definition of Fractional Differences. In this section, we give motivation for 
the concept of fractional differences, state our definition of A af(z) precisely, and 
give examples of Aaf(z) for specific functions f(z). 

We begin with motivation. Consider the following list: 

zAf(z) = (z + 1) - 1(z), 

A2f(Z) = (f(z + 2) -(z + 1)) -((z + 1) - 

= f(z + 2) -2f(z + 1) + f(z), 

53f(z) = j(z + 3)- 3(z + 2) + 3&(z + 1) -(z), 

(2.1) 'A (Z) = (-1 (z + N - k), 
k=O k 

where N is a positive integer or zero. Equation (2.1) suggests that zaf(z) could be 
defined by the series 

(2.2) A f1(Z) = (I) kf(z + a - k) 

for arbitrary a (rational, irrational, or complex), with the binomial coefficient defined 
in terms of the gamma function, provided that the series converges. Of course, 
(2.1) is a special case of (2.2). 

Before examining (2.2) further, we give a second motivation which leads to a 
contour integral representation. Cauchy's integral formula, where N is a positive 
integer or zero, 

DNf(z) = N! 4 f(t) dt 
2iri Y(t - Z)N+ 1 
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suggests that, upon recalling the special meaning of 1/(t - Z) (N+ 1), 

ANf() 2ri (t (t) dt 
-t z)(N+ 1) 

since z = z(z- 1) (z - p + 1) behaves, in the difference calculus, like z' 
in the differential calculus. Therefore, 

A Nf(Z) N! A (t) dt 

(2.3) 2ri Yc (t - z)(t-z - 1)(t -z - 2) (t -z - N) 

_ N! Af(t)r(t-z- N) dt 

2ric rY(t-z +) 

where C encloses the simple poles t = z + N, z + N- 1, z + N- 2,** z in 
the t-plane, and f(t) is analytic inside and on C. Using the residue theorem, we can 
readily see that (2.1) and (2.3) are identical. Further, (2.3) suggests that we define 
for arbitrary, not necessarily integral, a: 

(2.4) af(z) = r(a + 1) f (t)Tr(t - z -a) dt 
2iri ic (t - z+1) 

where C is the contour shown in Fig. 2.1, enclosing the infinitely many simple poles 
of the integrand at t= z+a,z + a-1, z + -2, 

Before showing that (2.2) and (2.4) are identical, we investigate the possible 
growth of f(z), for jz large an C, which will permit the integral in (2.4) to converge. 
Since 

r(z + a)/r(z + b) _ 
Za-b as zj > - , I arg(z)I < ir - E 

[5, Vol. 1, p. 33], a bound on the integrand of (2.4) for t on C is (using the real peri- 
odicity of the sine function, and the fact that-t has a positive real part as t co ) 

f(t)J'(t - z - a) _ f(t)T'(z - t) sin r(z - t) 

P(t - z + 1) P(z + a - t + 1)sin r(t- z - a) 

f< K(z, a) If(t)I I(-ta l 11. 

Here, the constant K(z, a) is independent of t. Thus if we assume the existence of 
positive constants M and p such that 

(2.5) IJ(t) -' M I(-t)a-PI 

for t on and inside the contour C, then 

(t)r(t- z - a) < MK(z, a) j(-t)Y7'-1 
? 

MK(z, a) It1, P(t -z +) = 

and thus 
(i) the improper integral (2.4) is defined, and 

(ii) (2.4) can be evaluated by the residue theorem. 
The poles of r(t- z- a) occur at the points t = z + a- k, for k = 0, 1, 2, 

and the corresponding residues are (- l)'/k!. Thus, the residue theorem applied 
to (2.4) gives 
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r(a + 1) f (t)r(t -z - a) dt _ f(z + at-k)(- )k 

2ri J P(tz +1) - F(a +1) E r(- -k + 1)k! 

