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On the Number of Nonzeros Added when Gaussian
Elimination is Performed on Sparse Random Matrices

By 1. S. Duft

Abstract. This paper studies the fill-in properties of Gaussian elimination on sparse
random matrices. A theoretical study using the concept of random graphs yields formulae
from which the fill-in can be evaluated. The predictions are examined for matrices of various
orders and densities and are found to be in close agreement with experimental results. A
possible consequence of the results of this paper relating to error analysis for sparse systems
is given in the concluding section.

1. Introduction. This paper studies the fill-in properties of Gaussian elimina-
tion on sparse random matrices. Graph theoretical ideas are introduced and the
problem is examined using the concept of random graphs.

This concept of using random graphs is not a new one. They are used as a tool
in the development of existence theorems in graph theory [Erdés (1967)] and some
work has been done on the structure of a graph where the number of lines is a
function of the number of points, the analysis holding in the limit as the number
of points tends to infinity [Palsti (1966, 1970)]. Ogilvie (1968) has shown that these
asymptotic results hold where the graph has only a small number of vertices (about 10)
but none of this work is directly concerned with matrix decomposition or indeed
with the adjacency matrix of the graph. Heap (1966) has extended the notion of
random graphs to examine properties of their adjacency matrices. However, his
tesults on matrix reducibility are only valid for comparatively dense matrices (prob-
ability density > 0.15). A serious attempt to tackle the problem of this paper has
been made by Hsieh and Ghausi (1971) where they have tried to make theoretical
predictions on the results of Brayton et al. (1970). Their work has, however, several
serious defects. Although they make more allowance for interaction than the discus-
sion in Section 2, their formulae only include correlation between elements in the
same column ignoring the correlation which exists between elements in the same
row. In addition, some of their formulae break down if the density of the matrix
increases above 209, and their correlation factor H is chosen empirically to obtain
a fit with Brayton’s data rather than determined theoretically. The impetus for
writing this paper came from remarks by Robert Brayton in the panel at the end
of the IBM symposium [Rose and Willoughby (1972)] when he stated that the above
problem, although itself not perhaps of devastating importance, has consumed vast
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amounts of man power in its attempted solution. This paper is dedicated to releasing
these man hours for more productive work.

Section 2 of this paper makes an ‘obvious’ initial approach to the problem,
indicates some of the difficulties involved in its solution, and gives an upper bound
to the quantity it is desired to evaluate. In Section 3, the above-mentioned notion
of random graphs is introduced and the elimination problem is interpreted in graph
theoretic terms. This interpretation is used in Section 4 to derive formulae relating
to the fill-in caused by Gaussian elimination on random graphs. It is seen, in Section
5, that these formulae give results which are in good agreement with experimental
data generated by the author and Brayton et al. (1970). The concluding section
gives a consequence of the results of this paper and indicates other problems which
may be tackled by such techniques.

2. A Statement of the Problem and an Initial Approach. The problem to be
considered in this paper is that of Gaussian elimination performed on a matrix
which is characterised by having all its diagonal elements nonzero, and with all
the off-diagonal elements having the same probability p, say, of being nonzero.
The elimination on this random matrix is performed by pivoting down the diagonal
in the natural order, and the interest is centred on the probable number of fill-ins
that occur. This number will, of course, be some function of n, the order of the matrix,
and p only.

Because of the nature of the elimination process, it is immediately seen that a
probability P; can be ascribed to the likelihood of an element being nonzero in the
ith reduced matrix. This P; will be the same for all elements of the reduced matrix.

1t is perhaps worthwhile to indicate a natural way to tackle this problem and,
by showing its failure, indicate the way in which many ‘simple’ solutions fail to
answer this problem.

P, will always be equal to p, the initial probability of the off-diagonal matrix
elements being nonzero.

An element in the reduced matrix of order n — 1 will be nonzero if:

(i) it is initially nonzero: probability p;

(ii) it is initially zero and the elements at the head of its row and column in the
original matrix are both nonzero thus causing a fill-in to occur: probability (1 — p)-p?,
since the events are independent. It thus follows that the relation

P,=p+ 1 — p)p

is true.

