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On the 3-Rank of Quadratic Fields and the 
Euler Product 

By Carol Neild and Daniel Shanks 

Abstract. This paper covers many (closely related) topics: the distribution of the 3-Sylow 
subgroups of imaginary quadratic fields; the possibility of finding 3-ranks greater than 4; 
some questions concerning a3 = b2 + c2D; and the convergence of Euler products and its 
relation to the extended Riemann hypothesis. Two programs that were used in this investiga- 
tion are described. 

1. Introduction. The p-rank of an imaginary quadratic field Q((-D)1"2) is 
designated as r, and is the number of factors in the p-Sylow subgroup of its ideal 
class group. The discriminant d here equals - D, or - 4D, according as D 3 (mod 4), 
or not, and if d is divisible by exactly n distinct primes, one has, very simply, 

(1) r2 = n - 1. 

Thus, there is no problem in making r2 as large as one wishes. Until recently, however, 
not a single case of r, > 2 was known for any p > 2. 

In [1] and [2] a number of examples of r3 = 3 were developed and in [3] two 
cases of 

(2) r3 = 4 

were displayed. Now, r3 > 4 has a profound algebraic implication [4]: No algebraic 
extension of such a Q((-D)'12) has class number 1. Therefore, no matter how many 
algebraic irrationalities are adjoined to Q((-D)112), it is impossible to obtain unique 
factorization of the algebraic integers in the resulting, larger field. 

One of the cases of r3 = 4 in [3] is 

(3) D = 87386945207 = 167*12409 42169, 

for which Q((-D)1 2) has the class group 

(3a) C(3) X C(3) X C(3) X C(3) X C(23) X C(2) X C(181). 

Here, C(n) is the cyclic group of order n and one has 

(3b) r3 = 4, r2 = 2, r181 = 1. 

The other case in [3] is 

(4) D = 83309629817 = prime, 

for which we have 
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(4a) C(32) X C(3) X C(3) X C(3) X C(22) X C(181) 

and therefore 

(4b) r3= 4, r2- 1, r'81- 1. 

Our point in departure here is the startling coincidence (?) wherein both examples 
have class numbers divisible by 181. A priori, it seems impossible to imagine why 
r181 > 0 has any relevance for r3> 3, and so the presumption was [3] that this common 
factor C( 181) was merely a coincidence. But no intuitive notion, no matter how 
fervently held, constitutes mathematics, and so it seemed desirable to find a third 
case of (2). If it now had r181 = 0, fine; but if one found r181 > 0 again, some hard 
thought would be called for! 

The D in (4) is 

(5) D = D3(-235) 

where 

(6) D3(y) = 27y4 - 74y3 + 84y2 - 48y + 12. 

By the theory in [2], one knows that r3 _ 2 for all square-free D3(y) with y I 1 
(mod 6). 

We have recently programmed a more elaborate and versatile SPEEDY sub- 
routine. Primarily, SPEEDY estimates the Dirichlet series of Q(d'12): 

(7) L(,X) = E (^)n 12 -dq (7) ~ ~ ~ ~ ~~~=1 n q=2 q - (d/ q) 
from a partial product of the Euler product on the right of (7). The additions to 
SPEEDY alluded to are described below. They enabled us to compute a class group 
analysis of Q((-D3(y)) 12) directly from the argument y in about 15 seconds computer 
time on a CDC 6700 for any y in the range 100 < IyI < 1000. 

Including those Q((-D3(y)) 12) calculated earlier, we have now examined the 
250 smallest, square-free D3(y) with y _- 1 (mod 6). These vary from D3(5) = 9497 
to D3(-919) = 19316154836081 and include the sought-for 

(8) D = D3(-739) = 8082611041961 

= 131 61699320931 

which has the class group 

(8a) C(3) X C(3) X C(3) X C(3) X C(2) X C(2) X C(19) X C(499) 

and therefore has 

(8b) r3 = 4, r2 = 2, r181 = 0. 