E (-1 ) ()f(z + a - k) 
k-0o 

and we see that (2.2) and (2.4) are identical. 
We summarize our conclusions in the following precise 
Definition 2.1. Let f(t) be analytic in a region R containing the straight line 

segment L = It I t = z + a - q, 0 < q}. Let C be the contour (loop) shown in 
Fig. 2.1, which starts at - + i Im(z + a), encloses L in the positive sense, and 
returns to the start without leaving R. Suppose also that for all complex numbers 
t "inside" and on C, there exist positive constants M and p such that 

If(t)I - M Il a-PI 

Then, A f(z) is defined by (2.2) and (2.4) (both of which are shown above to be equal). 
Remark: Definitions involving r(z) become suspect, since the gamma function 

is undefined for z = 0, -1, -2, . Looking at (2.4), we see that it contains the 
factor r(a + 1), which is undefined when a is a negative integer. However, (2.2) 

j i Im ~ ~ ~ ~ett 

FIGURE 2.1. Contour C ofnteratonsedigion R 

old% 

1 ~~~~~~Re (t) 

FIGURE 2. 1. Contour C Of integration used in the definition Of AN af(z) 
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(which is equivalent to (2.4) when a is not a negative integer) is defined when a is 
a negative integer, because the binomial coefficient is then to be interpreted as 

(aA a a- 1 a-k + 1 
k 1 2 k 

rather than 

) ro(a' + 1) 
r(a - k + 1)k! 

Thus, (2.2) provides us with the analytic continuation of (2.4) to the case where 
a is a negative integer. 

Another potential source of difficulty is the factor r(t -z - a) in the integrand 
of (2.4). However, this trouble is avoided by requiring that the contour C not touch 
the line L, so that t - z - a is never zero or a negative integer. 

Table 2.1 lists the fractional differences of selected functions. Item 7 of this 
table is of particular interest. It shows that a is an operational device well suited 
to represent the contour integral which defines the G-function [5, Vol. 1, p. 144, 
item (4)]. 

Finally, we note that our above definition for fractional differences is certainly 
not the only reasonable one. Our definition was obtained by generalizing the formulas 
(2.1) and (2.3) to arbitrary nonintegral N. Notice, however, that if we rewrite (2.1) as 

NN 

ANf(z) = E (-1) f(z + k), 
k=Ok 

then the series definition 

(2.6) Af(z) = E (-1)r k( )(z + k) 
k=Ok 

is suggested. (2.6) is not equivalent to our definition (2.2). We will not pursue this 
question of alternative definitions of fractional differences in this paper, but will 
investigate consequences of the particular definition (2.2) studied above. 

3. Gregory-Newton Type Series. Having examined the concept of fractional 
differences, we set it aside in this section, and investigate an expansion of the Gregory- 
Newton type: 

AnWg(z) jz=z.- (z -ZQ)n 
(3.1) g(z) = nE 

where (a)n = a(a + 1)(a + 2) ... (a + n - 1)- r(a + n)/r(a). We return to 
fractional differences in the next section, where (3.1) plays a central part in the 
derivation of a "Leibniz rule" for the fractional difference of a product. 

We derive (3.1), as the authors have been unable to locate it in the literature. 
THEOREM 3.1. Let G(t) be a piecewise continuous function for 0 < t, such that 

fG(t)f < Ke-t 

where K and -y are real constants. Let 
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g(z) = f etzG(t) dt 

for Re(z) < -y. Then, (3.1) is validfor Re(z) < -y and Re(z,) < -y. 
Proof. Let t be a real variable. 

etz = etzo(e-t)z0-z -etz?(1 + (e- - 1))o-z 

TABLE 2.1 

f (Z) Aaf (Z) 

1 Re (a))>O 0 

2 aZ 1a>1 aZ (a-i) 

3 (p) _ r (z+ 1) sin (7rz)r(a-p) z(p-a) 3 z 
r(z-p+l) sin (Tr(z+a))r(-p) 

