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A New Algorithm for the Chebyshev Solution of 
Overdetermined Linear Systems 

By Paul T. Boggs 

Abstract. Let x(p) be the point which minimizes the residual of a linear system in the 4, 
norm. It is known that under certain conditions x(p) -> x*, the Chebyshev or loo solution, 
as p --> o. A differential equation describing x(p) is derived from which an iterative scheme 
is devised. A convergence analysis is given and numerical results are presented. 

1. Introduction. The purpose of this paper is to develop an algorithm for 
finding the best solution to an overdetermined system of linear equations. Let 

(1.1) Ax = b 

denote the linear system where A is an (M X N) matrix with M > N, x E RN (real 
Euclidean N-space) and b E RM. Then if 

(1.2) r(x) = Ax- b, 

the problem is to find a point x* E RN solving 

(C) min I r(x)IK,. 

The algorithm developed here is based on Polya's algorithm (see, for example, Cheney 
[6, Chapter 2]) and the fact that the solution of (C) relies only on a particular set 
of N + 1 equations, called here the critical set. Polya's idea is to find points x(p) 
(assumed to be unique) solving the minimization problem 

(L) mnm InIr(x)II| 

for a set of values of pi such that pi -> o. It is known (Cheney [6, Chapter 2]) that, 
if x* is unique, then x(pi) -* x* as i o . If x* is not unique, then x(pi) tends to one 
of the several solutions. In practice, one usually does not have to wait for {x(pi)} 
to converge since only the critical set of N + 1 equations need be determined after 
which the problem can be solved exactly. For "nice" problems, this critical set of 
equations is readily apparent for small values of p. (See Goldstein, Levine and Here- 
shoff [13] for computational aspects of Polya's algorithm.) 

The currently popular methods for obtaining the Chebyshev solution to an 
overdetermined linear system stem from the simplex method for linear programs. 
This approach was first advanced by Stiefel [21] and [22]. (See also Cheney [6, Chapter 
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2].) The idea for Stiefel's exchange algorithm rests on solving the dual of a linear 
program derived from the original system. Many modifications to Stiefel's original 
exchange algorithm have been proposed including a stabilizing modification of 
Bartels and Golub [2] and a revised exchange rule to attempt to handle non-Haar 
systems by Duris [9] and Duris and Sreedharan [11]. 

Osborne and Watson [19] very nicely rederive the relationship between the ex- 
change algorithm and the simplex method for solving the dual linear program men- 
tioned above and show that the classical restrictions for computing the solution 
can be relaxed almost entirely. In particular, they show that the Haar condition is 
overly restrictive and that the difficulties arising from non-Haar systems can be 
resolved by using the standard degeneracy handling techniques associated with the 
simplex algorithm. (See for example Dantzig [8] or Hadley [14].) Barrodale and 
Young [1] provide ALGOL programs for solving the overdetermined linear systems 
using a modified simplex algorithm. The exchange algorithms, however, do not 
usually include such degeneracy handling procedures and thus may cycle when given 
non-Haar systems. Their advantage is that these extra procedures are not often 
needed (see Duris [9]) and thus the exchange algorithms are very efficient for this 
particular problem. 

A sufficient condition for the above procedures to work is that the rank of A 
be N, although Osborne and Watson point out that the simplex algorithm can solve 
the problem even if the rank of A is less than N. A condition sufficient to guarantee 
convergence of the algorithms developed here (see Section 3) implies that A has 
rank N; thus our assumption is stronger. We may be able to relax this condition 
however, by using a generalized inverse on the right-hand side of (2.3); but this has 
not been pursued. 

Although the linear programming approach appears to have completely solved 
the problem, Karlovitz [15] gives a procedure for efficiently obtaining solutions to 
(L) when p is even and, in [16], claims that this procedure is very efficient for ob- 
taining the Chebyshev solution in the continuous case, i.e., for solving Lc. problems. 