Now consider the following argument.

An element in the third reduced matrix will be nonzero if it is either nonzero
initially or after the first elimination stage (probability P,), or if it is zero then, but
is filled in at the second stage of the elimination (probability (1 — P,)- P,%), giving
the equation

Py =P, + (1 — P,) P}

and, by a similar argument, the following recurrence relation holds for P, (i = 1, - - -,
n— 1)

(1) Pi+l=Pa+(1'—P1)'P?9 P1=p'
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The experimental results of Section 5 indicate that the values of P, obtained from
Eq. (1) are clearly overestimates of the true value. Some explanation of this in the
case i = 3 is now given and then a general theorem relating the P; to the true value
of the probability is stated and proved.

The reason why Eq. (1) fails to give the correct value for P; is as follows. Figure 1
should be consulted.
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FIGURE 1

It is true to say that the probability of element C being zero after the first stage is
(1 — P,) and that the probability of 4 and B both being nonzero after the first stage
is P,” (since events are independent), but it is certainly not true to claim that these
two events are independent as can be seen in Fig. 1, where both the (1 — P,) and
the P,” term depend on the two elements E and F. Thus, if

Prob(C is zero after first stage) = (1 — P,), and

Prob(4 and B nonzero after first stage) = P,°, then

Prob(C zero and 4 and B nonzero after the first stage) = P,*(1 — P,).

This argument is formalised in the following theorem.

THEOREM 1. If P; is defined by the relation

Pi+l=Pi+(l—Po‘)P?: P1=.D,

and if P; is the probability of an element in the ith reduced matrix being nonzero after
the decomposition, then the P, form an upper bound for the P,. In fact,

P,z P, 1=i=s2),
@) ( )

P, > P, B=i=n-—1.

Proof. Certainly, P, = P,, i = 1, 2, and relation (2) is assumed to hold for all
i £r < n-— 1,then, P, is given by the relation

Fr+l = Pr+(1 - I:-’r)Pr2

and since x + (1 — x)x® is a strictly increasing function of x, for x € [0, 1], the
induction hypothesis gives the equation

Pr+1 g Pr+(1 - Pr)Pf
Now,

P,., = Prob{element in the (i + 1)th reduced matrix is filled in}
Prob{element in ith reduced matrix is filled in}
+ Prob{element is filled in during the (; + 1)th elimination

step and it is zero in the ith reduced matrix}.

Thus,
P, = Pr+(l —Pr)'Pfé Pr+(1 - Pr)'f’?: Pr+l
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and the result follows by induction. Since Py > Py, P, > P,, i = 3, -+ ,n — 1,
because of the strict monotonicity of the function x + (1 — x)-x%, x € [0, 1].

3. A Graph Theoretic Description of the Problem. In this section and the
following one, directed graphs as defined by Harary, Norman and Cartwright (1965)
are used to analyse the fill-in problem. The terminology used is identical to theirs,
the only additional term being that of ‘linked’. Point a is /inked to point b in a directed
graph if there exists a directed line of the graph from a to b. A point a is connected
to a point b if there exists a directed path in the graph from a to b. Thus linked points
are connected but not vice versa.

If a global view is taken of the problem, it is natural to ask what possible sequence
of events would cause the element a;; to be filled in. By the discussion of the last
section, it is possible, without loss of generality, to consider the case q; ;,,. Only
the first i — 1 stages of the elimination could cause fill-in to this position in the matrix
and so only these need be considered in the following discussion.

A random graph on n points is defined to be a directed graph on n points where
each line has a probability p (p < 1, in general) of existing, this probability being
the same for all the lines. This directed graph is seen to be none other than the ad-
jacency matrix [Harary (1962b)] for the random matrix described in the first section
of this paper.