Re (a-p)>zO 

4 A Re (B-A+a)>O 1'(B-A+ r(A-B-z) 
r(B-z) 1' B-A) 1' B-z) 

5 r(A-z) t |t|<1 A (A- -z) - Fz-a a, A- -z . 

r(B-z) 'rP(B-ci~z 2 1 ~B-ai-z 

1I r(Ak-z) t- | 1 r(A k-a-z) t- 0-Z 

6 k=1 k=l 6 M '~ M 

II r (Bk-Z) r(B k-a-z) 
k=l k=l 

ItI<1, for N=M a, A -a-z A N-a-z 
N+l FML; 

all t, for N<M B a-z a-z 

| rP(bj-z)tI ml z+a+l~a2 .....,a p 
7 j=l r (a+l)G t b b 

j= m 
- 

p1, ..,b " 
H (a j-z)j II r(l-b j+z) P 1' q-1i 

j=2 j=m+1 q- 

p>l, and either p>q 

or p=q and ItI>1 
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Using the binomial theorem, that is 

(1 + X)p = E , (-x, 
n=O n! 

where IxI < 1, while p is arbitrary, we get 

(3.2) ez etz? 
E -zoX(1 -et) = Ee t (o-n)(et - l(Z-zo) 
n=O n!n=O n 

for all z and zo, provided that Ie-t - II < 1, which implies that t > log 2, since 
t is real. Since Aznetz = (et- 1)netz (see Table 2.1), we can rewrite (3.2) as 

(3.3) e tz = E _ ze z=zo- (z - 
n=O n 

for all z and zo, and for t> log 12 

Multiplying both sides of (3.3) by G(t), and integrating from 0 to co with respect 
to t, we get 

(3.4) g(Z) = f eG(t) dt = J A ze l=z-n (z -zo)nG(t) dt 

where we note that, for Re(z) < oy, the integral is finite. We shall show below that 
this integration can be performed termwise, and thus 

(3.5) g(z) = E P 1etz G(t) dt ( - 
n=O JO Iz=zo-n 

Since the operator Az' results in a finite sum, it commutes with the operator fr dt. 
Thus, we get 

f izet| G(t) dt = Az(f etzG(t) dt) Oz=zo-n z z= z -n 
= zg(z) Iz=zo-n. 

Thus, (3.5) reduces to (3.1), and the proof will be completed-as soon as we verify 
the term by term integration of the series in (3.4). 

Let an(t) denote the general term of the series which appears under the integral 
sign in (3.4). It is well known that 

E an(t) dt = 
f an(t) dt 

on=o n=O 

provided that fr w 
E an(t)l dt exists [15, p. 45]. Using Table 2.1, we see that 

an(t) = etZ =zo-n (z - zO)G(t)/n! 

= (et - 1)net(z?)(z - zO)nG(t)/n! 

= (1 - e-t)etz?(z - zO)nG(t)/n!. 

Using the bound on G(t), from the hypothesis, we get 

lan(t)l < I K(1 - t)net(z )(z- zo)n/n! 
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But 

(z-z)o)_ r(z-zo + n) no -io 

n! r(z - zo)r(n + 1) r(z - zo) 

as n grows large [5, Vol. 1, p. 33]. Thus, 

la,(t)l - K'e Re(zo- )(1 - e-t)nnRe(z-zo-1) 

where K' is a positive constant, and we must show that f . * * dt of 

E Ia,(t)I < Ket Re(zo- y) a nRe(z-zo-l)(1 - 

n-i n-1 

exists. The series on the right-hand side of this last expression has been studied 
in the literature, and we have [15, p.225] 

E nRe(z-zo-l)xn r(Re(z -zo))/(l -.X)Re(z-z) for Re(z - zo) > 0, as x - 1, 
n-1 

- -log(l -x) for Re(z - zo) = 0, 

< En Re(z-zo-l) for Re(z - zo) < 0, 
n-1 

where 0 _ x < 1. Thus, we have 

Z lan(t)I ?< K'r(Re(z - zo))et Re(z-y) for Re(z - zo) > 0, as t + 0, 
n-1 

< K'tet Re(zo-7) for Re(z - zo) = 0, 
co 

< E nRe(z-zo-l)etRe(zo-y) for Re(z - zo) < 0, 
n-1 

for 0 < t. Since Re(z - -y) and Re(zo- a) are negative, by hypothesis, we can 
integrate this last expression from 0 to Xo in t, and the theorem is proved. 

