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Applications of a Continued Fraction Algorithm 
to Some Class Number Problems 

By M. D. Hendy 

Abstract. We make extensive use of Lagrange's algorithm for the evaluation of the 
quotients in the continued fraction expansion of the quadratic surd co, where W = Vd for 
d _ 2, 3 (mod 4) and (d - 1)/2 for d _ 1 (mod 4). The recursively generated terms Q, 
in his algorithm lead to all norms of primitive algebraic integers of Q(Vld) less than VI(D /4), 
D being the discriminant. By ensuring that the values Q, contain at most one small prime, 
we are able to generate sequences of determinants d of real quadratic fields whose genera 
usually contain more than one ideal class. Formulae for their fundamental units are given. 

1. Norms of Principal Ideals. Let Q(Vcd) be a real quadratic field with dis- 
criminant D, fundamental unit E, and let co be the algebraic integer 

(1.1) d 
= - 1)/2, d 1 (mod 4), 

- /d, d 3 1 (mod 4). 

We can expand c as an infinite continued fraction 

(1.2) co= [ao, a,, * * *, an, * *] 

and calculate the nth convergent Pn/qn from the quotients an in the standard way. 
It is shown (e.g. [1, Chapter 33]) that the set { ?Pn i coqn} includes all the primitive 
(i.e., no rational divisors other than i ) algebraic integers of Q(V\Id) with norm 
less than V/(D/4). We adopt from [1] an algorithm due mainly to Lagrange for 
calculating the quotients an. Recursively, with [x] meaning the largest integer <x, 

(1.3) an = [(Pn + V\Id)/Qn], 

where 

(1.4) Pn = an-lQn-1 - P,1 and 

(1.5) Qn = (d- Pn-)/Qn- 

and with initial values (PO, Qo) = (-1, 2) or (0, 1) depending on whether d =-1 (mod 4) 
or not. The sequences of integers, an, Pn, Qn are each periodic, of period 1, commencing 
with n = 1. If we set 

(1.6) an = pn + cqn I 

we find that a,-., = E, an+ I is an associate of an, and 
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268 M. D. HENDY 

(1.7) Q= (-1)nQoN(an-l) > 0. 

The period 1, therefore, is the smallest positive integer n for which Qn = Q0. The 
cycles are reflective with 

(1.8) Pn = Pl n+l, 

(1.9) Qn = Q1-n and 

(1.10) an = a,-n 0 < n <l. 

Hence, we find the sequence (Qn/Qo), n = 1, 2, I, includes the norms of all 
principal ideals over Q(V\Id) with norm < V(Di4). 

2. Estimates of Class Number. Let v(m) be the number of primitive ideals 
over Q(V\Id) of norm m ? 1. It is well known that if p is prime 

(2.1) v(p) = (1 + (Dip)), 

where (Dip) is the Legendre symbol. From elementary considerations, we can show 
that i is multiplicative, and, for r > 1, 

(2.2) (Pr) = (D/p)(1 + (Dip)). 

It is also well known that each ideal class over Q(V\Id) contains at least one primitive 
ideal with norm less than /(D/5). By comparing v(m) with the number of appearances 
of m in the sequence (Qn/Qo), n = 1, 2, . , 1, for each positive integer m < /(D/5), 
we can obtain some estimate of the number of classes h(d) of ideals over Q(Vld). 
For example, h = 1 if and only if m appears in the sequence l(m) times, for each m 
in the interval. 

Suppose the ideals over Q(V\Id) lie in g genera with f classes in each genus so that 

(2.3) h(d) = fg. 

Suppose p is a prime for which none of its powers pt, i > 1, appear in the sequence 
(Qn/Qo), and for which (Dip) = 1. Let A be an ideal of norm p. 

Suppose A belongs to the principal genus. As the set of classes of the principal 
genus is a group of order f, the fth power of A, Af, must belong to the identity element, 
i.e., the principal class, and Af is principal. Alternatively, if A does not belong to 
the principal genus, A2 does, so that A2f is a principal ideal. No power of p occurs 
in the sequence, so 

(2.4) p2f > V\(Di4), 

i.e., 

(2.5) 2f > (1ogj(D/4))/2. 

(The value 2f can be replaced by f if we know A is in the principal genus, and, in 
particular, if g = 1.) 