So much for that. 
To verify that Q((-D3(-739)) 12) contains C(3) X C(3) X C(3) X C(3) it suffices 

to examine four integral ideals in this field: 

(9) i = (a, (b + c(- D)1/2)/(b, c)) 

that are of order 3: 
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(10) a3 = b2 + c2 D, 

and none of which is equivalent to any product containing the other three. Four 
such generators of the 3-Sylow subgroup in (8a) are 

I = (2188922, -(3238506402 + 2(-D)112)), 

(11) k = (40410, -(5801534 + 2(-D)"12)), 

= (82050, 2(22804534 + 2(- D)l12)), 

m = (96842, '(29595438 + 2(-D)"12)). 

More on these ideals (9)-(10) later. 
In the next section, we discuss the distribution of different 3-Sylow subgroups 

in our set of 250 class groups. Section 3 gives an heuristic estimate of the size of IyI 
needed before we can reasonably expect to see r3 = 5, 6, etc. (It has not yet been 
shown that such r3 actually occur.) Section 4 indicates briefly some questions con- 
cerning the values of c that occur in (10). 

Section 5 describes the new SPEEDY and gives data on two other distributions: 
(a) For these discriminants d = -4D3(y), how are the Legendre symbols (d/q) 

distributed for the first 15000 odd primes q from q2 = 3 to q15001 = 163847? 
(b) For the same limit 163847, how are the relative errors distributed in the 

SPEEDY estimates: 
/163847 

(12) /1 q 1 - q L(1,X))/ L(1, X)? 
=2q-(d/q) 

Both of these distributions relate to the question of whether the Dirichlet func- 
tions L(s, X) obey the Riemann Hypothesis. 

Finally, Appendix 2 describes CUROID which computes the ideal cube-roots 
of the identity (9)-(10), and Appendix 3 describes other new features of SPEEDY 
that may be used to speed up the factorization of large numbers. 

2. The Distribution of the 3-Sylow Subgroups. Our 250 cases of Q((-D3(y))1/2) 
have 3-Sylow subgroups that are distributed as follows. 

C(3) X C(3) : 115 cases C(3) X C(3) X C(3) : 30 cases 
C(32) X C(3) : 47 cases C(32) X C(3) X C(3) : 17 cases 
C(33) X C(3) : 21 cases C(33) X C(3) X C(3) 6 cases 
C(34) X C(3) : 9 cases C(34) X C(3) X C(3) : 2 cases 
C(32) X C(32): 1 case C(3) X C(3) X C(3) X C(3): 1 case 

C(32) X C(3) X C(3) X C(3): 1 case 

The proportion of cases with C(3) X C(3) drops slowly from about 5/9 to about 
4/9: among the first 50, 100, 150, 200, and 250 cases, there are 27, 53, 73, 89, and 115 
cases, respectively, of C(3) X C(3). This slow drop reflects the contrary trend wherein 
the proportion of cases having r3 > 2 rises at about the same rate: There are cor- 
respondingly 7, 19, 28, 43, and 57 cases of r3 > 2, respectively. 

Although the evidence is not strong, one can conjecture that these proportions 
will have definite asymptotic limits as IY- c, and further, that each of the sub- 
groups above will occur in its own limiting proportion; cf. [5], [6]. However, we do 
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not have a convincing heuristic argument to support this conjecture or to predict 
the values of these purported limits. 

Several comments on this conjectured distribution: Our discriminants -4D3(y) 
are, of course, very special. If one examined all imaginary quadratic fields, the pro- 
portions found would be very different; r3 = 0 would predominate, and r3 > 2 would 
be very rare. 

If a limiting distribution does occur for our 3-Sylow subgroups, that would be 
in marked distinction to the expected distribution of the 2-Sylow subgroups. As 
IyI Xco, prime D3(y) should become rarer and rarer and, by (1), the proportion 
of cases with r2 = 1 will therefore approach 0. And r2 = 2 should approach 0 also, 
although much more slowly. In fact, for every n, the proportion of cases with r2 = n 
should peak at some value of IyI and then very slowly approach zero density. 

As we expected, we find no correlation between r3 and r2. We show below the 
number of our 250 cases that have values of r2 from 1 to 6. The 57 cases having 
r3 > 2 are seen to be distributed proportionally. 

r2 

1 2 3 4 5 6 

all 250 cases 40 111 76 18 4 1 
r3 > 2 9 25 20 2 1 0 

It would be of interest if one could predict r3 for each Q((- D3(y))112) more directly 
from its argument y without computing the class group. At present, we know of no 
way, and perhaps no (substantially) faster computation is possible for large values 
of lyL In the analogous problem for p = 2, r2 may be determined from (1) by factoring 
D3(y). But as yI -X c, the quickest way to do this, requiring only O(lyI) operations, 
is via its 2-Sylow subgroup [7]. That is, one determines the n in (1) from r2 instead 
of conversely. 