The development here is mostly motivated by the similarity of Polya's algorithm 
with other schemes involving the use of a parameter. For example, many authors 
consider the use of a one-parameter imbedding to solve general nonlinear systems. 
(See, for example, Meyer [17].) In this procedure, a sequence of related problems 
(one for each value of the parameter) is solved. Under certain continuity assumptions, 
the solutions of these related problems lie on a differentiable trajectory which is 
conveniently described by a differential equation and which tends to the solution 
of the original problem. In Boggs [3], this resulting differential equation is efficiently 
integrated by a class of weakly A-stable techniques. The problem here, therefore, 
is to derive the differential equation describing x(p) and then to modify it so as to 
ensure certain desirable stability characteristics in the solution. In this approach, 
as in the technique of Karlovitz, the actual solution to problem (L) for the various 
values of p need not actually be found. The advantages of this approach are that 
the ideas seem to be directly generalizable to nonlinear systems and that the technique 
is not at all affected by non-Haar systems and thus no special techniques need be 
established. 

In Section 2, we proceed informally to derive the differential equation describing 
x(p), establish the basic algorithm and propose some computational modifications. 
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In Section 3, we cite conditions for the local convergence of these algorithms without 
regard to the conditions necessary for their derivation. Finally, in Section 4, we 
comment more specifically on the computational procedures and present some 
numerical results. These results indicate that our algorithms are potentially com- 
petitive with the exchange algorithms but that several problems still remain. 

2. Algorithms. The basic differential equation describing x(p) is derived by 
recalling that x(p) minimizes (L). Thus, since I Ir(x)l j, is differentiable with respect 
to (wrt) x, the gradient of I r(x)j 1, wrt x is zero at x(p). To facilitate differentiation, 
we consider 

(2.1) V(||r(x)l I) = 0, p > 1, 

since the minimum of iir(x)ii, must occur at the same point as the minimum of 
r(x)jjP. Thus we obtain from (2.1) that 

V(Ijr(x)IIl) = p AT|r(x) 

and, therefore, x(p) is a solution of 

(2.2) A Ir(x)I`1 = 0, 

where A = (di) is such that 

- 
_ fadi if ri(x) > 0, 

-aij if ri(x) < 0, 

and Ir(x)i -' is a vector the ith component of which is ir1(x)iP . Then, we substitute 
x(p) into (2.2), differentiate both sides wrt p and solve for x'(p) to obtain 

(2.3) x'(p) = -(p - I)-'(ATEA)-l ATu 

where E = diag(jrilP2), i.e., a diagonal matrix with the ith diagonal entry being 
ri rpj2, and u a vector whose ith component is irilPj In irij. 

We may now equip (2.3) with an initial value, namely the easily obtained least 
squares solution 

(2.4) x(2) = (AT A)-'(A Tb) 

(assuming of course that the columns of A are independent) and consider the nu- 
merical integration of the initial value problem (IVP) (2.3), (2.4). Before proceeding 
further, however, we note that there is an apparent sign ambiguity if one of the 
residuals has value zero. This is easily resolved by noting that if ri = 0 for some j 
then Iri I In ri is also zero since lima,0 + x In x = 0. Thus, in the multiplication of ATu, 

the ambiguous elements of A always multiply a zero element in u and hence either 
choice may be made. 

If the columns of A are independent, then the solution x(p) of (L) for each p E 

[2, o ] is unique. This follows from the strict convexity of the 4, norm and, for example, 
the Unicity Theorem of Cheney [6, p. 23]. Furthermore, since JiAx - blip is con- 
tinuously differentiable, x(p) solves (L) if and only if (2.2) holds. This implies that 
x(p) is a solution to (2.3). Let +(p) satisfy (2.3). Then it follows that AT jr(0(p))'P-- =c 
where c is a constant, for all p ? 2. The initial condition 4(2) = x(2) implies that 
c = 0 and thus +(p) = x(p) for p > 2. Therefore, the IVP (2.3), (2.4) describes the 
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curve x(p). In the sequel however, we shall no longer consider problem (L), but 
we shall have occasion to consider other differential equations and we will denote 
their solutions by x(p). (The particular differential equation will be clear from the 
context.) 

