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Reduction Formulas for Multiple Series 

By M. L. Glasser 

Abstract. A simple procedure is given for reducing broad classes of multiple series to 
single series. Examples are given for double series. 

Suppose that A1A2 = A3, where Ai is a function of u and possesses a series expan- 
sion A, = En qi(n, u). Then we have 

(1) ~IE 4(n, u)42(m, U) = 0 43(n, u). 
mn n 

If both sides of (1) are multiplied by some function f(u) and integrated over u, we 
shall have formally 

(2) A F1(m, n) = E F2(n). 
mn,n n 

This rather trivial procedure can lead to some remarkable and useful results, as we 
shall illustrate by some examples. 

If f and g are two analytic functions, then, upon multiplication of their Taylor 
series, we obtain 

(3) 
co In) 

n!~g 
W 

(0) F(m + n + ) = (fg)In() F(n + 1), 
m,n-0 m! n! n=O n 

where F is any Mellin transform. 
From the theory of elliptic functions [1], we have the Fourier series 

co 

(a) cn(2Kx/7r) = (27r/kK) E q(n+l/2)(I + q2n+l)-l cos(2n + 1)x, 
0 

(b) (2 K/ir) dn(2 Kx/ir) = 1 + 4 E qn(l + q2n)-l cos 2nx, 
(4)1 

(2K/7r) cn(2Kx/7r) dn(2Kx/7r) 

(c) Co 
- (2r/kK) A (2n + j)q n+/2(1 - q2n+) 

- 
cos(2n + I)x, 

0 

where q = & rK'/.K If we now let K'/K = (2u/7r), we find on multiplication of (4(a)) 
by (4(b)) that 

,o cos(2m + 2n + )x _2o (2n + 1) cos(2n + ))x 

n5) nE- cosh(2m + l)u cosh 2nu 
2 E sinh(2n + l)u 

9 
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where the addition theorem and evenness for the cosine have been used to simplify 
the left-hand side. 

Next, we multiply both sides of (5) by some summable function f(x), with cosine 
transform F(y), and integrate over x between the limits 0 and a. Thus, we have 

M F(12m + 2n + 1i) 2 E(2n + )F(2n + 1) 
m,n=- . cosh(2m + 1)u cosh 2nu n=O sinh(2n + 1)u 

This remarkable result is valid for any summable function F(x). 
For example, consider Fk(x) = 1 for (2k + 3) > lxi, 0 otherwise. Denoting the 

sum on the left-hand side of (6) by Sk, we find that it can be written 

(7) Sk = SO + S1 + + Sk, 

where 

(8) Sk = 4 a [cosh(4n + 2k + 1)u + cosh(2k + 1)uF'. 
n=- co 

On the other hand, the sum on the right-hand side of (6) is finite and we have 

(9) Sk = 2[csch u + 3 csch 3u + ... + (2k + 1) csch(2k + 1)u]. 

Therefore, Sk = Sk - Sk-l = 2(2k + 1) csch(2k + 1)u and, hence, 

Z [cosh 2nu + cosh(2k + 1)uF' 
(10) n=1 

- 1[(2k + 1) csch(2k + 1)u - 2 sech2(k + A)u], k = 0, 1, 2, 

In a similar way, we can derive 

1 F(m + n + 1) + F(m-n) 8 E nF(n) 
(1mn=- sinh(2m + 1)u cosh(2n + 1)u n=1 cosh(2nu) 

(12) E F(k + m + n + 1) + F(k- m + n) 8 E n2F(n) 
k,mn=-co cosh(2ku) cosh(2m + 1)u sinh(2n + 1)u n=1 sinh(2nu) 

where F is any sine transform (and hence odd). 
Thus, taking F(1) =-F(- 1) = 1, F(n) = 0, n 5? 1, in (12), we obtain the interest- 

ing double series 

(13) E sinh[2(k + n) + I]u 2 
k,n=-co cosh 2ku sinh(2n + 1)u[cosh 2(2k + 2n + 1)u + cosh 4u]=csh2u 
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