If the reader wishes to pursue this problem of predicting r3 from y, or the earlier 
problems concerning its distribution, he should find our Table 1, in Appendix 1, 
useful. We list there all 115 values of y which have C(3) X C(3), all 30 values for 
C(3) X C(3) X C(3), etc. 

3. The Norms a. Where are Cases with r3 > 4? Our first field has D = 

D3(5) = 9497. It has r3 = 2. The first r3 = 3 here is for D3(-61) = 390949805. The 
first r3 = 4 here is for D3(-235) = 83309629817. Although we have not proven 
that r3 = 5, 6, etc. occur in Q((-D3(y))1'2), we conjecture that they do. Lacking a 
better theory, we will give an heuristic estimate of the minimal IYI required before 
we can expect such r3 to appear. 

The estimate is based upon the distribution of the integers a in (9)-(10). Here a 
is the minimal norm of all integral ideals in an equivalence class whose cube is the 
identity. Except for the identity itself, there are 

(13) 1 (3r - 1 ) 

pairs of such reduced, conjugate ideals: 

(14) (a, (b ? c(- D) 2)/(b, c)). 
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TABLE 2 

a3 = b2 + C2 8082611041961 

a b C a b C 

40410 5801534 2 1121789 1188124065 2 

82050 22804534 2 1198921 1105537400 249 

96842 29595438 2 1281850 1443152582 54 

113837 37985097 2 1436922 893374922 518 

130514 46806330 2 1574570 316450338 686 

161754 58514342 10 1577186 345876390 686 

269410 72777214 42 1635325 2061806966 123 

398485 199265293 54 1711709 2123688927 250 

448649 269169540 47 1776525 628526474 803 

455394 251737430 62 1910805 32560082 929 

523337 104436027 128 2153233 2225237284 789 

618117 185442203 158 2159953 102478031 1116 

629197 272827682 147 2188922 3238506402 2 

735249 514823815 128 2212121 1532884995 1024 

841713 716858956 101 2322933 3527573021 106 

946089 913179787 40 2538573 4027499786 131 

993018 752577214 226 2565669 3648915922 665 

1043522 931988478 182 2607714 4150631438 250 

1053345 161358767 376 2803714 4599920962 330 

1068833 1104069711 16 2878917 4880354638 73 

The 40 = 1(34 - 1) equations (10) for the D = D3(-739) of (8) are listed in 
Table 2. The corresponding data for the D3(- 235) of (4) were given in the similar 
Table 2 of [3]. 

Since the ideals (9) in both Tables 2 are reduced, a is bounded as follows: 

(15) 0 < a < (4D/3)1/2, 

and since the 40 values of a in either Table 2 are squeezed into the interval (15) we 
expect, and find, that they are distributed fairly uniformly in (15) except at its upper 
end 

(16) D1/2 < a < (4D/3)1/2 

where the density falls off markedly. (Only the largest a in the Table 2 here falls 
into (16).) 
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The reason for this sharp falling off is that if we exclude ideals that are mere 
multiples of (9), namely 

(na, (nb + nc(- D)' 2)/(b, c)), 

the norm a2 of the second smallest norm within each equivalence class satisfies 

(17) D /2 < a2. 

Thus, certain ideals of the smallest norm a, and of the second smallest norm a2, will 
share the interval (16). For example, the five largest a in Table 2 here correspond, 
respectively, to equivalent ideals of norm a2 = 3214930, 3151465, 3099505, 3209553, 
and 3028066, all of which are also in (16). This split in (16), one a to five a2, is not 
typical; for the D3(- 235) of [3] one finds, instead, three a and three a2 in the interval 
(16). 

