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Triangular Factorization and Inversion by 
Fast Matrix Multiplication* 

By James R. Bunch and John E. Hopcroft 

Abstract. The fast matrix multiplication algorithm by Strassen is used to obtain the 
triangular factorization of a permutation of any nonsingular matrix of order n in < Cnllo97 
operations, and, hence, the inverse of any nonsingular matrix in <C2n log7 operations. 

1. Introduction. Strassen [3] has given an algorithm using noncommutative 
multiplication which computes the product of two matrices of order 2 by 7 multi- 
plications and 18 additions. Then the product of two matrices of order m2k could be 
computed by m37k multiplications and (5 + m)m27k - 6(m2k)2 additions. 

Let an operation be a multiplication, division, addition, or subtraction. Strassen 
showed that the product of two matrices could be computed by < (4.7)nlog2 7 opera- 
tions. The usual method for matrix multiplication requires 2n3 operations. Thus, 
(4.7)nlo02 7 < 2n3 if and only if n3-log2 

7 
> 2.35, i.e. if n > (2.35)5 t 100. 

Strassen uses block LDU factorization (Householder [2, p. 126]) recursively to 
compute the inverse of a matrix of order m2k by m2k divisions, < (6/5)m37k - m2k 
multiplications, and < (6/5)(5 + m)m27k - 7(m2k)2 additions. The inverse of a 
matrix of order n could then be computed by ? (5.64)nlO02 7 arithmetic operations. 
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if All and A are nonsingular. 
Since the algorithm is applied recursively, it will fail whenever the inversion of 

a singular principal submatrix in any of the reduced matrices is required. 
For example, the block LJJU factorization fails to exist for a matrix as simple as 
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Every principal submatrix in every reduced matrix is nonsingular if A is symmetric 
positive definite, strictly diagonally dominant, or irreducibly diagonally dominant 
(Varga [4, p. 23]). However, if A is only nonsingular, then we must, in general, pivot 
(i.e., interchange rows or columns) in order to obtain a (point or block) LDU factori- 
zation. If A is nonsingular, then there exist permutation matrices P1, P2, Ql, Q2 

such that AP1, Q1A, Q2AP2 have (point or block) LDU factorizations or LU factori- 
zations (cf. Forsythe and Moler [1, p. 36]). 

We shall ignore lower order terms. Then the usual method for inversion requires 
2n3 operations [1, pp. 77-79]. Thus, (5.64)nllX27 K< 2n3 if n > (2.82)5 180. 

However, one rarely needs the inverse of a matrix; rather, one usually wants to 
solve systems of linear equations, and here Gaussian elimination (i.e. obtaining the 
LU decomposition of a permutation of A) is more efficient [1, p. 79], since the LU 
decomposition requires 2n3 operations (and solving the two triangular systems 
requires 2n2 operations). 

Thus, a fairer comparison is 

(5.64)nllO027 < 2n3 if n > 35(2.82)5 43,340. 

If A is symmetric positive definite, then one should compare with symmetric 
Gaussian elimination or Cholesky's method. 

In Sections 2 and 3, we show that, by employing pivoting, we can use Strassen's 
fast matrix multiplication algorithm to obtain the triangular factorization (LU de- 
composition) of a permutation of any nonsingular matrix of order n = 2' in < 
(3.64)nllo92 operations, and hence its inverse in < (10.18)nll927 operations, where 
an operation is defined to be a multiplication, division, addition, or subtraction. 

In Section 4, we modify the algorithm so that we can find triangular factorizations 
in < (2.04)nl 0927 operations and inverses in < (5.70)nl 0927 operations when n = 2'. 

Then, for arbitrary n, we can find triangular factorizations in < (2.45)nl' l27 operations 
and inverses in < (6.84)nl 0927 operations. 

In Section 5 we show that matrix multiplication, triangular factorization, and 
inversion are equivalent in computational complexity. 

2. The Basic Algorithm. For simplicity, let M be of order n = 2k with det M$0. 
Let M? _ M. We shall construct a sequence P', p2, ... , p*n- of permutation matrices 
so that M = LUP, i.e., MP` = LU, where P _ p'p2 ... pn-I is a permutation 
matrix, L =_ L'L2 ... L"` is unit lower triangular, U is upper triangular, and det M 
(det P) det U = -4 Ili uji. Since (Pi)n = pi here, 

p-1 ' n- ...p2pl1 

and 
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M-1 P-1 U- L-1 = Pn-l ... P 2P U'1(Ln-1)- .f.. (L 2)-f(L')-' 

where (L)-' = 2I - L. 
We define the algorithm sequentially for 1 < i < n - 1 as follows. 
Let 

B. = {ji = 1, i = ik-12 + ik-22k2 + + i121 + i020}; 

let 

t= max{j: j B.;, s = min{jj: j Bj} and r= t if s d t, 
t 7- 1 ifs = t. 