If the theory of graphs in the elimination process is examined (for example,
Tewarson (1967), Harary (1962a), and Parter (1961)), it is seen that one point will
be linked to another point in the graphs of subsequent reduced matrices if there
exists a path in the initial graph connecting that particular point to the other which
does not pass through a remaining point (the term ‘legal’ path is used to describe
this and is attributed to Karp [Willoughby (1971)]). Since the addition of a line in
the graphs of the reduced matrices is in 1-1 correspondence with the fill-in of zeros
in the original matrix, the following theorem holds.

THEOREM 2. The probability of the element in the (i, i + 1)th position in the matrix
being nonzero after matrix reduction is equal to the probability that there exists a
path from the point i to the point i 4+ 1 in a random graph on i + 1 points if the prob-
ability of any line existing in the random graph is the same as ‘the probability of an
off-diagonal element of the matrix being nonzero.

4. The Derivation of the Formula. Let the random graph on n vertices with
probability p of any edge existing be denoted by G(n, p). Now, let P,(n, p) be the
probability that a point x is connected to every other point in the graph G(n, p).
Thus, for example, P.(1, p) = 1 and P,(2, p) = p. Then the following lemma is true.

LemMa 1. P.(n, p) is given by the recurrence relation

n—1

P(n,p) =1 — 3 (Z _ i)-P,,(k, p)-(1 = p)
k=1

for any n and p.

Proof. Let the points of the graph be partitioned into two subsets, a k-set con-
taining k points and an (n — k)-set containing the remaining n — k points and choose
the k points such that x is one of them. Then the probability that x is connected
to all the other points in the k-set but to none of the other points is given by the
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formula
P.(k, p)-(1 — p)*™®

the second part of the formula being present since it is necessary that no lines exist
from the points of the k-set to the points of the (n — k)-set. It is possible to select
*_1) subsets from the points of G(n, p) such that x is always in the k-set. Furthermore,
since the events of x being connected to all points of the k-set but none of the points
in the (n — k)-set are mutually exclusive for different selections of k-sets, the prob-
ability of x being connected to k — 1 other points in the graph G(n, p) is given by
the formula

<]’: : i)Pz(k; p)-(l —_ p)k(n—k)‘

Now, the probability of x being connected to n — 2 or less points in the graph is
given by the formula

n—1
2 (Z _ i)P,(k, ) = p)?
k=1

since the events of x being connected to k — 1 and only k — 1 points are mutually
exclusive as k varies from 1 ton — 1.

But this is the probability that x is not connected to all the other points of the
graph and so the lemma has been proved.

The idea of connectedness can now be extended in the following manner. If
P, (n, p) is the probability that there exists a directed path from x to y in G(n, p)
then the following lemma holds.

LEMMA 2. For all n and p, P, (n, p), as defined above, is given by

n—1

P(n,p)=1— 3 (,’: _ "f)P;(k, (1 — p)*"®
k=1

where the P (k, p) have the same meaning as in Lemma 1.

Proof. If, as in the proof of Lemma 1, the points of the graph are thought of as
being partitioned into two subsets, a k-set containing x, and an (n — k)-set containing
¥, then the probability that x is connected to every point in the k-set but to none in
the (n — k)-set (including y) is P.(k, p)-(1 — p)** as before.

But this time the k — 1 other points of the k-set must only be selected from the
(n — 2) points of the graph omitting x and y, and so the probability that x is connected
to any k — 1 points of the graph and only k — 1 points and is, in addition, not
connected to y is given by the formula

(Z : f)Pz(k, )1 — p)r R

and so the probability that x is connected to n — 2 other points or less but is not
connected to y is given by the formula

; (Z : "lz)Pz(k» pa — p)k(n—k)

and, since this is just the probability that x is not connected to y in G(n, p), the lemma
has now been proved.
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The following theorem follows immediately from Theorem 2 and Lemmas 1 and 2.

THEOREM 3. If P; is the probability that an element in the ith reduced matrix is
nonzero during the LU decomposition of a random matrix, as defined in this paper,
then the following relation holds

3) P,=1- E (;( : i)Hk(l _ p)k(o‘ﬂ—k)

k=1

where the H, are given by
k-1

@ mo=1- 5“7 Daa - e,
i=1 M 1
The next theorem then follows immediately.
THEOREM 4. The expected value for the total number of nonzeros in the LU de-
composition of a random matrix, as in Theorem 3, is given by the formula

n—1
) 2.3 (n— P, +n

i=1
where the P; are given by Egs. (3) and (4) and the unit nonzeros in the diagonal of U
are excluded since they are not stored.