To investigate the properties of (2.3), (2.4), we consider first the simplest case, 
i.e., when M = N + 1. In this case, 

(2.5) fr.(x*)I = A, i = 1, ., M, 

where A is a nonnegative constant and, if we define f by 

f(x, p) = -(p - 1)-(ATEA)-' TU, 

we obtain that f(x*, p) = (p- 1)- '( In A)(ATA)-'ATe where e = (1, 1, )T. 
In general, f(x*, p) only goes to zero as p - o . Numerical integration of (2.3), (2.4), 
however, produces a sequence which tends to make the residuals have value one, 
i.e., the numerical solution tends to an apparent zero of u(x). However, u(x) cannot 
have a zero unless A = 1 and, therefore, the numerical scheme is being fooled by 
an approximate zero of u(x). We thus consider resealing the problem so that A = 1, 
thereby moving the true solution to this attractive point. This procedure effectively 
creates an asymptotically stable solution of the differential equation and allows 
the use of weakly A-stable methods to efficiently integrate this equation. If M = 
N + 1, and y C RN solves (L) for p = 2, then 

N+1 /N+1 

/ = E: Iri(y)12 Z Ir,(y)I 

and dividing A and b by A rescales the problem properly. Numerical integration 
by Euler's method with a step-size of 1 converges to the correct answer very quickly. 
(This choice of integration technique and step-size is justified later.) 

In the case M > N + 1, A cannot be determined from the least squares solution 
y. However, we can approximate A by 

N+1 / +1 \ 
(2.6) 6(x) = ( Ir(x)I2) ir (x) ) 

rescale the problem as above and attempt the integration. It is possible (see Lemma 
3.2) that, if 3 = A, then convergence to x* may not be obtained and, therefore, we 
consider some modifications to periodically rescale the problem. 

First, we define 

(2.7) f(x, p, 5) = -a(ATEs A)-1 ATUS, 

where 

Es = diag(Jr,(x)/3 P-2) and (us), = Ir,(x)/13J'- In Ir,(x)/aI. 
This function can be derived by dividing A and b by 3 and rederiving the dif- 

ferential equation. The factor (p - 1)-1 was dropped because, in the numerical 
testing, it tended to decrease the speed of convergence. The 3 factors in the residual 
terms are left to decrease the possibility of overflow or underflow. 

The algorithm is then: 
1. Find x0 = (A TA)- A Tb (the least-squares solution). Set i = 0, po = 2. 
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2. Compute ( using (2.6) and xi. 
3. Fix pi + > pi and integrate 

x' = f(x, pi+,, ), x(O) = Xi, 

sufficiently far. (See Theorem 3.5.) Call the result xi+1. 
4. Compute r(xi +') and test for correct selection of N + 1 equations. If correct, 

stop; if not, set i = i + 1 and go to 2. 
In the computer tests of this algorithm (Section 4), we used pi = 2'. The resealing 

procedure in these tests has been the most troublesome aspect and as yet has not 
been proven to be effective. However, in many cases, it performs well and modifica- 
tions described in Section 4 have been successful in some problems. Heuristically, 
the resealing does the right thing: If the ri's are greater than one, the square terms 
dominate and 5 > 1; if not, then ( < 1. 

The integration is done by Euler's method, with a step-size of one (a choice 
justified in Section 3) and the "sufficiently far" in step 3 is satisfied when two successive 
iterates agree to some specified number of places or when a predetermined number 
of steps have been taken. 

In considering the computational effort involved, it is quickly recognized that 
a system of linear equations must be solved at each step of each integration and 
that this could be avoided by some suitable approximation to (ATE6A)-'. Several 
possibilities have been tried with some success. 

We consider 

(a) (A 'EA)-' (A 'A)-', 

(b) (ATE6,A' A (ATE6AY)-' I= i 

In case (b), we mean that, for each i, (ATE6A)-' is evaluated at the initial condition 
and not changed throughout the subsequent integration. All of these algorithms 
are analyzed in Section 3 with the assumption that some resealing procedure is 
effective. 

3. Convergence Analysis. In the convergence analysis, we consider the original 
method and the modifications considered in Section 2. The results we obtain are 
local, meaning that if we once get close enough to x* and have a sufficiently good 
approximation to A, then the procedure converges to x*. We are, however, assuming 
that the resealing will be effective. 