Then 

0M 1 M11-j 

i-il = ? - t - 
M221 

_21 

where M11'-' is a nonsingular upper triangular matrix of order i - 1, M12j1 is 
(i- 1) X (n- i+ 1),Ois the (2r+l- i+ 1) X (i- 1) zero matrix, M2- 1 is 
(n - 2r+ 1) X (i-1), M22t-' is (n - i + 1) X (n - i + 1), and MA1' is nonsingular. 

Since 2 r+ -i + 1 > 0 and Mt-' is nonsingular, there exists a nonzero element 
in the first row of M22i-'. Hence, there exists a permutation matrix Pi such that 
Nt M- 'Pt, niii 4 0, and Ni can be partitioned as 

Et' Fs 

Ni= 0 Gt: Hi 

Xs Y~ 

where Ui is (i-28) X (i-28), V' is (i-28) X (n-i + 28), Et and G' are 2' X 28, 
FP and Ht are 2' X (n - i), 0 is the (2r+ -i + 2') X (i - 2) zero matrix, Xi is 
(n - 2r+1) X (i - 2), and Yi is (n - i - 2) X (n - i + 28). Further, Ui and Et are 
nonsingular upper triangular. 

Let Z = Gs(Es) and 

Ii-28 0 

w2i 0 

Li~~~z 
0- 

0 I.-- 

where I, is the identity matrix of order j. 



234 JAMES R. BUNCH AND JOHN E. HOPCROFT 

Define M _ (L-)'Nt. Then 
i I U I - 

-i vi..I 

o iEt: Ft E FI 

I -------- = I0 i J where Ji Ht Z F1 

_ i: yi 
xi 

At the last step, U M-' is nonsingular and upper triangular. 

3. Operation Count. Finding the permutation Pi requires at most n - i com- 
parisons, and, if PQi = 0, then the permutation involves n element interchanges. 
Hence, at most n(n - 1)/2 comparisons and at most n(n - 1) element interchanges 
are required to obtain M = LUP. The computation of M` would require at most 
an additional n(n - 1) element interchanges; 

Let an operation be a multiplication, division, addition, or subtraction. Let 
M(n), MT(n), and IT(n) be the number of operations required to multiply two n X n 
matrices, to multiply an n X n matrix by an upper triangular n X n matrix, and to 
invert an n X n nonsingular upper triangular matrix (we shall ignore lower order 
terms). Then M(l) - 1 and M(2k) = 7k+1 for k > 1. Since MT(2k) = 4MT(2k-1) + 
2M(2k 1) + 22k -1 and IT(2k) 2IT(2k-1) + 2MT(2k-1) 

MT(2k) = 2 E 4iM(2k ) < 7 

and 

IT(2) = 2 E 2iMT(2 ) < 7 
j=O. U 

Inverting all the Ui for 1 ? i ? n - 1 requires 

2 2 IT(2 ) < 2 ) < 8 k i 
'= 2' 1I5 ji=02 U 52~ 

operations. Forming all the multipliers Zi for 1 ? i ? n - 1 requires 

k 
k-1 

I )_ (14)k 
2 -1E - MT(2)< (47k 

operations. Forming all the reduced matrices JP for 1 ? i ? n - 1 requires 

k M(21) 2_k_1 M(21) [2k - (21 + 1)21 < i 

j=O 1=0 2j=O 

(!)22k E (7i < 7 22k() () = 7 

Hence, for n = 2k, triangular factorization requires < (91/25)7k = (3*64)fllO2 7 

operations. 
Inverting U requires < (28/15)7k operations and U-'L-1 requires 
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22kZE ) = (2)2 22k E < 2= ( 3)7 

operations. 
Hence, for n = 2k, inversion requires (763/75)7k < (10.18)nlO'2 operations. 
If M is a nonsingular matrix of order n, where 2k < n < 2k+ 1, then let = = 

M 3 I2k+ l-,. We can find the triangular factorization of a permutation of Z, and 
hence of a permutation of M, by < (91/25)7k+ 1 = (637/25)7k < (25.48)nll092 7 opera- 
tions, and the inverse of M, and hence of M, by < (763/75)7k+ = (5341/75)7k < 
(71.22)n o2 7 

4. A Modified Algorithm. We can modify the algorithm in Section 2 so that the 
coefficient of nllO02 

7 is smaller in the operation counts of Section 3. In particular, we 
find m and k such that the number of operations is minimized subject to the constraint 
n ? m2k. 