An interesting example. The theorem just proved tells us that (3.1) is true, provided 
Re(z) and Re(zo) < y. Are both these conditions necessary? It is of interest to ex- 
amine a special case of (3.1) to gain some insight into the meaning of these restric- 
tions. If we select G(t) = e7 where oy is real, then, for Re(z) < y, 

co 
z t 1 L(,y - z) 

g(z) = J e 'G(t) dt = i-z - - z + 1) 

Substituting this value of g(z) into (3.1), we get (after some simplification and the 
use of Table 2.1) 

(Z Zzo) F(YZ - ZOZ 

-Yz ' -Z E_ (11 - ZO + O~n L-t - ZO + . 

The right-hand side converges absolutely provided Re(z) < -y, and can be summed 
[5, p. 99] to yield the left-hand side. Thus, we see that the condition Re(z) < -y is 
needed for the convergence of the series (3.1) in this example. The condition Re(zo) < -Y 
seems to be important only to insure that g(z) is defined by the integral above. 
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We will not pursue this question of the importance of the restrictions listed in 
Theorem 3.1 further. Rather, we use this result as a basis to prove the Leibniz rule 
for fractional differences in the next section. 

4. The Leibniz Rule for Fractional Differences. In this section, we derive the 
Leibniz rule for fractional differences 

(4.1) A f(Z)g(Z) = E (A)Aaf(z)Ang(z + a - n). 

The form of (4.1) is readily anticipated when we recall the known form of the Leibniz 
rule, 

AN f(Z)g(z) = NA ( )ANHnf(z)Ang(z + N - n), 

familiar from the study of finite differences, in which N = 0, 1, 2, . 

THEOREM 4.1. Let G(s) be a piecewise continuous function for 0 < s such that 
(i) I G(s)I ? Me-",8 where -y is real. 

Let g(z) be defined by 

(ii) g(z) = f e88G(s) ds, for Re(z) < T. 

Let z and a be fixed numbers such that 

(iii) Re(z + a) < -y- 1. 

Let R be a region in the t-plane containing the horizontal semi-infinite straight line 
segment L = {t I t = z + a - q, 0 < q}. Let f(t) be analytic on R, and let 

(iv) If(t)l ' K j(-t)+l-PI eRe(I) 

for fixed positive constants K and p, and all t in R. Then the Leibniz rule for fractional 
differences (4.1) is valid. 

Proof. Replace z0 in Theorem 3.1 by z + a, and replace z by t. We have, then, 
for Re(z + a) < -y and Re(t) < -y, 

c0 

gt) = ? (g(z + at - n))(t - z - a)n/n!. 
n=O 

Multiply both sides of this relation by 

F(a + 1) f(t)r(t - z - a) 
2iri r(t-z+ 1) 

and obtain 

r(a + 1) f(t)g(t)P(t - z - a) 
2iri r(t - z +1) 

(4.2) 
co8ng(z +a -n) r(a + 1) r(a-n + 1)f(t)Y (t-z--a + n) = v: _ 

n=o n! r(a-n + 1) 2ri r(t-z + 1) 

Let C be the contour of integration shown in Figure 2.1 (and described in Definition 
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2.1 of atf(z)). If we integrate both sides of (4.2) over C (with respect to t), and assume 
that (i) the integrals exist, and (ii) we can integrate the right-hand side of (4.2) term 
by term, then we obtain the desired Leibniz rule at once. 

