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On Fourier-Toeplitz Methods for Separable 
Elliptic Problems 

By D. Fischer, G. Golub,* 0. Hald, C. Leiva, '* and 0. Widlund ** 

Abstract. Some very fast numerical methods have been developed in recent years for the 
solution of elliptic differential equations which allow for separation of variables. In this 
paper, a Fourier-Toeplitz method is developed as an alternative to the well-known methods 
of Hockney and Buneman. It is based on the fast Fourier transform and Toeplitz factoriza- 
tions. The use of Toeplitz factorizations combined with the Sherman-Morrison formula 
is also systematically explored for linear systems of algebraic equations with band matrices 
of Toeplitz, or almost Toeplitz form. Finally, results of numerical experiments are described. 

1. Introduction. In recent years, some very fast and accurate methods have 
been developed for the direct solution of the sparse systems of linear algebraic equa- 
tions which arise when elliptic problems are solved by finite difference or finite element 
methods. Several of these algorithms implement, in very efficient ways, the idea of 
separation of variables. The best known of these are due to Hockney [15], [16] and 
Buneman [5],[6]. 

In this paper, we will present an alternative to Hockney's and Buneman's methods 
for the solution of elliptic problems with constant coefficients on rectangular regions 
and on infinite parallel strips. Our method, like Hockney's, is based on the use of 
the fast Fourier transform for one of the variables, but it uses an alternative way of 
solving the resulting systems of linear algebraic equations. These systems can be 
represented with band matrices of Toeplitz form or as low-rank perturbations of 
such matrices. The systems are solved by a combination of Toeplitz factorizations 
and applications of the Sherman-Morrison formula or its block version, the Woodbury 
formula (cf. Householder [17]). By using the Toeplitz structure, we are able to take 
greater advantage of the special structure of the matrices than when Gaussian elimina- 
tion is used. This leads to a considerable saving in storage. We note that the odd-even 
reduction method has similar advantages but that it can be used only for a subset 
of the problems which we can handle. We include a discussion of the use of Toeplitz 
factorizations for more general band matrices. The method requires considerably 
much less storage than the Cholesky and Gauss elimination methods and it is also 
found to be quite competitive, in terms of arithmetic operations, in certain cases. 
For earlier work on Toeplitz methods, cf. Bakes [1], Bareiss [2], Evans [10], Evans 
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and Forrington [11], Malcolm and Palmer [18], and, for a somewhat different class 
of problems, Rose [22]. 

Separation of variables can be used only for regions which, after a possible change 
of independent variables, are rectangular and for differential operators of a special 
form. Similar restrictions are imposed on the discrete problems. For a discussion of 
the special structure which is needed for the use of these methods, cf. Widlund [25]. 
However, even for problems on nonrectangular regions, or with boundary conditions 
which do not allow for separation of variables, the fast methods can be used provided 
that the operators allow for separation of the variables on some appropriate region. 
The idea is to imbed the given region in a rectangle and combine a fast method with 
the Woodbury formula or a minimization algorithm. Cf. Buzbee, Dorr, George and 
Golub [8], George [14], Proskurowski and Widlund [19], and Widlund [25]. Proper 
implementations of the imbedding methods lead to a somewhat more favorable 
operation count than George's powerful ordering algorithm for Cholesky factoriza- 
tion [13]. That method is however applicable to a much wider class of positive definite, 
symmetric matrices. 

The Fourier-Toeplitz method has been tried in a series of numerical experiments 
at the AEC Computing Center at the Courant Institute of Mathematical Sciences 
and at the'Institute of Technology in Stockholm. Some of the results, which are 
reported in the last section, show that the method produces highly accurate solutions 
in a time which for the CDC 6600 is 60-80% of that of a program which implements 
Buneman's method. 

The authors wish to thank Dr. R. Singleton of Stanford Research Institute for 
making his fast Fourier transform programs available, and Dr. B. Buzbee of the 
Los Alamos Laboratory for the use of his Buneman program. 