First, let n = 2' = m2k. Then m = 2 _ 28, and M(2T) < (5 + 2m)m27k = 

f(s)7r, where f(s) = (5 + 2m)m27-8 = (5 + 28+1)2287-8. Since mino08<r f(s) = f(3) = 
192/49, we take m = 8, k = r - 3, and use regular multiplication and inversion 
for submatrices of order ?8. Then, M(2T) < (192/49)7' for r > 0 (rather than 
M(2T) _ (7)7' in Section 3). Hence, each coefficient in Section 3 is multiplied by 
(1/7)(192/49). 

Triangular factorization requires 

< GD192 2 g 10927 

operations, and inversion requires 

< (763 )( 192 7' < (5.70)n1092 7. 
k-7 5 3-43) 

Now let n be arbitrary. Taking k = [log2 n - 4] and m = [n2- k] + 1 (cf. [3]), 
we have n ? m2k and (5 + 2m)m27k < (4.7)nl092 7. 

Now, 

MT(m2 k) < 2(5 + 2m)m2 7k () < 2 (5 + 2m)m27k 

and 

IT(m2) = ? (5 + 2m)m2 7kl AI < - (5 + 2m)m2 7k. 
21 j=O 7''1 

Triangular factorization thus requires < (39/75X5 + 2m)m27k < (2.45)nllo~g7 

operations, and inversion requires < (109/75)(5 + 2m)m27k < (6.84)nll02 7 operations. 

5. Remarks. As seen above, the coefficient of nl1092 
7 is very sensitive to the 

implementation of the algorithm. Another modification of the algorithm might 
reduce the coefficient. Further, the bounds we have given on the coefficient are 
pessimistic. 

The algorithm as stated in Sections 2 and 4 may not be numerically stable since 
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we cannot guarantee that the elements in the reduced matrices are bounded. However, 
there may be a modification of our algorithm which guarantees stability; this question 
deserves further investigation. 

If a fast matrix multiplication algorithm were given for multiplying two matrices 
of order u in v multiplications where logs v > 2, then algorithms similar to those in 
Sections 2 and 4 could find the triangular factorization of a permutation of any 
nonsingular matrix, and hence the inverse of any nonsingular matrix, in < cnogu V 

operations. The algorithms would be expressed in terms of the expansions of integers 
modulo u and hold over any ring. 

Similarly, given an algorithm for multiplying two n X n matrices in O(na) opera- 
tions, then algorithms similar to those in Sections 2 and 4 can find the triangular 
factorization of a permutation of any n X n nonsingular matrix in 0(na) operations, 
and hence the inverse of any n X n nonsingular matrix in 0(na) operations, where 
2 < a < 3. Conversely, given an algorithm for calculating the inverse of an n X n 
nonsingular matrix in ? cn' operations, the product of two n X n matrices A, B 
can be computed in ?(3ac)na operations, since 

I A 0 I -A AB 

0 I B = I -B 

_O 0 I_ _O 0 I- 

(Winograd [5]). 
Thus, matrix multiplication, triangular factorization, and inversion are equivalent 

in computational complexity. 

Addendum. A. Schbnhage has proposed another method for forming the inverse 
of any nonsingular matrix (over the reals or complexes), based on the generalized 
inverse identity M-1 = (M*M)-'M*. Since M*M is symmetric positive definite, 
Strassen's inversion algorithm will not fail (but the condition number [1, pp. 20-26] 
of the problem will be squared). Strassen's matrix multiplication algorithm is used 
to form M*M and to multiply (M*M)-1 by M*. This gives the inverse of any non- 
singular matrix in < cnl 0927 operations (but the constant c is larger than the ones 
given above). 

Department of Computer Science 
Cornell University 
Ithaca, New York 14850 

1. G. E. FORSYTHE & C. B. MOLER, Computer Solution of Linear Algebraic Equations, 
Prentice-Hall, Englewood Cliffs, N.J., 1967. MR 36 #2306. 

2. A. S. HOUSEHOLDER, The Theory of Matrices in Numerical Analysis, Blaisdell, New 
York, 1964. MR 30 #5475. 

3. V. STRASSEN, "Gaussian elimination is not optimal," Numer. Math., v. 13, 1969, pp. 
354-356. MR 40 #2223. 

4. R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962. 
MR 28 # 1725. 

5. S. WINOGRAD, Private communication. 