We also show that the lnlri(x)/bl can be approximated by two or more terms of 
its Taylor series around one without sacrificing convergence, thereby allowing a 
reduction of work at each step. The following definitions will be used throughout 
this section to simplify the notation: 

fl(x, p, 5) = - S(A EA) A u, 

f2(x, p, 5) = - (A A) A u, 

f3(XP, 5, xo) = -( AAEA)- A u, 

where E = diag(Iri(x)/51 -2) and ui = Ir'(x)/815-1 lnInr/8l. (The definition of E and 
u is made to eliminate the -continual use of the a subscript as used in Section 2.) 
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Let W = {i: 1r1(x*)j = A} and let A* be the matrix made up of the rows A' for 
i E W. We assume throughout this section that the columns of A* are independent. 
Note that this implies that the columns of A are also independent since A* contains 
at least N + 1 rows. Then we have 

LEMMA 3.1. Let f be any of fi, i = 1, * , 3. Then 

lim f(x*, p, A) = 0, if f = fi, i = 1, 2, 

and 

IiM f3(x*, p, A, x*) = 0. 

Proof. We have that 

trt(x*)/A 1, i EW 

<1, it W. 

Thus, ui = 0 for i C W and ui = Iri(x*)/AI'-l lnlri(x*)/AI, i E W. But 
limpc4.ri(x*)/AV"-l lnlri(x*)/AI = 0 so that the vector u -O 0 as p - co. Thus, for 
f = f2, the result is established. For f = f or f = f3, we note that, from the definition 
of E, lim E = diag(zi), where zi = 1, i ? W and zi = 0, i i W. Thus, for x = x* 
and 8 = A, lim cD(A*TA*)-l and the result follows. Q.E.D. 

Lemma 3.1 shows that, if the problem is properly scaled, then it is at least possible 
that the solution x(p) of x' = f(x, p, A) to be such that x(p) -- x* as p -+ c. 

Our algorithm, however, calls for a sequence { 8i , of resealing factors such that 
8, -- A as i - co. If 8, < A, then Irt(x*)/8ij > 1, i = 1,. , M, and the 
limpe f(x*, pi, 6,) may not be zero. However, if Irt(x*)/1jjP-i remains bounded as 

co (which it will if 8i -- A fast enough) then limio[Iri(x*)/8Il IlnIri(x*)/8ui] = 0. 
If 8, > A, then Iri(x*)/81 < 1, i = 1, * , M, and Irj(x*)/8jiI2, i = 1, * * , M, may 
tend to zero if 8 does not tend to A fast enough. In this case, (with x = x*) 
limper ATEA = 0, the null matrix, and numerical problems will certainly arise. 
If Irt(x*)/5j 1-2 __ 1, i E W, then we have shown 

LEMMA 3.2. Assume the conditions of Lemma 3.1. Let the sequence { bi, be 
chosen such that 8, -- A fast enough so that limj1,lrt(x*)/8,l = 1, i E W. Then 

lim f(x*, pi, I53) = 0 

with the obvious modification iff = f3. 
Uniqueness results for the Chebyshev solution of overdetermined linear systems 

are known (see for example, Cheney and Goldstein [7]). We remark here that, if 
the problem is scaled correctly wrt an isolated solution x*, then, for x 5 x*, 
liming f(x, pi, A) 5 0 since, for at least some i, Iri(x)l > 1. If, however, the problem 
is not scaled correctly and 8 > A, then limed. f(x, pi, 8) may be zero. This remark 
provides the basis for choosing a lower bound for A, but Lemma 3.2, also points out 
the difficulty here. 

One final lemma is needed before convergence can be shown. 
LEMMA 3.3. Assume the conditions of Lemma 3.2. Let f = fl or f3 and let x0 = x* 

for f = f3. Then, if f, is the matrix of first partial derivative wrt x, lim jog fz(x*, pi, 8i) 
is a matrix all of whose eigenvalues lie in the left half-plane. 
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Proof. For f = fl, we have 

a Tl T SA E)'jTO f= -aa [(ATEA)- ]ATu- la(ATEA A x d 

Now au/ax = (1/8)D(p)A where 

D(p) = diag[ ri/ alp-2 (1 + (p - 1) lnlrir/a)] 

and 

o i (E W, 
lim D(p1) = D = diag(zi) where zi = f 

i -0; 3 A 0o, i t W. 