5. Experimental Results. In order to examine the defects in using the upper
bound approximation of Eq. (1) as an estimate for the probability density of the
LU decomposition of a random matrix, the results of computing the recurrence
relation for various starting values of p were compared with the probabilities obtained
from Egs. (3) and (4). These results are shown in Graphs 1 to 5 for values of p equal
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GRAPH 1

A comparison of the true probability density of the reduced form (P:) with that derived from the re-
currence relation (1) (P;) with starting value of p = 0.01. Pgy = 0.023418 while Pso = 0.022709.
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A comparison of the true probability density of the reduced form (P;) with that derived from
the recurrence relation (1) (P;) with starting value of p = 0.03.
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GRAPH 3

A comparison of the true probability of the reduced form (Eq. (3)) with that derived from the recurrence
relation (1) with starting value of p = 0.06.
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A comparison of the true probability density of the reduced form (Eq. (3)) with that derived from the
recurrence relation (1) with starting value of p = 0.10.
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A comparison of the true probability density of the reduced form with that derived from the recurrence
relation (1) with starting value of p = 0.50.

to 0.01, 0.03, 0.06, 0.10, and 0.50, resp. It is seen immediately from these results
that the P; generated from Eq. (1) give an upper bound to the true value for the
probability density. The strict inequality indicated by Theorem 1 is not always evident
because of the scale of the graph but the computed results from which the graphs
were obtained do show such an inequality. For the lowest value of p in Graph 1, it
is seen that the difference only becomes evident as i increases in size. For the middle
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values of p in Graphs 2 to 4, the difference between the upper bound for P; and its
true value becomes evident at lower values of i while by the time p is as large as 0.5,
the effect is nearly dwarfed by the increase in size of P; and P; for increasing i.

The effect of using these two sets of values for the probability on the estimate
of fill-in to a random matrix is shown in Table 1. In both cases, Eq. (5) was used

TABLE 1

A comparison of the average fill-in caused by Gaussian elimination on several different
random matrices (average of 20 runs at each order and density) with the theoretical
prediction given in Theorems 2 and 3 and the upper bound given by Eq. (1)

NUMBER OF OFF-DIAGONAL NON-ZEROS STANDARD
DEVIATION
IN FINAL FORM OF
_ EXPERIMENTAL
n P, P P EXPERIMENTAL RESULTS
100 0.01 176 166 160 14.8
50 0.01 30 29 29 6.25
30 0.01 10 10 10 2.5k4
25 0.01 6 6 6 0.89
20 0.01 L b n 1.80
100 0.03 4259 2253 2309 239
50 0.03 290 168 162 33.4
30 0.03 39 38 37 6.18
25 0.03 24 24 22 3.45
20 0.03 1h 1k 13 1.06
100 0.06 6763 520k 5211 33k
50 0.06 1062 656 641 71.3
30 0.06 182 119 123 33.8
25 0.06 86 68 69 17.1
20 0.06 39 36 33 5.33
100 0.10 7966 7022 6925 246
50 0.10 1553 1212 1193 77.5
30 0.10 388 274 26k 3h4.9
25 0.10 222 157 161 22.4
20 0.10 105 79 82 13.0
100 0.50 9662 9623 9637 47.5
50 0.50 2334 2315 2517 28.3
30 0.50 802 792 788 4.6
25 0.50 Skl 536 537 15.5
20 0.50 336 330 333 10.9
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to calculate the values given in the appropriate columns. In order that the theoretical
predictions of this chapter might be compared with experiment, some runs were
done performing Gaussian elimination on random matrices, twenty runs being
made at each value of order and density. The average number of nonzeros in the
decomposed form and the standard deviation from this mean were calculated and
the results are shown in the appropriate columns of the table. It is seen that, in all
cases, the number of nonzeros predicted by the theory is in very close agreement
with that obtained from the runs on random matrices, and the predicted value,
in every case, falls well within the distribution peak defined by the experimental
standard deviation. As expected, the use of the upper bound for P; gives an over-
estimate of the fill-in which is particularly marked when 7 is high, except for the
case p = 0.5 when the fill-in, in both cases, is almost total. '