It is clear that the integrals just mentioned exist, as follows from the discussion 
in Definition 2.1, together with items (i) through (iv) of the hypothesis. Let un(t) 
denote the nth term on the right-hand side of (4.2). If we can show that 

fo Z:n=n I u.(t)i Idtl exists, then we know that term by term integration is permissible 
[15, p. 45]. 

To this end, we first estimate 

/fng(Z + a - n)I = 
n f e(z+a-n)SG(s) ds 

=i,An Zv(z + a -on) S()d =f ZXe 3~G(s) ds 

= ftl; (e- 1)ne(z+a-n)sG(s) ds 

< ' M 1 -e)n Re(z+a -y)s 
Mo ds. 

Using item (iii) of the hypothesis, we get 

I/'Ag(Z + a - n)I ? M f (1 - e8)ne- ds = MI/(n + 1). 

Now, it is clear that 

X IUn(t) I 
n=O 

.(a + F 1) f(t)(t- z -1+ a) (t- z -1-a)n+ M 
A4 3) < E 

.,=O 2ir P(t-z+ 1) n! (n+1) 

< I(a + 1) M f(t)F(t-z- - a) E t - z -l- )n+ 

= 2ir F(t-z + 1) n=O (n +1)! 

It is well known that this last series converges if Re(t) < 1 + Re(z + a) [5, pp. 43, 
44]. This inequality shows that the series in (4.3) converge for each t on the contour 
C. Thus, we can integrate over C, provided only that this last expression tends to 
zero sufficiently fast on C as Re(t) c-o. It remains, then, to estimate 

S = E I(t - z - 1 - a)n+i/(n + 1)!I 
n=O 

when Re(- t) is large. 
To this end, keep the contour C between the two lines 

(4.4a) Im(t) = Im(z + a) + 1. 

Let N be a natural number 

(4.4b) 3 < N, 

and consider only complex numbers t on the contour C such that 
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(4.4c) 1 -- N ? Re(t-z--a) < 2- N. 

The relations (4.4a) and (4.4c) confine t to a rectangle in the complex plane, having 
base 1 and altitude 2 (see Fig. 4.1). By increasing N, (4.4c) will permit us to consider 
t further and further to the left on the contour C. Now, the sequence of numbers 
(see Fig. 4.2) { ak, t - z - a - 1 + kj }I k0 is such that ao > a, > a2 > > 

aNl, and aN < aN+1 < aN+2 < ..., because (4.4c) implies that 

0 < Re(t -z -a- 1 + N) < 1. 