2. Tri-Diagonal Problems. Our interest in one-dimensional problems results 
from our use of the separation of variables technique which reduces multi-dimensional 
to one-dimensional problems. The linear systems of equations under study also 
appear in other applications such as spline interpolation. We will discuss the solution 
of linear systems of algebraic equations with real band matrices and begin by con- 
sidering the special case of the n X n tri-diagonal matrix 

/\ -1\ 

-1 -1 

-1x..1 

The corresponding linear system could be solved by band Gauss elimination type 
methods (cf. Forsythe and Moler [12]), or by odd-even reduction (cf. Hockney [15] 
or Widlund [25]). The latter of these methods takes into account not only the band 
structure but also the fact that the matrix A has Toeplitz form, i.e., the values of its 
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elements aii depend only on i - j. Such matrices require very little storage and are 
easy to handle even in other respects. It is therefore natural to try to find a LU, or 
LDLT, decomposition of A in terms of Toeplitz matrices. This is not possible for 
finite values of n. However, for a perturbed matrix B, we find 

t-1 A -1 0\ 
-1 AX 

B= 

1 * * 

where A X/2 -4- (X2/4 - 1)1/. It is easy to see that the plus sign should be chosen, 
because we then have A~ ?! 1 and thus diagonally dominant matrices. The numerical 
stability of the process for solving LUx = f, B = LU follows immediately. If, on the 
other hand, the minus sign were chosen and X > 2, then 0 < 4 < 1 and we have 
to expect an exponential growth of round-off errors. This becomes apparent when 
we consider the two-term recursion relationships represented by the bi-diagonal 
matrices. 

The change in the upper left-most element of A is compensated for by the use 
of the Sherman-Morrison formula. That is, if A = B + uv' with u and v column 
vectors and vT denotes the transpose of v, then 

A'= BK' - B-'u(1 + VT BlUfl1vT Bl. 

The matrix UV is of rank one and, in this case, we can choose u = (1, 0, ... 
T 

and v = (X - 4u= (l/M4)u. 
We remark that the Sherman-Morrison formula, and its block version, the 

Woodbury formula, 

A'= B1- B'1 U(I4 + VT B'UY'- VT B', 

sometimes provide a useful tool to decide whether or not a matrix A is singular. 
Here, A = B + UVT, U and V are n >( p matrices and IP the p >K p identity matrix. 
Given that B is nonsingular, A is singular if and only if Ip + VT B' U is singular. 
Assume that (h + VT B- U) ~ = 0 for some nonzero vector ~p. Then, since VT B- U~p = 

- ~p, the vector B- U~o is different from zero. This vector is an eigenvector to A. 
corresponding to the eigenvalue zero because 

AB-',U~ = (B + U VT )B1'U~ = U(4P + VT B1'U)~p = 0. 
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Conversely, if I, + VTB-lU is nonsingular, the Woodbury formula provides an 
explicit formula for A-1. 

We also remark that the matrix A, studied above, might correspond to a standard 
second order accurate finite difference approximation to -_ 2u + cu = f, c some 
nonnegative constant, with Dirichlet boundary conditions. By an appropriate change 
of one of the boundary conditions, we arrive at a matrix B of the form above, with 
X = 2 + h2c. To solve Ax = b, by our method, we find B-'b and add to it a solution 
of the special form const X B-'u. The second term is a correction term which makes 
the solution satisfy the correct boundary conditions. Alternatively, we can modify 
the data at one endpoint and use the boundary condition corresponding to the 
matrix B. 

This method can be implemented in several ways. Here we will suggest a procedure 
which requires very little temporary storage. We will restrict our discussion to the 
case when X > 2, i.e., ,u > 1. We start by computing the constant 

d = (X - )(1 + VTB_'u) 1.(I _ -2)-1 

It is easy to see that d = (- 1( - ,- (2n+ 2))- 1. This part of the computation, which is 
independent of the particular data vector, can be carried out in a time comparable 
to a fixed number of arithmetic operations, provided we use an economical algo- 
rithm for the evaluation of the exponential function, taking advantage of the finite 
word length of the computer. If we do not wish to preserve the data, we can now 
execute the-entire procedure in place, using only a fixed number of temporary storage 
locations. We first compute B-'b in the usual way and let it occupy the storage 
originally containing b. The elements of B-'b are thereafter modified one by one by 
successively subtracting the elements of two vectors, the sum of which equals the 
second term 

y = B-'u(1 + VTB-lU)-lvTB-lb 

of the Sherman-Morrison formula. It is elementary to verify that 

YV 
= (A-, _ A _n_)d(B-'b). 