We can also give an upper bound to f by finding a limit to the number of classes 
in the principal genus. An ideal of norm m is in the principal genus if and only if 
the Jacobi symbol (mia) = 0 or 1 for each divisor a - 1 (mod 4) of D. When m)has 
this property, we define ,u(m) = v(m), otherwise let i(m) = 0. Let a(m) be the number 
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of appearances of m in (Qn/Qo), n = 1, 2, * , 1. Then 
[ V/(D/5) ] 

(2X6) f < 1 + E (WrM) - a(m)). 
m=2 

For many values of d, the bounds (2.5) and (2.6) are sufficient to determine f 
and hence h, precisely. 

The occurrence of values d for which f > 1 is relatively low. The first such value 
is f = 3 for d = 79. In the range 1 < d < 2025, only 213 (17.4%0) of the 1227 square- 
free values of d have f > 1 [2]. Kloss [3] reported that of the primes p = 1 (mod 4) 
in the range 5 < p < 105269 about 80%o of the fields Q(V\p) have f (=h) = 1. The 
proportion in smaller intervals was relatively stable. 

In order to find values of d for which f > 1, we need to locate values of d for 
which a relatively small prime p (p < (D/4)114) can occur in Eq. (2.5). For each 
odd prime p, approximately (p - l)/2p = of the numbers in a given large (in 
comparison to p) interval are quadratic residues (mod p). Hence, one would expect 
heuristically that the proportion of numbers in such an interval which are not quad- 
ratic residues for at least one of the first n odd primes to be of the order of 2'. 

If we can generate values of d for which the sequence (Qn/Qo) contains at most 
one small prime, then the greater the value of d, the larger, in general, the value of f. 
We do this in two ways: firstly by generating all values of d for which the period 
I < 4, and secondly by finding values of d for which the corresponding sequence 
(Qn/Qo) contains only one integer c and its powers. 

3. Fields with Small Periods. If the period of Q(V/d), I- 0 (mod 2), then it 
can be shown by elementary means that the principal ideal (a l/2) is ambiguous, and 
its norm Q112/QO is a divisor of D. Also, as (a,) = (1), the only nonambiguous 
principal ideals occur for I < 4, when I = 3; (a,) and (a2) and when I = 4; (a,) and 
(a3). These are conjugate ideals, of the same norm, hence, although (a, 2) is also 
principal, its norm is not represented in the sequence (Qn/Qo), n = 1, *, 4. Hence, 
(QI/Qo)2 > V/(D/4), so that 

(3.1) Q1/Q0 > (D/4)1/4D 

The same result holds for both values of 1. Hence, the only numbers in the sequence 
1 < (Qn/Qo) < (D/4)1/4 are Q,/QO when I = 2, and Q2/QO when I = 4; so, for 
I < 4, (Qn/Qo) can contain at most one small prime. 

In order to generate such values of d = a2 + b, with b < 2a, it is convenient to 
consider three cases separately. These will be: (i) d p 1 (mod 4), (ii) d = 1 (mod 4), 
b _ 0 (mod 4), (iii) d- 1 (mod 4), b= 1 (mod 4). By considering the reflective 
properties (1.8), (1.9) and (1.10) of the algorithm (1.3)-(1.5), we can, subject to 
some bounds and modular constraints, specify the first [(I + 4)/4] values of an, 

and the first [(I + 2)/4] values of P,. With these values nominated, d is then uniquely 
determined. However, in case (iii), we find necessarily that a, = 1, reducing the 
number of parameters in this case. Hence, for cases (i) and (ii), d is specified by 
[(I + 2)/2] parameters, and, in case (iii), by [1/2] parameters. 

For example, to find all the values of d = a2 + b in case (iii) with length 3, we 
have d -b 1 (mod 4) and a -0 (mod 2) as it is case (iii). From Eqs. (1.3)-(1.5), 
we can calculate the first few values of Pn, Qn, a,. These are given in Table I. 



270 M. D. HENDY 

TABLE I 

n 0 1 2 

P. -1 a-I (b+1)/2 
Qn 2 a + (b- 1)/2 a-(b-1)/2 
a,,, (a - 2)/2 1 ... etc. 

By Eq. (1.9), Q, = Q2, so b = 1, d = a2 + 1 = (2r)2 + 1, with 2r = a. For suffi- 
ciency, we expand d = (2r)2 + 1, again using Eqs. (1.3)-(1.5) to ensure that we 
will always get I = 3. This expansion is given in Table II. 