Because of this approximate (but qualified) uniformity, we therefore expect, 
and find, that the smallest a in each Table 2 satisfies 

a < - (4D/3)1/2. 40 

But this smallest a must also satisfy 

(18) a3 > D 

from (10) since (9) is of order 3. It follows that 

(4D/3)1/2 > 48000 or D > 1728000000 

if r, = 4. This is true for (4). 
For larger r3, we approximate (13) by 2 3r3 and obtain 

(19) D > 33 3729r3.2-12 

Taking D 27 y4 from (6) therefore gives the heuristic bound 

(20) IyI > 8((27)1/2)r3 

for the fields Q((- D3(y)) 12) and larger values of r3. 
The smallest norm a in Table 2 corresponds to c = 2. While other reduced ideals 

there also have c = 2, c = 1 does not occur even once in Table 2. The same thing 
is true for the Table 2 of [3] for the first r3 = 4, and also for the first r3 = 2 and 
first r3 = 3 mentioned at the start of this section. Now c = 1 can occur for the smallest 
a for some Q((- D(y)) 12); for example, it occurs in 

248013 = 32990622 + D3(635). 

But occurrences of c = 1 are very rare for any y, and in no known case does it occur 
in the first example of an r3. We will resume a discussion of the various values of c 
in the next section. 

Therefore, for most larger values of r3, it is fairly safe to replace (18) by the stronger 

(18a) a3 > 4D. 

This implies 

(19a) D > 33 3729r3 .2-8 
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and therefore 

(20a) ly I > 4 ((27)' 12pr 

At best, (20a) is a necessary condition, not a sufficient one. Nonetheless, r3 = 3 
and r3 = 4 did occur for IyI less than twice the right side of (20a). The correct con- 
clusion seems to be this: while it would be rash to predict that r3 = 5 will occur 
before Iyj = 2000, there is a moderate probability that it would do so. 

Note added in proof. To verify that (20a) remains valid for r3 = 5, we subsequently 
ran the next 10 cases of Q((-D3(y)) 12) beyond the y = -919 in Table 1. It is valid, 
and in the process we found C(3 5) X C(3) at y =-937 and C(37) X C(3) at y =-949 

4. Problems Concerning the Coefficients c. In Table 2 of [3] for D = D3(-235), 
one notes (and it was specifically called attention to there) that besides 9 cases of 
c = 2 there are 2 cases of c = 2n3 for n = 2, 3, 4, and 5. In the present Table 2, 
c = 2 occurs 7 times, c = 2n3 occurs twice for n = 3, 4, 5 and 7 and once for n = 2 
and 8. Clearly, this is not merely coincidental; there must be a number-theoretic 
interpretation for the frequent occurrence of these c = 2n3. 

Here are some statistics. For the 25 largest cases of r3 = 3 in Table 1, from y = 
575 to y =-919, inclusive, there are 25 X 1(33 - 1) = 325 reduced ideals of smallest 
norms a within their equivalence classes. In these 325 the following values of c occur 
with the indicated frequencies: 

c 1 2 16 54 128 250 432 686 
frequency 2 76 11 13 9 5 1 9 

Thus, c = 2n3 is very common (while c = 1 is very rare). 
With the program CUROID of Appendix 2, we have not only computed these 

13 = 1(33 - 1) ideals of smallest norm a, but also the 13 of the second smallest 
norm a2, of the third smallest norm a3 and of the fourth smallest norm a4. In this 
larger sample of 4 X 325 = 1300 ideals, the foregoing frequencies are somewhat 
increased: 

c 1 2 16 54 128 250 432 686 
frequency 2 105 13 14 11 14 1 11 

In addition, one notes scattered values of c = 2n3 for n = 8, 9, 11, and some larger 
values of n. 

We must admit that we do not really understand this prevalence of these c = 2n3 
(or the rarity of the c = 1). The abundance of n = 5 and 7 above relative to n = 6 
only adds to the mystery. The lone case of n = 6 in these 1300 ideals is 

1279633 = 12438480072 + 4322 D3(575). 

And n = 10 does not appear here at all. 
Perhaps an explanation of the prevalence of c = 2n3 would follow from the 

theory of Mordell's equation [9]: 

3 2 x - y = k. 