The first component should be computed recursively for increasing values of v, to 
assure numerical stability, while the second component should be found for decreasing 
values of v. The required number of operations are 4 + o(l/n) multiplications/ 
divisions and 4 + 0(1/n) additions/subtractions per unknown. If B-'u is computed 
and stored, we can save one fourth of this work if the same system of equations is 
solved many times with different data vectors. 

We note (cf. Widlund [25]) that the operation counts for Gaussian elimination 
and odd-even reduction methods are somewhat more favorable in this special case. 
The correct choice of method will in fact depend on which computer, compilers, 
storage, etc., are available. Also compare the discussion at the end of Section 3. 

Essentially the same method can be applied to other matrices which differ from B 
by only a few elements. It is sometimes advantageous to modify the algorithm if 
we want to change the elements in the lower right-hand corner of B. If, for example, 
we consider a matrix C which differs from B only in the element in the lower 'right- 



FOURIER-TOEPLITZ METHODS FOR ELLIPTIC PROBLEMS 353 

hand corner, we can avoid using the Sherman-Morrison formula and instead use the 
regular LU factorization of C. We should then, of course, take advantage of the 
fact that the (n - 1)st rows of L and (n - 1)st columns of U are known from a 
factorization into Toeplitz factors of a submatrix of order n - 1. It should also be 
clear from this discussion that, in certain cases, a UL Toeplitz factorization is pref- 
erable in order to minimize the rank of the modification matrix which is to be handled 
by the Woodbury formula. The implementation of the Woodbury formula is further 
discussed in Section 3. For yet another variant of the algorithm, compare our discus- 
sion of twisted Toeplitz factorizations in Section 4. 

3. Toeplitz Factorization of General One-Dimensional Problems. We will 
now turn to a discussion of a general matrix which differs by no, or only a few, 
elements from a symmetric band matrix of Toeplitz form. Such matrices occur in 
fourth, or higher, order accurate finite difference approximation to second order 
elliptic problems, when solving the bi-harmonic problem by a Fourier method, in 
higher order spline interpolation, etc. We will first consider a corresponding doubly 
infinite Toeplitz matrix 

a... a a a a a 0 
..0 k ak-1 ..a0 * * 1 k-i k 

A = *k?0 ak ak1 * a0 a1 a.1 ak 0.. 

* a, a0 a 1 . 

a0 a1 aa ! 

We assume that all ai are real and that ak 7 0. To be able to find a LLT factorization 
of A, where L is a real lower triangular Toeplitz matrix, we make an assumption 
analogous to the requirement of positive definiteness for the Cholesky algorithm. 
Denote by x* the complex conjugate transpose of the vector x. 

Assumption 1. For all x such that x*x < o, x*Ax > 0. 
The characteristic function a(z) of A is defined by 

a(z) = akZ + * + ao + *" + akZ 

We will now prove a lemma, which, in essence, is identical to the Fejer-Riesz lemma; 
cf. Riesz and Nagy [20, pp. 117-118]. 

LEMMA 1. If Assumption 1 is satisfied, a(z) can be factored as a(z) = l(z) I(l /z), 
where 1(z) = bo + * + bkzk, bo > 0, is a real polynomial with no roots inside the 
unit circle. Correspondingly, the Toeplitz matrix A can be factored as A = LLT where 
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0 bk ... b1 b0 Q 

o b ** b b 

k b0 
L= 

.bk 1 0 . b 

Proof. We first factor a(z) + E, E > 0. We note that, if a(z0) + E = 0, then 
a(l/z0) + E = a(2o) + E = a(1/2o) + E = 0. The function a(z) + E has no roots 
on the unit circle. Assume by contradiction that a(e" ) + E = 0 for some real 0. 
By Assumption 1, x*(A + JI)x ? Ex*x. We will now reach a contradiction by 
choosing x(,) = (1/n)"2(0, , 0, 1, ,eio, e2i0, (..., ei n-1) 0, ...), because 
X(nf)*X(nf) = 1 while x (n) *(A + JI)x (n) -* 0 when n -* o. The function a(z) + E 

can therefore be factored as 1,(z). (l1/z) in such a way that the roots of the real 
polynomial 14(z) lie outside the unit circle. Since the roots of a(z) + E = 0 depend 
continuously on E, the proof is concluded by letting E -- 0. 