TABLE II 

n 0 1 2 3 

P. -1 2r - 1 1 2r - 1 
Qn 2 2r 2r 2 
an r -1 1 1 

Hence, d = (2r)2 + 1 is of length 3 provided r > 1. No modular constraints need 
be placed as all values are integral. 

In a similar way, we calculate the eleven other cases. Their expansions corre- 
sponding to Table II will be given as an appendix. We summarise the results in 
Theorem 1. 

THEOREM 1. The periods I ? 4 occur precisely for the values of d listed in Table III. 

TABLE III 

l = 1: 
(i) d = (2r- 1)2 + 1, r _ 1. 
(i) d = (2r - 1)2 + 4, r _ 2. 

(iii) d = 5. (In this case, as co < 1, we expand 1 + co.) 

1 = 2: 
(i) d = (rs)2/4 + r 6 1 (mod 4), rs O(mod 2), r, s > 2. 
(ii) d = (rs)2 + 4r, rs 1(mod 2), r, s > 3. 
(iii) d = (2r + 1 

)2 - 4, r > 2. 

1 = 3: 
(i) d = (r(4rs-+ 1)+s)2+4rs+ 1, r s(mod 2), r,s> 1. 
(ii) d = (r(rs+ 1)+s)2+4(rs+ 1), (r- 1)(s- 1)- O(mod 2), r,s> 1. 
(iii) d = (2r)2 + 1, r _ 2. 

1= 4: 
(i) d = (rs t)2/4 + r p 1 (mod 4), rs-t (mod 2) J rs t (mod (st + 1)), 
(ii) d = (rs+ t)2 + 4r, rs 6 t(mod 2) andr > t > 1,st _ 2. 
(iii) d = (rs)2-4r, rs _ 1 (mod 2), r, s > 3. 

From the appendix, we can extract the values of the sequence (Qn/Qo), n= 
1, 2, . , 1. These are given in Table IV. 
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TABLE IV 

1 1 1 1 
2 r,1 r,1 2r- 1,1 
3 4rs + 1, 4rs? 1, 1 rs + 1, rs + 1, 1 r, r, 1 
4 r, St + 1, r, 1 r, St + 1, r, 1 r, rs - r - 1, r, 1 

The above tables do not include squares nor multiples of 4, but contain many 
numbers with square factors. As our interest lies in fields Q(V\d) where d is square- 
free, we will restrict our reference to only square-free values of d in the above tables. 

From an examination of the values of f and a comparison with I in the interval 
1000 < d < 2000 [2], we find a general trend for the values of f > 1 to be associated 
with small values of 1. For example, over 60% of the values of d with I ? 4 have 
f > 1, while less than 10% of the values of d with I > 4 have f > 1. The most extreme 
case against this trend is d = 1171 with I = 26 and f = 3. Its exceptional nature 
can be accounted for from the fact that 1171 is a quadratic residue for each of the 
first six odd primes. (Cf. Table I in [4], where values of N_- 1 (mod 8) are listed, 
N, being the smallest integer which is a quadratic residue for 3, 5, 7, * , p. N17 = 

18001.) 
Also, from Table III, we can construct sequences of values of d, which, provided 

they are square-free, will give an increasing sequence of values of f by Eq. (2.5). 
For example, if we consider the sequence 

(3.2) d. = (6n - 3)2 + 1, 

we find (dn,/3) = 1. If dn is square-free, then, by Eq. (2.5), 

(3.3) f > (log3(2n- 1))/2, 

which is unbounded as n increases. It seems likely from the Hardy-Littlewood con- 
jectures (e.g., see [5]) that an infinite number of the dn are prime, and even more 
likely, that an infinite number are square-free. Similar results can be constructed 
from other sequences from Theorem 1. 

4. Generalisation of Shanks' Sequence. The second method outlined in Sec- 
tion 2 is to find values of d for which the sequence (Qn/Qo) contains only powers 
of one integer c. For example, Daniel Shanks in [6] introduces the sequence 

(4.1 ) Sn, = (2n + 3)2 8 . 