But even if it did, one would still want an algebraic number theory interpretation. 
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The best clue now known to us is based upon that fact that the imaginary and 
real fields 

Q((- D)112) and Q((3 D)112) 

are related via class field theory [8]. It is known that the ideals satisfying 

(21) a3 = b2 + C2D or a3 = b2 _ c23D 

in either of these two fields may be used to compute the unramified cubic extensions 
of the other field (cf. [10]). It can be shown that if the coefficient c in (21) is divisible 
by a cube n3 then the resulting cubic polynomial can be simplified by a transforma- 
tion to yield a cubic polynomial with smaller coefficients. This is not itself an adequate 
explanation but it may indicate where one lies. 

As for c = 1, it is easy to show that any case of a3 = b2 + D3(y) with y - 1 
(mod 6) must satisfy 

(22) a- 9 (mod 12) and b 3 ?4 (mod 18), 

but whether these restrictions suffice to account for the observed rarity has not been 
examined. Many questions; few answers. 

5. The New SPEEDY Features and its Statistics. The original SPEEDY was 
programmed [7, pp. 417, 433] by D. H. and Emma Lehmer. It estimates the Dirichlet 
series (7) by the partial product 

Q q 
(23) L(Q) = 11 q 

(z= q - (d/q) 
Except for q = 2, (d/q) is computed by a subroutine JACOBI that uses the Reci- 
procity Law. For d < 0, one therefore estimates the class number of Q(d 12) by 

(-d)] /2 
(24) h(d) ( -- L(Q). 

Although we kept the same name, the new SPEEDY [11] is not particularly fast 
since it is written in Fortran. But it has a number of new features that we used here: 

A. The odd primes q are on tape in blocks of 500 and the input parameter K 
sets the limit Q as the 500. Kth odd prime. In the present work we set K = 30 and 
therefore had 

Q = q15001 = 163847. 

B. All prime divisors of d ? Q, which are those q with (d/q) = 0, are recorded 
with their correct multiplicity. The cofactor of d (the quotient that remains after 
these divisions) is also recorded. 

C. For each q having (d/q) = + 1, there exists a quadratic form 

(25) Fq = (q, bq, cq) 

of discriminant 

(26) d = bq 4qcq. 

These forms are needed for the program CLASNO that computes the class group 
of Q(d'12) [7, Eq. (7)]. The input parameter L indicates the number of forms (25) 
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that we wish. For each of the first L primes q having (d/q) = + 1, we compute b 
by solving 

(27) b2-d (mod q), bq d (mod 2) 

with the use of RESSOL, a subroutine described in [12], [13]. 
D. A record is also kept of R(Q), the number of odd q < Q that have (d/q) = + 1. 
E. There are several variants of this new SPEEDY. The one used here computed 

d = -4D3(y) from y, computed (24) and (25) with K = 30, L = 6, and read this 
data directly into the input of CLASNO [7]. We thereby compute the class group 
of Q((-D3(y))1/2) directly from y. A second version computes (and plots) the sequence 
of partial products (23) for K = 1, 2, 3, . . A third version is accessible on a remote 
teletype (time-sharing) terminal and has additional features described in Appendix 3. 

The utility of SPEEDY is based upon the convergence of (23) as Q -a 0. This 
convergence is slow, at best. It only occurs, at all, because the primes q with (d/q) = 

+ 1 (the "residues") and those with (d/q) = - 1 (the "nonresidues") are equinumerous 
as Q -> a. Within this proven condition, however, there is much play possible: 
the rate of convergence of L(Q) and the difference in the counts of the residues and 
nonresidues are dependent upon the complex zeros of the function L(s, x). The 
fastest possible convergence and the smallest difference of counts can only occur if 
L(s, x) obeys the Riemann Hypothesis. 

The statistics that follow are based upon 200 of our 250 fields Q((- D3(y))1/2) 
since we did not wish to repeat those computed earlier. (If someone wishes to check 
our work, the 50 values of y omitted are the 22 values listed in [2, Table III], the 
26 values referred to in [3, p. 185] that satisfy 137 < IyI ? 595 and have r2 = 1 or 
r2 > 4, and, finally, our last two new cases: y = 917, -919.) 

With K = 30, and therefore 15000 odd primes q, one expects the number of 
residues R(Q) to be about 7500. Here is how the 200 values of R(Q) are distributed: 

R(Q) 

7325-7374 7375-7424 7425-7474 7475-7524 7525-7574 7575-7624 7625-7674 

5 24 35 56 48 25 7 

The extremes here are for y = -865 which has 7337 residues and for y = - 175 
which has 7666. The average R(Q) is 7505, and the distribution is roughly Gaussian, 
but with a somewhat smaller spread. 