A different choice of factors, allowing for roots of 1(z) inside the unit circle, 
would lead to an exponential growth of round-off error; cf. the discussion of the 
special tri-diagonal case above. 

One can also show easily that any function a(z) of the above form, which has 
no roots of an odd multiplicity on the unit circle, corresponds to a Toeplitz matrix 
satisfying Assumption 1. 

The factors 1(z) and l(1/z) of a(z) are known as the Hurwitz factors. They can be 
computed numerically in different ways. If k = 1 or 2, the big's can be found by a 
straightforward approach at the expense of solving one and two quadratic equations, 
respectively. In the general case, the factors can, of course, be found via the com- 
putation of the roots of a(z) = 0, but it is more satisfactory to compute 1(z) directly. 
The algorithms to be discussed require strict positive definiteness. As a first step, 
we therefore consider the possibility of removing the factors corresponding to the 
roots on the unit circle in order to reduce the problem to a positive definite one. 
Frequently, it is natural, from the particular context, to make an additional as- 
sumption; cf. Thomee [24]. 

Assumption 2. The Toeplitz matrix A is elliptic if, for some integer m and some 
positive constant c, 

a(e&) ? c IeI2m for all 0 C [-7r, 7r]. 

It is easy to see that Assumptions 1 and 2 will allow no zeros on the unit circle 
except at z = 1. The corresponding factors can easily be factored out. 
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In a general case, when only Assumption 1 is known to hold, one can try Euclid's 
algorithm to determine if a(z) has any multiple roots. If zka(z) and its first derivative 
have no nontrivial common factor, there are no multiple roots and thus no roots 
on the unit circle. If a common factor is found, the algorithm can be used to find 
common factors of zka(z) and its successive derivatives, resulting in a factorization 
of zka(z) into lower order polynomials which have only simple roots. This procedure 
sometimes fails to reduce the problem to strictly positive definite cases. To see this, 
we can construct a polynomial with double roots on, and several double roots out- 
side and inside, the unit circle. It appears that, in such a case, an iterative root-finding 
algorithm has to be employed for the approximate calculation of the Hurwitz factors. 

We will now discuss an algorithm, suggested by Bauer [3], [4] and others. Its 
convergence is a Volksatz (folk theorem) among people working with Toeplitz 
theory; cf. also Rissanen and Barbosa [21]. Let A+ be a real, semi-infinite symmetric 
matrix, the rows of which equal those of the Toeplitz matrix A from a certain row 
onwards. Assume that all principal submatrices of A+ are strictly positive definite 
and that the characteristic function a(z), corresponding to A, has no roots on the 
unit circle. Then, the rows of the lower triangular matrix L+, normalized to have 
positive diagonal elements, in the factorization A+ = L+L+T will approach those 
of the Toeplitz matrix L, A = LLT, when the diagonal elements of L are chosen to 
be positive. 

If we apply the algorithm to a tri-diagonal case with a, = -1 and a0 > 2, it can 
be shown that the convergence is linear; cf. Bauer [3], [4] and Malcolm and Palmer 
[18]. In the semidefinite case, a, = 2, we still have convergence but the error decreases 
only as 1 /n. 

An alternative method, also for strictly positive definite cases, is suggested by 
Wilson [27]. It is based on the Newton-Raphson method, is quadratically convergent, 
and is shown to be globally convergent for a family of easily constructible initial 
approximations of 1(z). 

We will now assume that the Toeplitz matrix L is available. To illustrate our 
method, we consider in some detail a case where we want to solve a linear system of 
equations with n unknowns with a matrix An equal to a principal submatrix of the 
doubly infinite Toeplitz matrix A. Such linear systems arise. if we approximate a one- 
dimensional elliptic problem with Dirichlet boundary conditions by a finite difference 
approximation of elliptic type (cf. Assumption 2) and prescribe, as boundary con- 
ditions, the values of u and differences of u of order one through k - 1. This problem 
leads to a particular choice of the matrices U and V in the Woodbury formula. The 
modification of our procedure to other matrices, which differ from the case under 
study in only a few rows can be worked out quite easily. We will always assume that, 
in our applications, k is considerably much smaller than n. 