For values of Sn that are square-free, the sequence (Qn/Qo), n = 1, 2, * , 1, where 
I = 2n + 1, takes the values 

(4.2) 2 , 2, 2, 22 ... . 2n 2, 2 , 1 

so that 

(4.3) Q2r = 2 Q0, Q2r+1 = 2nrQo 

We will consider the more general problem of constructing values of d so that the 
corresponding sequence (Qn/Qo) is 
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(4.4) Q2r = C Q0, Q2r+1 = c Qo0, 

for integers c > 1. 
From Eq. (1.5), we can derive, for each r > 1, 

(4.5) Q2rQ2r+1 = cnQo = d - P2r+i and 

(4.6) Q2r=lQ2r = Q0 = d - p2 

Hence, P2r+12 = d - CnQO = pl2, P22 = d- c+lQo = P22, p1 > P2 and P12 - P22 = 
cnQO(c - 1)- 0 (mod 2), for n > 1. Hence, let P = (P1 + P2)/2 and k = P - P2. 

Thus, we obtain 

(4.7) P2r+1 = P + k, P2r =P k, 

with k > 0. From Eq. (1.4), we can show that Q8+, = Q8-1 + a8(P. - P.+1); so, 
for each r > 1 

(4.8) Qocr+1 = Qocr + 2ka2r+i and 

(4.9) QOcnr = Q0cn r+1 - 2ka2. 

Hence, 

(4.10) 2ka2r+I = Cr(C- _)Qo and 

(4.11) 2ka2 r = Cn-r(C 1 )Q0. 

Equations (4.10) and (4.11) hold for each value of r > 1, hence 2k (c - 1)Qo. 
Suppose 

(4.12) 2km = Qo(c - 1), 

so that, for r > 1, 

(4.13) a2r = mc a2r+1 = mcr. 

Using Eq. (1.5), we can show that 

(4.14) 4Pk = P = cC(c - _)QO = 2kmc nQ0, 

and hence 

(4.15) P = (Qo mcn)/2. 

From Eq. (1.5), we also find 

(4.16) d = ((Qomc8)/2 + k)2 + 0 

We now consider two cases, depending on whether or not d =1 (mod 4). 
Case A. d 4 1 (mod 4). Thus Q0 = 1 and, by Eq. (4.15), c- 1 (mod 2) = m_ 

0 (mod 2), as P is integral. Let m = 2q, so that Eq. (4.12) becomes 

(4.17) 4qk = c - 1, 

so 1 (mod4).d =(qc + k)2 + cn (q + k)2 + 1 1 (mod 4). Hence q + k- 
1 (mod 2), so qk _ 0 (mod 2), and Eq. (4.17) gives c 1 (mod 8). 

Thus, in Case A, the values of d given by Eq. (4.16) are 

(4.18) d = (qcn + k)2 + cn, 
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with c =1 (mod 8) and qk = (c - 1)/4. All the values of d given by Eq. (4.18) give 
rise to the sequence (4.4). For example, with (c, k, q) = (9, 2, 1), we obtain the sequence 

(4.19) n= (9f + 2)2 + 9n 

In particular, d3 = 535090 which has, for the first seven values of Qn, Q1 to Q7: 
729, 9, 81, 81, 9, 729, 1. 

Case B. d _1 (mod 4), in which case Qo = 2 and, by Eq. (4.12), 

(4.20) km = c - 1. 

From Eq. (4.16) with d _1 (mod 4) and Eq. (4.20), we find 

(4.21) d = (mcn + k)2 + 4c, 

with c = mk + 1. To ensure d = 1 (mod 4), we require mcn + k - mc + k= 

1 (mod 2). However, by Eq. (4.20), this means (mk + 1)m + k - mk + m + k 
1 (mod 2), so that 

(4.22) (m + 1)(k + 1) 0 (mod 2), 

i.e., one of m, k must be odd. Provided this condition is met, we can obtain the 
sequence (4.4). For example, with (c, k, m) = (2, 1, 1), we obtain Shanks' sequence 

(4.23) d = Sn = (2n + 1)2 + 4-2n = (28 + 3)2 - 8. 

Other examples will be given in the appendix. 