Thus, since 1imi jog;,= fu = 0 and limijog; 3=,E = D, we have 

lim ft(x*, pi, A) = _ (ATEA-'((I/A)l4TD A) D-I 

which is clearly negative definite. For f = f,, the result follows in the same way. Q.E.D. 

For f = f2, 

a(AT)-'T1 ATD(p)A 

and 

lim f.(x*, pi, a) = -A(A A)-((1/A) A TDA) 

= -(ATA)-y1(A*T A*). 

Therefore, if the eigenvalues of - (ATA)- (A* TA*) lie in the left half-plane, then the 

conclusion of Lemma 3.3 holds for f = 12. If not and the algorithm is not converging, 

then one may evaluate (ATEA)-' at the current point and continue. For x and a 

close enough to x* and A, respectively, a continuity argument will show that the 

eigenvalues of -(A TEA)- (A*TA*) will lie in the left half-plane. More will be said 

on this subject in Section 4. 

Remarks. 1. We note here that, for f as in Lemma 3.3, the matrices will, by 

continuity, have all their eigenvalues in the left half-plane for p sufficiently large 

and for 8 sufficiently close to A. 

2. If we let u = (r,(x)/8)P- 1T(ri(x)/8) where Ta(s) is the first n terms of the 

Taylor series expansion for ln(s) around one, we then can compute 

a U = (1/)D(p)1 where D(p) = diag[jri/31`11 T,, + Tn(p - 1) Iri/llp-2]. 

Now since Tn(1) = 0 and Tt'(1) = 1 for n > 2, we see that this approximation can 

be used without sacrificing convergence. 

For the main theorem, we need to compute a Lipschitz constant for f, over an 

appropriate region in RN X R X R containing the point (x*, c, A). Specifically, 

we need a constant K independent of p and 8 such that for p sufficiently large and 
8 - Al sufficiently small 

IIft(x*,P, 5) - f.(x,P, 3)II ? K Iix - x*ll. 
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This can be done by bounding the second partial derivative, but this is not worth 
pursuing since it is easy to convince oneself that such a bound can be computed 
and the bound so obtained is too crude to be of any computational value. 

THEOREM 3.4. Assume the conditions of Lemma 3.3. Let K be the Lipschitz 
constant for fz. Then, for p sufficiently large, 1I - AI sufficiently small, and x- I I 

sufficiently small, any solution x,(t) of 

(3.1) x'(t) = f(x, p, ), x(O) = xO 

is such that 

rim sup I jx'(t)II I c IIf(x*p, P ) I 1, 

where c is a constant independent of p. 
Proof. We may write 

(3.2) f(x, p, 3) = AX*P, p ) + ft(x*, p, )(x - x*) 

+ [A(x, p, ) - pX*, P ) - f.(x* P, 6)(x -x*)]. 

By the remark following Lemma 3.3, p may be chosen large enough so that fx(x*, p, 8) 
has its eigenvalues in the left half-plane. Using Ortega and Rheinboldt [18, Theorem 
3.2.12], the bracketed term in (3.2) may be bounded by 1/2K lx - x*112 and thus 
(3.1) satisfies the conditions of Boggs and Dennis [4, Theorem 1.1]. Therefore, the 
result holds for a constant c bounded by 2/Ia(p, 8)1 where a(p, 8) is the eigenvalue 
of f,(x*, p, 8) which is smallest in absolute value. Let a(p,, 83) be the eigenvalue of 
smallest absolute value of f(x*, p,, 8s). Then, clearly, a(p3, 83) *+ as j -+ o where 
a* is the eigenvalue of smallest absolute value of f,(x*, c, A). Therefore, c may be 
bounded by 2/minii>(Ia(pi, 8i)j) where jI is sufficiently large. Q.E.D. 