For the optimum operation of CLASNO [7, p. 420], one wants to know the 
average accuracy of the estimate (24). The relative error, in parts per 1000, is 

(28) E(Q) = 1000( q - (d/)- L(1, X)) L(1, X). 

Here is how the 200 cases are distributed for Q = 163847 (K = 30). 

E(Q) 
-2 -II -1 0 + 1 +11 +2 

13 2 11 9 j19 31 24 29 20120 13 9 6 1 2 
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In brief, one can say that one-half of the cases are better than 1 part in 2000, 
one-sixth are worse than 1 part in 1000, but none (in this limited sample) are as bad 
as 2 parts in 1000. The worst estimates were for y = -901: E = - 1.751, y = -625: 
E = +1.756, and y = -709: E = +1.916. (With the second variant of SPEEDY 
mentioned in point E above, we are currently studying possibilities of eliminating 
or reducing these worst errors.) 

On the Riemann Hypothesis one estimates 

(29) R(Q) - JX(Q) = 0(Q112), E(Q) = O(Q112). 

In fact, the exponents here follow directly from the real part of the s having L(s, x) = 

0. Without attempting a more detailed study, we conclude that the R(Q) and the 
E(Q) tabulated above are consistent with the Riemann Hypothesis. Since L(s, x) 
has, in any case, infinitely many zeros with real part 1, the convergence of L(Q) 
cannot be better than that which we have observed here. Whether some summability 
process can improve this convergence remains an open question. We are trying 
several ideas and will publish later anything of value that is found. 

Appendix 1. The 3-Sylow Subgroup of Q((-D3(y)) 12). 

TABLE 1. Values of y 

C(3) X C(3): 115 cases. 

5 -7 11 -13 17 -25 35 -37 47 59 
77 89 -91 95 -97 101 107 -109 -133 -139 

143 - 151 155 -157 161 173 185 203 215 -223 
227 233 -241 257 -259 263 -265 -271 -277 -283 
299 -301 311 -319 329 341 347 -349 353 -355 
359 -361 365 371 -373 383 389 -415 -427 437 
443 -445 -457 -487 -493 -523 527 -529 533 -535 
539 551 -553 -571 581 -595 -601 -613 641 -643 

-649 659 -667 677 -679 -691 -721 -727 737 -745 
749 761 767 -769 -775 785 803 -805 815 833 
845 - 847 857 -859 863 -865 -871 875 -877 -895 
899 905 911 -913 917 

C(9) X C(3): 47 cases. 

29 -49 53 -79 -103 113 -115 -121 -175 197 
- 199 -229 245 -289 -385 395 -403 -409 413 425 
-451 473 -475 479 491 497 -541 605 -607 -637 

653 683 -685 695 -697 701 -703 707 -733 -751 
773 779 -811 -817 -823 827 -853 

C(27) X C(3): 21 cases. 

- 19 - 55 71 137 - 163 191 - 193 -205 305 -313 
323 467 485 -499 509 -511 557 -577 593 -619 

-763 
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C(81) X C(3): 9 cases. 

23 65 -217 -439 -583 623 689 -709 809 

C(9) X C(9): 1 case. 

-433 

C(3) X C(3) X C(3): 30 cases. 

-61 - 145 149 - 187 221 239 -247 275 281 287 
317 -325 -367 -391 431 -469 515 -517 521 563 
599 611 617 635 -661 665 725 -829 851 893 

C(9) X C(3) X C(3): 17 cases. 

-67 -73 179 449 -559 -565 -625 647 731 791 
821 -835 887 -889 -901 -907 -919 

C(27) X C(3) X C(3): 6 cases. 

131 -307 575 743 -787 -793 

C(81) X C(3) X C(3): 2 cases. 

407 455 

C(3) X C(3) X C(3) X C(3): 1 case. 

-739 

C(9) X C(3) X C(3) X C(3): 1 case. 

-235 

Appendix 2. CUROID. CUROID [14] is a program for computing the cube- 
roots of the identity (9): the '(3r3 - 1) solutions (10) having the smallest norms, 
an equal number having the second smallest norm a2, etc. Briefly, this is how it works. 