Thus 

+ t St uxt t IM(t) 

~~~~~~+ ~ ~ ~ ~ Z 
c I I 

'j 
z+oC 

A 

L I I : \ \ W :II, 1 

+ -~-1-t Is-----j I 

N=6 N=5 N =4 N=3 N=2 N=1 Re (t) 

FIGURE 4.1. Geometry of relations (4.4a), (4.4b), and (4.4c), with t shown in the block N = 4. 

I 1 i I A Irrmi(t) 
---1 ---r---ie- --- I ---- 

I j I = IX a 
L I I I I I a 

_~~~ I _ 
I 

- I _ - - + 

Re(t) 

FIGURE 4.2. The geometry of the sequence a 1, a2, a3,** 
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E z (t-z- )1 = (. ..)+ z 
n=O n! .=o n=N+ 1 

N 
I(t - z - a 1)nJI + (t - z - a - 1)N |j I(t - z - a - 1 + N)rI 

n=O n! N! 1 (N + 1)r 

(1 - Re(t - z - a - 1))f + | - z - a - 1)I 

n=O n! N! 

0 (1 + Re(t -z -z a - 1 + N))r 
_ (N + )r 

where we have used 

1 - Re(t - z - a 1) It - z - a 

> it - z- al > ... > It z ae 2 + NJ 

in the first series, and have used 

1 + Re(t - z -a - 1 + N + k) > I(t - z -a- 1 + N + k)I 

in the second series, k 0, 1, 2, . . The first series in this last expression is a partial 
sum of the exponential series, while the second is of hypergeometric type: 

co- (a).(b). _ F(c)FP(c -a-b) 1 + 
, (c)n! - F(c )F(c - b) where b = 1. 

n- (Onn ! P(c - a)P(C- b) 

Therefore, 

S < e(2- R(t - _ -a)) + I(t-z -a- I)NI F(N + I)F(-Re(t-z- a)) 
S < exp2 - Re~-z-a))+N! F(N)JP(I - Re(t - z - a)) 

S < exp(2 - Re(t - z - a)) + 
(2- Re(t-z-a))N N 

N ! (- Re(t - z-a))' 

(2 - Re(t - z - a)) (2 - Re(t - z - a)) N- 

S < exp(2 - Re(t - z - a)) + (-et-z-a)N-1! 

Looking at the second term in this last expression, (4.4b) and (4.4c) imply that 

O<2- Re(t-gz-a) < N + 1 
- Re(t- z-a) =N-2= 

and since xN-/(N - 1)! < e' for x > 0, we get 

S < exp(2 - Re(t - z - a)) + 4 exp(2 - Re(t - z - a)). 

Therefore, 

S < 5 exp(2 - Re(t - z - a)). 

But this last relation is independent of N, and (4.4b) shows that this argument is 
true regardless of how large Re(- t) becomes. 

Returning to (4.3), we substitute this last estimate, and obtain 
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EIu(t)I 5M Ir(a + 1)1 f(t)r(t - z -a -) 

(4.5) n=O 27r POt- Z+ 1) 

* exp(2 - Re(t - z - a)). 

In our discussion of Definition 2.1, we saw that 

Ir(t - z - a - i)/r(t - z + 1)1 ? K' 1(_t)-a-2I 

for t on C (K' independent of t). Substituting this last relation and item (iv) of the 
hypothesis into (4.5), we get 

Ea lu'(01 _< Ml' l- t) 1 Pl, 
n=O 

where the constant M" does not depend upon t. Thus 

E u.(t) dt 

exists, and the theorem is proved. 
In the next section, we will derive several interesting results from our Leibniz 

rule (4.1), by simply selecting specific functions for f(z) and g(z). However, we note 
at this time that items (i) and (ii) of the hypothesis of Theorem 4.1 may be difficult 
to check. This is because, after first selecting g(z), we must find G(s) such that 

g(z) = f e"ZG(s) ds, 

and finally we must investigate G(s) to determine the critical constant -y such that 
jG(s)j < Me-". Fortunately, the existence of G(s) and its growth have been studied 
in the literature [14, p. 30]. Using this reference, we see at once that items (i) and (ii) 
in the hypothesis of Theorem 4.1 can be replaced by items (i) and (ii) in the corollary 
below. Also, item (iv) can be replaced by 

lIf(t)l ' KecRe(t) C>1 