The convergence result is now 
THEOREM 3.5. Let x* be an isolated solution of (C). Choose a sequence pi, j = 

0, 1, * * * , such that pi -- o and po is large enough to satisfy Theorem 3.4. Let xi be 
any point on the solution curve of x,' = f(x, p,, 83) satisfying lixi - x*lI < 

cllf(x*, pi, i)l 1. Then xi -- x* as i - c. 
Proof The result follows immediately from Lemma 3.2 and Theorem 3.4. Q.E.D. 
To complete the analysis, we must now show that the numerical solutions of the 

IVP's have the same asymptotic characteristics as the actual solutions. This of course 
will depend on the method used, but if any weakly A-stable method is used (Boggs 
[3]), the numerical solutions will mirror the actual solution and numerical convergence 
will be obtained. We state the result as follows: 

THEOREM 3.6. If a method and a step-size h are chosen so that the method is 
weakly A-stable wrt the problem x' = f(x*, c, A) and if y, is the sequence generated 
by that method applied to (3.1), then the 

lim sup Iy - x*II < c' Iif(x*, p, I 

where c' may be chosen independent of p and 6, but may depend on the method. 
Before considering some numerical examples, we note that, for f', a choice of h 

making Euler's method weakly A-stable as convergence is neared is h = 1. Euler's 
method is chosen because of its low order and hence its rapid convergence near the 
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solution (see Boggs [3]). These statements justify our choice of algorithms for the 
numerical examples. 

4. Numerical Results. In this section, we describe the results of our algorithms 
applied to several examples and attempt some comparison with other methods. We 
remark at the outset, however, that examples can be chosen to make any method 
look better than other methods. For example, the algorithms of Section 2 usually 
determine the critical set very quickly when the residuals corresponding to the non- 
critical equations are much smaller in magnitude than A. Exchange algorithms 
work best when a fortunate choice of the initial reference set is made. Further, we 
note that exchange algorithms frequently begin by inverting an N X N matrix and 
that our algorithms begin by solving an N X N linear system. Thus, both approaches 
give rise to algorithms which are essentially o(N3). The examples presented there- 
fore, were chosen to illustrate the behavior of our algorithms and no attempt was 
made to optimally choose the parameters involved. It appears that much more 
experience with the procedure is needed before such choices can be made. 

The programs are written in G-level FORTRAN IV for the IBM 360 and run 
under the ALPHA time-sharing system. Since the procedures are iterative and since 
we need only determine the critical set of equations, we can afford to use only single 
precision arithmetic and Gaussian elimination (rather than the Businger-Golub 
[5] approach) to solve the linear systems involved. Therefore, we may save the L-U 
decomposition and hence save considerable effort for some of the algorithms. (Once 
the critical set is determined, one could certainly use more accurate methods to obtain 
the final values.) 

As mentioned earlier, the choice of resealing factors has been the most trouble- 
some aspect of the development. We now derive upper and lower bounds for A 
and then comment on an experimentally determined modification which has worked 
well in practice. 

THEOREM 4.1. For problem (C) and A defined by (2.5) the bounds 
M M M N+1 

2 r(y) ~ r(~ 2(y) Eri ()/ E lri(Y)l _ vEri2() Eiri(Y)l 
Z=1 t=1 t=1 

are valid where y is the least squares solution and the residuals ri(y) are ordered so 
that Iri(y)l ? 1r2(y) > ... > Irm(y)J. 

Proof. The points r(x) lie on the hyperplane 
M 

(v, r(y)) = (r(y), r(y)) = r2(y) (see Cheney [6]). 

Thus, for x*, we have 
M 

(r(y), r(y)) = (r(x*), r(y)) ? E |ri(y)l 
i =1 

and the lower bound is established. Also, 
N+ 1 

(r(y), r(y)) = (r(x*), r(y)) > A ri(y)l 

and the upper bound is established. Q.E.D. 
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Although the number 6, computed by (2.6) using y (the least squares solution), 
is not in general an upper bound for A, it has usually been so in practice. It has also 
usually been a rather close approximation to A (usually within about 10 percent). We 
have, however, noted that an under-estimation of A generally gives faster convergence 
although at the risk of some instability. Therefore, for the first step, we used 

a-= a(y)/ W 

where W is a constant greater than 1, usually 1.1, and 5(y) is computed by (2.6). 
Thereafter, we compute 

= 6(xj) if 6(xi) < 6(y), 

60 if 6(xi) > 6(y). 

This procedure has proved useful in practice. 
Example I (Cheney [6, p. 44]). This example was chosen mostly for its simplicity 

and used primarily to debug the programs. 