An examination of the results in the paper by Brayton et al. (1970) indicates
that most of his experiments were performed with random matrices of a higher order
and lower density than the ones used in this paper. In addition to the core storage
restrictions for large systems (there is also a limitation if the matrix is held in packed
form because of the amount of fill-in during the elimination process), another dif-
ficulty was encountered in the calculation of fill-in to matrices of low initial density.
This difficulty was caused by rounding errors in the computation of P; from Egs.
(3) and (4). These errors are introduced by the subtraction of the sum in Eq. (4)
from 1. This particular error is relatively a very large one since the value of the
summation is very close to 1. For example, if it is assumed that the computer can
store up to 10 decimal digits, then a summation of value 1 — 10~ will give an error
in H, in the third significant figure; and summation values of 1 — 107*° are obtained
if p = 0.01!. The use of double precision merely delays the catastrophe.

In an attempt to avoid this calamity, the author has developed a set of procedures
to deal with the calculation of P, from Egs. (3) and (4) in rational arithmetic. These
procedures are the subject of a future paper by the author and work to infinite pre-
cision (to within the core size of the machine). J. H. Griesmer of IBM has also com-
puted values for H, on a machine at Yorktown Heights using a rational arithmetic
package in a system called SCRATCHPAD [Griesmer and Jenks (1971)]. Unfortu-
nately, both the IBM system and the procedures of the author take a long time to
evaluate H, for large k (because at stage k, k — 1 infinite precision terms have to
be calculated for the summation in Eq. (4)), and so it is impractical to try to test
the results in Brayton et al. (1970) for low density and high n. For p = 0.01, the
author was fortunate in being able to use a multiple precision arithmetic package
developed by Seraphin and Milazzo (Stony Brook) from which the results in Graph 1
were obtained. These results can be seen to be consistent with the experimental
calculations in Brayton et al. (1970) for their higher density matrices. If any readers
of this paper have a good multiple precision package and unlimited computing
time, they would be welcome to tackle the recurrence relation for lower values of p.

6. Conclusions and a Possible Consequence. This paper has indicated some
of the power of graph theory in the analysis of large sparse random systems. It is
quite probable that other problems concerning singularity, reducibility and other
elimination schemes can be tackled in a similar fashion. One thing which the results
of this paper do indicate is the need for sparsity pivoting in Gaussian elimination.
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The fill-in of a matrix from an average of 3 off-diagonal nonzeros per row to more
than 20 is rather drastic and would be reaching the limit of advisability of packed
storage were it much larger.

A possible consequence of the results of this paper might be to obtain some
estimate of the possible error introduced in the elimination process. The error analysis
of Wilkinson deals in terms of upper bounds rather than estimates of errors and
his factor of n*27** [Wilkinson (1965), p. 248] is not very helpful for large sparse
systems. It is evident from these calculations of Wilkinson that the determining
factor for these bounds is the number of operations being performed on the various
positions of the matrix.

If it is possible to calculate a probabilistic estimate of this number of operations,
then it is feasible that a more useful estimate of the actual error involved in the
solution of sparse matrix equations could be obtained than the crude upper bound
given above.

The following theorem is a first step in this direction.

THEOREM 5. The expected number of operations on an element in row i, column j,
Jj > i, is given by the formula

2 (P — Po)/( = Pi)

=2

where the P, are defined in Eq. (3).

Proof.
The probability that an element is nonzero before stage k
= The probability that it is nonzero before stage k — 1

-+ The probability that it is zero before stage k — 1 and is filled in at stage
k—1.

Hence

Pp= P+ A — P_)X

where X is the probability that the element is filled in (or operated on) at stage k — 1.
Hence the result.
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