which is stronger than (iv), but better suited for applications. 
We summarize our conclusions in 
COROLLARY 4.1. Let 
(i) g(z) be analytic for Re(z) < -y; and 

(ii) jg(Z)j ? MjZ-kl for Re(z) < y, where M > 0 and k > 1; and 
(iii) f(t) be analytic on R (defined in Theorem 4.1); and 
(iv) jf(t)j ? KecRe(t) for some fixed K > 0 and c > 1, and all t in R. 
Then the Leibniz rule for fractional differences (4.1) is validfor 
(v) Re(z + a) < y - 1. 

5. Applications to Infinite Series. In this section, specific functions f(z) and 
g(z) are selected for use in our new Leibniz rule (4.1). Table 2.1 is used to compute 
the differences Aafg, Aa-f, and Ang encountered. Several interesting results are 
found to be special cases of our Leibniz rule for fractional differences. 

Example 1. Let f(z) = w Z and g(z) = r(a - z)/r(b - z), a and b real, and w 
positive. Substituting directly into (4.1) and using Table 2.1, we get, after minor 
simplification, 
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(5 1) 2F -?, a -Z a a 
e=( ~ ,(?)n (b - a)n ( 

n 

) (5.1) 2FlL n=O (b- Z- a~nn 

Expressing the right-hand side as a hypergeometric function 2F1, we get the known 
result [5, p. 67, (2)] 

-a, a - z-a-ab-a 
2F1 L | - W) 2F[ 

b - z-al b- z -aW 

Next, let us examine the restrictions imposed by Corollary 4.1. Item (i) reveals that 
My = a. From the relation 

g(z) = r(a - z)/r(b - Z) _ (_Z)a-b 

so often used in this paper, we see that (ii) is satisfied if we take a - b < - 1. Items 
(iii) and (iv) can be satisfied by taking w < e-l and item (v) by Re(z) < - Re(a) + 
a - 1. It is clear from (5.1) that these restrictions are sufficient for the convergence 
of the series, but it is also clear that they are too strong since the series converges 
for jw/(w - 1)I < 1, which implies that Re(w) < 12. 

Example 2. Looking at our Leibniz rule (4.1), it is quite clear that we can inter- 
change f(z) and g(z) on the left-hand side, but this is not clear on the right-hand 
side. In fact, very different restrictions are imposed on f(z) and g(z) in Corollary 4.1. 
Let us experiment, and interchange f and g in the preceding example. Thus, we take 
f(z) = r(a - z)/r(b - z) and g(z) = wZ. Substituting directly into (4.1), using 
Table 2.1, and simplifying, we get 

r(a - a - z)w- 9F F-a, a - a-z 2 
r(b-a- a z) - L b-a-z j 

= ( 7rr(a - a z + n)(w 1 
- 

-, -a +n 

n n! r(b- a)r(b-z) sin 7r(b- a + )( + a- b-a + n) 

That is, 

2F1[ -aw] 

r(b -a - z)r(b - a + ae) (-e)j(a -a ( - 
W)n 

r(b-a)r(b-z) nO (a-b- +- n!a- / 

r(b- a +a)Fr(b - a-z) F-a, a- a- z - 
r(b - a)r(b - z) 2F1Lb a+ 1 1 ] 

which is "one half" of the correct identity [5, Vol. 1, p. 70, (6)], unless a is a positive 
integer or zero. Thus, we see that violating the hypothesis of Corollary 4.1 may 
lead to wrong results. 

Example 3. If we take 

a R Z) _ r(a- z) IX-1 r(a- Z) 
flj= i P(bk - z) Jk . - Z) 

and 
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g kz = 1 r(c' - Z fJZ Fk= r - z) 
Z) k = ~k Z) H k =1(!k z TJ~=~i F~d,~ -z) rl= P(a' z) 

in our Leibniz rule (4.1), we obtain 

p+rFq+s -a, a1, , a.-1, C1, * . . . 
Cr | 

bl, *.., bq, d1, . , ds 

- , (-1Y (-a-),. J7k-1 (ak)n Tk=l (ak)nx 

n=O n !k rk=1 (bk)n k = 
I (0k)n 

(5.2) r~-a + n, a, + n, , aP.- + n, a1 + n, ., t+ n |l 