Let 3' be the largest power of 3 that divides the class number h(d). Then each 
form (25) has a power f , under composition 

(30) f= F/3q)38 = (Aq BqCq ) 

whose cube is the principal form 1: 

(31) q= I (s < n, s = minimal). 

With SPEEDY and CLASNO, one computes a sufficient number of such quadratic 
form cube-roots (30) wherewith to generate all such cube-roots by composition. 
CUROID accepts these f q, determines r3 of them that are independent, and generates 
the '(3 r3 - 1) inequivalent reduced forms 

(32) G, = (At, Bt, C,) = I'/3 

which, with their inverses 

(33) G = G= (At, -Bt, C,), 

and I itself, comprise the 3r3 cube-roots of I. 
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The smallest norm a in each equivalence class equals the Ai of the reduced form 
(32), and its three successors are given by 

34) a2 = Ci, a3 = Ai - IBil + Ci, a4 = Ai + IBil + C,. 

To compute the solutions (10) for the smallest norms a, CUROID first squares 
(32) by composition. Prior to reduction, this square is a specific form 

(35) Hi = (A', B', C'). 

Here, 

(36) A' = (Ailr )2 

wherein the GCD 

(37) ri= (As, Bi) 

is the so-called ramification factor [15, p. 220] which includes all prime divisors of 
Ai that divide the discriminant. CUROID now reduces (35) to its equivalent reduced 
form (33) by the unimodular matrix 

(38) [ } 

This implies that 

A' = Ai 2 + Biy5 + Cay2 

and therefore that a3 = b2 + c2D where 

(39) a = Ai, b = ri IAiA + 'BiyI, c = r, VIy 

if the discriminant d = -4D. 
If the user indicated to CUROID that he wished the solutions (10) for the m 

smallest norms (m = 1 to 4), and if m > 1, the program now continues, sequentially, 
with the following forms that are either equivalent or conjugate to Gi: 

(Ci, -B,, At), 

(A, - Bi + C,, Bi - 2C,, Ci), 

(Ai + IBI + Ct, ,B I + 2Ci, CJ). 

By squaring and reducing these forms, and with slight variations of the formulas 
(39), one thereby also obtains the solutions (10) for a = a2, a3, and a4 if one sets 
m = 4. 

Thus, our Table 2 above for d = -4D3(-739) could be followed by three others 
having these larger norms. Among these larger solutions, one finds another case 
of c = 2n3 for n = 1, 4, and 7 and two more for n = 5. 

Appendix 3. SPEEDY for Factorization. If one uses CLASNO [7] to compute 
the class group of Q((-D)112) the discriminant d = - D or - 4D must be accepted 
as is. But if one only wishes tofactor d it is frequently advantageous [7, p. 438, p. 439] 
to take as the discriminant some multiple or submultiple of d: 

d' = dn or d/n. 
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The version of SPEEDY accessible on teletype has other features to facilitate such 
a change. 

If the parameter K of point A in Section 5 is positive, after everything in points 
A thru D there is computed, SPEEDY asks for a new discriminant and continues 
with this new problem with K and L unchanged. But if K < 0, JKj blocks of primes 
are read in, and after everything in A thru D is computed, the teletype asks instead 
"Multiply or Divide?" If the operator now types N, the following occurs. If INI > 1, 
the previous discriminant is multiplied or divided by INI according as N is positive 
or negative, and the teletype again asks "Multiply or Divide?" If N = 1, the com- 
putation proceeds with the new discriminant and the same values of K and L. If 
N = -1, the operator is first given the opportunity to change K and L and then 
the computation proceeds. If N = 0, the current discriminant is abandoned and 
a new d is requested. 

Thus, with K = -1, one can, with very little machine time, eliminate all small 
divisors of d and then select the optimal multiple of its cofactor to give the smallest 
possible L(1, x) and the largest possible known divisor b of h(d). This speeds up the 
CLASNO algorithm. One now resets Kto 30, say, to get a more accurate estimate (24). 

For brevity, we will not discuss the operator's technique of finding this optimal 
multiple-it is primarily based upon observation of the current estimate of L(1, x) 
and the current list of small residues and nonresidues q. 
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