If we use the relation 

A = LLT, 

we can easily verify that 

An = Ln4nT + Un UnT 

where Ln and An are the n X n Toeplitz matrices 



356 D. FISCHER, G. GOLUB, 0. HALD, C. LEIVA AND 0. WIDLUND 

0bo 

b, bo 

Ln 

bk bk-1 bo 

0 bk 

0 
bk bk-i * 

a0 

a ak 

? 

a1 a 0 

a aaal aO 

0 

a . . l a al * a* , ak 
O ~ ~ a. . . aa 

The rectangular n X k matrix U. is given by 

where 
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bk bk * * b\ 

bk bk-1 b2 

U= 

X ~~~~~~bk-1 
bk 

The Woodbury formula then takes the form 

An= B.- B.1( U.(k + 0 L- L' 0 

where Bn = LnLnT. To calculate the k X k matrix 

C = Ik + T(1) ) LT L' (O) U, 

we will first solve for the n X k matrix Y defined by 

= ? k) 

and, thereafter, form the k X k matrix W = yT Y. The matrix C can be expressed 
in terms of Y and W as 

C = Ik + uT yT y T 
I + UT v C 

The elements of W can be formed quite inexpensively if we take advantage of the 
Toeplitz structure of L. Let 3) = (jj, , yT be the solution of LnY = e () where 
e = (1,0, .* , 0)3. The elements yi2 of Y are simply given by 

Yii = yi+i-i, i > j, 

= . < j. 

The element wij of W is defined by the inner product of the ith and jth columns 
of Y. Thus 

n+1-i 

Wi= j = 1, 2, ,i 
V=1 

and, by symmetry, wi = w, for j > i. For j < i, we find from the above formula 
that 

(3.1) Wii = Wi+ii+i + + n+l-in+l-i 

It therefore suffices to compute the last row of W and thereafter find the rest of its 
elements by formula (3.1) and the symmetry condition. The computation of W will 
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thus require only (2k + 1)n + 0(k2) multiplicative and (2k - I)n + 0(k2) additive 
operations. The matrix C can now be found in 0(k3) operations and it is thereafter 
factored by using the Cholesky procedure. 

We want to point out that the elements wkj, j = 1, 2, * * , k, can be found by 
simultaneous accumulation of k inner products while calculating the vector y. Since 
L,, is a band matrix, we need only Yv+l, * , * to calculate 5,+,. The whole calcula- 
tion of W can therefore be organized so that it requires only k2 + k + 1 storage 
locations. 

We will now describe a method for solving Anx f which requires very little 
storage. We write the solution in the form 

x = An1f = LJ(Ln 'f- L 1U C-1UTL,7TL-1f) 

and begin by solving Lnz = f. Because of the sparseness of U", the second vector in 
the parentheses depends only on the k first components of the vector v given by 
LiV- z. These components can thus be found by back substitution during which 
only k components of v are carried at any time. The k X k system Cw = a1 D, where 
v = (Ik O)v, is solved by using the Cholesky decomposition of C. The n-vector 
UnA' has zeros in the last n - k places. We can therefore consecutively compute the 
components of LnU' UnwV while keeping only k previous values of the vector in storage. 
As soon as a component has been computed, we use it to modify the corresponding 
component of Ln-'f. Finally, we solve Lifx = L,7 f - L, Unw. If we do not wish 
to retain the data vector f, the whole calculation can be carried out using only k + 1 
extra storage locations in addition to the k2 locations needed for the Cholesky de- 
composition of C. 

Our method easily generalizes to a nonsymmetric matrix A of the form LnLnT + 
UnTnT. In our discussion, we assume that Un = (Ok 0)T and that Vn = (f 0)T where 
v is a k X k matrix. We can then again use the matrix W to compute 

'k + VTBn- U = 'k + J7T(Ik) LTL1- (Ik) 

= Ik + V W. 

In the special symmetric case which we have considered, one additional trick 
improves the algorithm even further. The Woodbury formula can be rewritten as 

(3 .2) An= n- Bn ( ) ( T + 0 Bn 

The inverse of a triangular Toeplitz matrix is itself a Toeplitz matrix and the last 
column x of I-Y1 will therefore uniquely define the whole matrix. To find x, we solve 
the triangular system of linear equations Ox = e k). The elements of C-TU-1 can 
be computed using the same idea as when finding yTy. In general cases, the method 
previously presented provides a more efficient algorithm than the alternative Wood- 
bury formula (3.2). 