1 2 7 
A ~b= 

2 4 11.1 

2 1 6.9 

3 1 7.2, 

The Haar condition is clearly violated here as row 4 of A is twice row 3. The 
solution is at xi = x2 = 2 with A = 1, but our resealing procedure is used anyway 
since this fact is not known prior to execution. The results are summarized in Table 1 
using the following notation: 

Algorithm: 
1. x' = -5(A EA)1Aru, 
2. x' = (3(ATA)-ATu' 
3. x' = -5(ATEA)1Ir~. A u, 
4. Algorithm 1 with u replaced by v, 
5. Algorithm 2 with u replaced by v, 
6. Algorithm 3 with u replaced by v, 

where v, = r/b' T3(Jr/(3j) where T3(x) is the first three terms of the Taylor series 
for In x. 

In each case, the equation corresponding to a fixed pi is integrated by Euler's 
method with a step-size of 1. The integration was halted when two successive iterates 
agreed to five significant figures, i.e., when their difference was less than 5 X 10' 

and the function values were less than 5 X i0' or when 10 iterations were completed. 
The pi's chosen were p. = 2i, i = 0, 1, * - . . Convergence of the process occurred 
when the correct answer was obtained to five decimal places. The number of iterations 
to correct selection is the total number of iterations needed for all the pi's until the 
equations corresponding to largest N + I residuals comprise the critical set. The 
6i's are computed by the procedure described above with W = 1.1. 
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TABLE 1 

Correct selection Convergence 
Algorithm 

No. Iter. Final i No. Mults. No. Iter. Final i No. Mults. 

1 5 0 411 36 7 4776 
2 5 0 411 >62 > 10 >6337 
3 5 0 411 39 7 4070 
4 5 0 291 37 7 4011 
5 5 0 291 >62 > 10 >4851 
6 5 0 291 40 7 3190 

Note that, for i = 0, Algorithms 1, 2 and 3 reduce to the same algorithm and 
Algorithms 4, 5 and 6 also reduce to the same algorithm. 

It is clear that the number of iterations do not always give an accurate measure 
of the work involved. Thus, it was decided to give the total number of multiplications 
needed in each case. The formulas used to count the multiplications are derived 
from the procedure of saving the LU decomposition of the matrix to be inverted. 
(See Forsythe and Moler [12].) 

Algorithms 2 and 5 had not converged when we halted the program at i = 10, 
but four significant figures had been obtained. We note that the most efficient algo- 
rithm is Algorithm 6 and that the approximation of ln(ri/b) by a quadratic resulted 
in about a 20% reduction of work over corresponding algorithms not using the 
approximation. 

Example 2 (Duris [9]). This example satisfies the Haar condition and was easily 
solved by Duris' exchange rule in three iterations. It should be noted, however, that 
the initial reference set used by Duris included three of the five equations in the 
critical set. Clearly, Duris' rule required the fewest number of exchanges possible 
for this problem from the initial reference set. The approximate number of multiplica- 
tions needed for Duris' algorithm is 660. 

1 -3 9 -27 3 

1 -2 4 -8 -3 

1 -1 1 - 1 -2 

A 1 0 0 0, b= A =b1 1 1 1 7 

1 2 4 8 -1 

1 3 9 27 5 

1 4 16 64 2 

This example is a good instance of the type of problem which is ill-conditioned 
with respect to our algorithms. None of the six algorithms was able to obtain the 
correct selection although at i = 12, they all had obtained two significant figures 
of accuracy in each component of the solution. The problem is that A is somewhat 
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ill-conditioned containing, as it does, a subset of the Vandermonde matrix and, 
more importantly, the residuals at the solution corresponding to the noncritical 
set are very close in magnitude to the Chebyshev residual A. To demonstrate that 
this indeed is the case, we modified the b vector in such a way as to maintain the 
same solution but to cause A to be relatively larger than the remaining residuals. 
We chose b = (4, -3, -3, 0, 8, -2, 5, 3)T. 

The results are summarized in Table 2 which is organized exactly as Table 1. 

TABLE 2 

Correct selection Convergence 
Algorithm 

No. Iter. Final i No. Mults. No. Iter. Final i No. Mults. 