5. Fundamental Units. Having obtained the quotients an from Eq. (1.3), we 
can readily calculate the fundamental unit a, from Eq. (1.6). From Eq. (1.7), we 
note 

(5.1) N(E) = (-1)L. 

Corresponding to each field extracted from the values of d in Table III, we can set 
up a table of their fundamental units (see Table V). 

TABLE V 

d E 

(2r-1)2 + 1 (2r-1) + A/d 
(2r- 1)2 + 4 ((2r- 1) + V\d)/2 
5 (1 + V\d)/2 
(rs)'/4 + r (rs2 + 2)/2 + sa\d 
(rs)2 + 4r (rs2 + 2 + so\d)/2 
(2r + 1)2 - 4 (2r+ 1)+ \Id 
(r(4rs + 1) + 5)2 + 4rs + 1 ((4r2 + 1)2S + r(4r2 + 3)) + (4r2 + 1)Vd 
(r(rs + 1) + 5)2 + 4(rs + 1) ((r2 + 1)2s + r(r2 + 3) + (r2 + 1)VId)/2 

(2r)2 + 1 2r + VId 
(rs + t) 2/4 + r ((rs + st + 1)2 + 2s(rs - t) 

+ s(rs + st + 1)V\d)/2(st + 1) 
(rs + t)2 + 4r ((rs + st + 2)2- 2(st + 1) 

+ s(rs + st + 1)V\d)/2(st + 1) 
(rs)2 - 4r (rS 2- 2 + so\d)/2 
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For the sequences of Section 4, we obtain by Eq. (4.13) the sequence (an) = ao, 
m, mcnl, mc, mc-2, mc2 . From this, we can calculate the coefficients Pr, q, 
recursively. Less calculation is involved in finding q,, than in finding pr, and as 
I = 2n + 1 is odd, we can obtain the coefficients u, v of E = u + va/d from 

(5.2) v = q2n, 

(5 3) a~~~~~~ = (dq2 _ Q2)112 (5.3) u = - 

We find by induction that 

(j (- t) +) - 1 ) )n--t 2 

and 

(5.5) q2r+ ( = (j )(s ? 

hence 

(5.6) = 1+ E(M ( )( +t 1) 8(fl1)t) 2. 

For example, in the case d = (93 + 2)2 + 93 = 535090, we find by Eq. (5.6) that 
v = 34 351529. Rather than use Eq. (5.3) directly, computation is shortened by 
noting the approximation 

(5.7) u v VId. 

In this case, vs/d = 25128 090632.99997. Taking u as 25128 090633, we find 
u2= dv2 - 1 = 631 420938 860262 340689. 

As n increases, so does the complexity of calculation in Eq. (5.6), and in fact, 
for n > 15, multiprecision arithmetical subroutines are needed to compute v. However, 
if only approximate values of u, v etc. are required, we can rearrange Eq. (5.6) to 
isolate the leading terms. 

For example, in the case of Shanks' sequence dn = (2n + 3)2 - 8, with c = 2, 
m _1 (Eq. (4.23)), we can rearrange Eq. (5.6) to give 

(5.8) V= 1 (+ (n - + 1)(n + r 
)2Q )2n(nQ) 

whose leading terms give the approximation 

v = 2 n2(1 + (3n - 1)2n + (92 - 
19 n + 5)22n 

+ (9n3 - 24n2 + 85n 25)2-3n + O(n42 4n)). 

Using the approximation VId = 2n(1 + 3.2- - 4.2-2n + 12.2-3n + 0(2-4n)) in 
Eq. (5.7), we obtain 

u = 2 (1 + (3n + 2)2-n + (29n2 - n - 2)2-2n 
(5.10) 

+ (En3 - 21n2 + 2n + 6)2- + O(n4248)), 

and use E 2u for an approximation for E. 
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In a recent paper [7], Shanks required an asymptotic value for log e2 in the com- 
putation of the class number h(Sj). He quotes from a paper, yet to be published 
[8], the result 

(5.11) log(e2) = 2n2 log 2 + O(n2_). 

Using Eq. (5.10) and the log series, we can refine Eq. (5.11) to 

(5.12) log(e2) = (2n2 + 2) log 2 + (6n + 4)2- 

(1 3n + 8)2 + (42n + -V)2- + O(n 2-). 