.p+tFq+u x 

_+L b + n, ., b + n,1 + n, .. ,fu + n _ 

-n, C1, . * Crj Cri, * , u 

*+r+uFs+t Y 
_ di, * . .*, d., a,1, .* . *, at 

where we have used the condensed notation ak = ak' - a - z, bk = bkt - 

a -z *Z etc. 
To obtain the restrictions imposed on (5.2) by Corollary 4.1, we use the well- 

known asymptotic approximation [5, Vol. 1, p. 32, (2)] 

(5.3) r(z + a) - (27r)l/2ezz(z+a)l/2 

as z* co and jarg(z)l < r - E, e > 0. Substituting (5.3) into the definitions of 
f(z) and g(z), we obtain 

1(z) - (2r)(P+ I-,-u-l)/2 e(p+ t--u-l)z X-z 

.(_)(-z-1/2) (p+t-q-u-l)+ +ak'+ak-Ebk'-Ek 

and 

g(z) (27r)(r+u-s-t)/2 e(r+u-s-t)zy-z 

.(_)(-z-1,/2) (r+u-s-t)+Eck'+E~k'-Edk'-Eak' 

as -z* o and larg(-z)l < r - E, E > 0. Thus, we see that the terms of the form 
(- z)P (- Z) dominate these asymptotic expansions. We see, from Corollary 4.1, that 
we require 

(5.4) p + t-q-u- 1 < 0 and r + u-s-t < 0. 

We also see that x and y are arbitrary, and that we should take 

Re(z + a) <y + 1, 

where 

,y = Minj Re(a'), Re(a'), Re(c'), Re(o3); k = 1, 2, . . 

This series (5.2) can be found in [5, Vol. 2, p. 11, (27)]. Our restrictions (5.4) 
do not seem to be given in the list in this reference. 

Example 4. If we select 
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T~~~kk=2 al~ ~ ~r kk 
1 Z)k- 

) a 
1 rusk Z) 

lk 
= 2 r(ak z) Hk-m+l r~ k+Z ~k=l ~k Z 

and 

lHk=i r(Bk z)y fJk=i r(ak - Z) 

g(Z) =Jk=2 r(Ak - Z) TLQ-ZM1 r( - Bk + Z) R| i r(3k - Z) 

for use in our Leibniz rule (4.1), we obtain 

(m.+Ml K + a - n + 1, a2, *. , a*, AP, 
Gp+P-l ,+Q-1 Xy 

b1*, , bi, * * *, Bbm...BQb1q Jz 

(5 5 =a P+ Q+R, VX\z + - n + 1, a2, . .. ., a, ?g, . .. . 
as n=o bis * .. * bm5 p1s .. * * 

OR5 bm+15 .. * * 
q_ . 

b lz, 

M+S,1 1|z + (X + 1 5 A25 * AP5 01, 
.. * O R 

* GP+R,Q+ S Y. 

B1, *... , Bm, a1, *... * as, BM+1, ... , BQ_1, Z + a - n 

(5.5) is a "multiplication theorem" for the G-functions. 
Again, we use (5.3) to determine the nature of f(z) and g(z) as z grows large. 

We find that the asymptotic expansions for f(z) and g(z) are dominated by the terms 

(_z)( z) (q+R-p-S) and (_z)(`z) (Q+S-P-R 
), respectively, where zI -> o and larg(-z)l 

_ 7r - E, E > 0. Thus we see from items (ii) and (iv) of Corollary 4.1, that we have 

the restrictions 

(5.6) q + R -p- S < O and Q + S- P-R < O. 

From items (i), (iii) and (v) of that corollary, we see that we must take Re(z + a) < 

y - 1, where y = MinIbk, Bk, ak, t3k} 

6. Concluding Remark. This paper has provided only a brief exploratory 

journey into the yet undiscovered area of fractional differences. In fact, we seem to 

raise more questions than we provide answers. In particular, we note that only one 

of several possible definitions for Aaf(z) has been used throughout this paper. Alter- 

native definitions remain to be studied and their interrelationship clarified. It would 

also be of interest to study a fractional calculus involving an arbitrary span "h", 

that is to say, where Af(z) = f(z + h) - f(z), and to examine the natural 

limit limo iaf(z)/ha and its relation to Daf(z). Examination of natural rules, such 

as the "law of exponents" A' a' = ia + A, the chain rule, etc., remain to be performed. 
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