1 7 0 1062 36 8 10604 
2 7 0 1062 59 8 8958 
3 7 0 1062 45 8 8198 
4 8 0 930 40 9 10506 
5 8 0 930 61 8 7302 
6 8 0 930 47 9 7240 

We first note that the best we could do is about 50% more work than the Duris 
algorithm. However, Stiefel's algorithm required six iterations or approximately 
1200 multiplications so that Algorithm 6 is about 25% faster than Stiefel's algorithm. 

Convergence is clearly not necessary before the correct selection at i = 0 is ob- 
tained. A check of the iterates reveals that the correct choice is made in three iterations 
or 470 multiplications for Algorithms 4, 5 and 6. Thus, by limiting the number of 
iterations for each value of i to three, we obtain a faster algorithm than Duris. How- 
ever, such a drastic reduction in the number of iterations allowed for each i could 
cause trouble for problems for which correct selection is obtained only for larger 
values of i. This problem did occur in some examples run but not reported here. 

Example 3 (Duris [9]). 

1 0 0 0 0 1 

0 1 0 0 0 -1 

o 0 1 0 0 0 

o 0 0 1 0 -1 

0 0 0 0 1 1 
A = . O1, = 

1 1 1 1 1 0 

0 1 1 1 1 2 

-1 0 -1 -1 -1 3 

1 1 0 1 1 -3 

K 1 1 1 0 1 -2 
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This system clearly violates the Haar condition. Duris' algorithm solved the 
problem in six iterations from the initial reference set (2, 3, 4, 5, 6, 8) which includes 
two of the six critical equations. The approximate number of multiplications required 
is 1895. The results of our algorithm are recorded in Table 3. 

TABLE 3 

Correct Selection Convergence 
Algorithm 

No. Iter. Final i No. Mults. No. Iter. Final i No. Mults. 

1 20 1 7182 
2 20 1 3862 
3 20 1 4194 
4 20 1 6382 
5 20 1 3062 6 - 

6 20 1 3394 

Here we note that Algorithm 5 requires about 50% more work than Duris' algo- 
rithm. Again, by limiting the number of iterations allowed for each value of i to 
five, we obtain correct selection in 10 iterations (i = 1) and 1712 multiplications for 
Algorithm 5. Table 3 indicates that convergence is not obtained to our specified 
accuracy. This is caused by the inability of our scaling procedure to generate suffi- 
ciently good approximations to A. Convergence to two decimal places in each com- 
ponent of x is obtained at i = 3 after which the algorithms diverge. 

Example 4 (Goldstein, Hereshoff & Levine [13]). The problem is to find the best 
approximation to x10 by a polynomial of degree 9 at 21 equally spaced points on the 
interval [- 1, 1]. This results in a 21 X 10 system. Because the system is large, the 
computing time is also large and only Algorithm 6 was run. Correct selection was 
made in 10 iterations (i = 0) or 6994 multiplications. (In [13], it is reported that 
Polya's algorithm did not give correct selection for the least 16th fit.) We were not 
able to obtain convergence to five places; Algorithm 6 yielded three significant 
figures in 36 iterations (i = 3) after which the procedure diverged. Several experi- 
ments with the value of W were run, but the best results yielded only four place 
accuracy before divergence. 

5. Conclusions. We have shown that some integration techniques for a dif- 
ferential equation based on Polya's algorithm are potentially competitive methods 
for obtaining the Chebyshev solution of an overdetermined linear system. Our tests 
have included only a very few of the possible algorithms so derivable and more tests 
are necessary in order to determine which algorithms are best in the sense of being 
most efficient or most stable. For example, the efficiency could be improved by using 
an algorithm which only computed the LU decomposition of ATEA when necessary, 
say when convergence is not fast enough for some value of i. Also, as convergence 
is neared (p large), the numbers I(r/ 6)j'-', for i corresponding to noncritical equa- 
tions, tend to cause underflows and thus can be set to zero. This means that at this 
point the ith equation can be eliminated and the subsequent work reduced. 
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An important addition to the program would be a scaling procedure which 
monitors the iterates and rescales automatically to maintain stability. Again, more 
testing would be necessary to install such a procedure. Also, more testing clearly 
needs to be done to determine the optimal criteria for terminating the integration 
for each value of i. 

As a final remark, we note that the reference set corresponding to the final value 
of x at i = 0 often contains most of the critical indices and thus could be used as 
an excellent initial reference set for the exchange algorithms. 
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