However, for other than relatively small values of n, we can use the approximation 
of (2n2 + 2) log 2. In the case n = 19 quoted by Shanks, (5.12) gives 501.838653, 
with the remainder terms after (2n2 + 2) log 2 contributing only 0.000225. (Cf. 
(5.11) giving 500.452134.) 

6. Conclusion. In his algorithm for calculating class numbers of real quadratic 
fields, Shanks [7] notes that the efficiency of computation is greatly enhanced by 
knowing a priori the fundamental unit of the field, and in the cases listed above with 
only a small number of easily recognised primitive principal ideals, other problems 
in his algorithm are reduced. 

Obviously, it would be possible to classify all fields of any given period, by ex- 
tending the processes of Section 3. However, the current method has a practical 
barrier to indefinite extension in the sheer mass of algebraic manipulation with 
increasing numbers of parameters being required. There may well be other more 
fruitful approaches to the problem. 

7. Appendix. 

I= 1: 
d =(2r-1)2+ d = (2r- 1)2+ 4 d = 5 

n 0 1 0 1 0 1 
Pn 0 2r- 1 -1 2r-1 1 1 

Qn 1 1 2 2 2 2 
an 2r- 1 r-1 I 

I = 2: 
d= (rs)2 /4 + r d = (rs)2 + 4r d= (2r 1)2 -4 

n 0 1 2 0 1 2 0 1 2 

Pn 0 rs -1 rs rs -1 2r- 1 2r- 1 2 2 
Qn 1 r 1 2 2r 2 2 4r-2 2 

rs rs- 
2 2 P 1 

1 = 3: 
d = (r(4rs + 1) + Y)2 + 4ry + I 
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nO 1 2 3 
Pn 0 r(4rs + 1) + s r(4rs + 1)-s r(4rs + 1)-s 
Qn 1 4rs + 1 4rs +1 1 
a, r(4rs + 1) + s 2r 2r 

d = (r(rs + 1) + S)2 + 4(rs + 1) d=(2r)2+1 

n O 1 2 3 0 1 2 3 
Pn -1 r(rs+1)+s r(rs+1)-s r(rs+1)+s -1 2r-1 1 2r-1 
Q. 2 2(rs+ 1) 2(rs+ 1) 2 2 2r 2r 2 

r(rs+ 1)+s- 1 
"n 2 r r r-11 1 

1 = 4: 

d= (rs + t)2/4+r d = (rs + t)2 + 4r 

n O 1 2 3 4 0 1 2 3 4 
rs+t rs-t rs-t rs + t -I rS+t rs-t rs-t rs+t Pn 0 

2 2 2 2 
Qn 1 r 1 +st r 1 2 2r 2(st+ 1) 2r 2 

rs+t rs-t rs+t-1 rs-t 
2 1 +St 2 1 +St 

d= (rs)2 -4r 

n O 1 2 3 4 
Pn -1 rs-2 rs-2r rs-2r rs-2 
Qn 2 2(rs-r- 1) 2r 2(rs-r- 1) 2 

rs - 3 
an 2 1 s-2 1 

d 4 1 (mod 4) d- 1(mod 4) 

(c, k, q) d (c, k, m) d 

(9, 1, 2) (2 .9 + 1)2 + 9n (2, 1, 1) (1.2n + 1)2 + 4.2n 

(9, 2, 1) (1.9" + 2)2 + 9n (3, 1, 2) (2.3" + 1)2 + 4.3fn 

(17, 1, 4) (4.17n + 1)2 + 17n (3, 2, 1) (1.3" + 2)2 + 4.3 n 

(17, 4, 1) (1.17- + 4)2 + 17n (4, 1, 3) (3.4" + 1)2 + 4.4 n 

(25, 1, 6) (6.25- + 1)2 + 25n (4, 3, 1) (1.4" + 3)2 + 4.4fn 

(25, 2, 3) (3.25 + 2)2 + 25n (5, 1, 4) (4.5" + 1)2 + 4.5fn 

(25, 3, 2) (2.25n + 3)2 + 25n (5, 4, 1) (1.5" + 4)2 + 4.5fn 

(25, 6, 1) (1.25" + 6)2 + 25n (6, 1, 5) (5.6n + 1)2 + 4.6n 

etc. 
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