It is of interest to compare the Toeplitz method with the regular Cholesky factori- 
zation. The Cholesky factorization into LDLT form, Lii = 1, requires essentially 
k(k + 3)n/2 multiplications/divisions and k(k + l)n/2 additions/subtractions. 
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To store the factors, we need (k + 1)n locations and to solve essentially (2k + 1)n 
mhltiplications/divisions and 2kn additions/subtractions. The major disadvantage 
of the Toeplitz method is that it requires twice as many operations for solving the 
system as the Cholesky method. However, in a situation where we cannot retain 
the Cholesky factors in storage but can afford to save the big's and the triangular 
factors of I, + URT(LnLT- U", we find that the Toeplitz method will be more eco- 
nomical in terms of arithmetic operations for k _ 3. For k = 2, the two methods 
will require the same number of multiplicative operations. The major advantage 
of the Toeplitz method is that we will never need more than n + 0(k2) storage loca- 
tions if we do not wish to retain the data vector. As pointed out above, our method 
can also be used, with equal economy for nonsymmetric perturbations of the matrix 
LnLT. In such cases, the Cholesky method is no longer applicable. One can show 
that, under the same assumptions as in the above comparison of the Cholesky and 
Toeplitz methods, our algorithm is preferable in terms of arithmetic operations to 
the regular band Gaussian elimination procedure already for k = 2. 

Rose [22] explored the use of a method similar to ours in a tri-diagonal case 
where what corresponds to our doubly infinite Toeplitz matrix A is the product of 
two Toeplitz matrices and a diagonal nonconstant matrix. It is obvious that most 
of our considerations are valid in cases where there is a convenient doubly infinite 
matrix A for which Toeplitz and diagonal factors can be found. That is, for example, 
frequently possible for standard difference approximations to operators of the form 
- aa(x)a,. 

4. Multi-Dimensional Problems. We will now discuss the use of Toeplitz 
methods for matrices of block-band form which arise from finite difference approxi- 
mations of separable elliptic problems. We first consider the standard five-point 
finite difference approximation of Poisson's equation on a rectangular region with 
Dirichlet boundary conditions. The matrix, which is block tri-diagonal, has the 
form 

-I AO -I 0 

-I AO 

A= . 

-I A 

where A, is the tri-diagonal, n X n matrix 
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14 -i 

_1 4 -1 (Q) 
4=. 14 

-1 4- 

If we attempt to find a factorization of A, or of some lower rank perturbation of A, 
corresponding to those of Section 3, we must find an appropriate factorization of 
the characteristic function a(z,, z2) =-z - z2 + 4 - z - z2 -. When the char- 
acteristic function depends on several variables, a factorization like the one of Lemma 
1 is possible only in exceptional cases. This fact can be expressed by saying that the 
Fejer-Riesz theorem does not extend to several variables or, alternatively, that no 
LLT factorization is possible of the infinite matrix corresponding to a(z,, z2) such 
that L has only a fixed number of nonzero elements in each row. It is, for example, 
not difficult to show that the above characteristic function a(zl, z2) cannot be factored 
in a useful way. We therefore turn our attention to the separation of variables tech- 
nique. The normalized eigenvectors sa 1), = 1, 2, * * * , n, of Ao are given by (pi (1) = 
(2/(n + 1))1/2 sin(jlir/(n + 1)), j = 1, * , n. The orthonormal matrix Q, with the 
eigenvectors p() for columns, satisfies QTAOQ = D(, where Do is the diagonal 
matrix of eigenvalues of Ao, X1 = (DO), = 4 - 2 cos(l7r/(n + 1)). 

The change of basis which corresponds to the diagonalization of Ao can be carried 
out inexpensively by using the fast Fourier transform (FFT) (cf. Cooley, Lewis and 
Welch [9]) if n + 1 has many prime factors, and, in particular, if n + 1 is a power 
of 2. After this change of basis, the matrix A transforms into 

|QT ral -I Ao I 0 0T -I? 

D~I0 -IQ Q 

O~T * -X 4o: 0 so 

|IDo ~I 
-I D0-I 
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A linear system of equations with this coefficient matrix can be solved easily by the 
Toeplitz method developed in Section 2, because the permutation of rows and columns 
which preserves symmetry and groups the Ith equation of every block together into 
one block, leads to a direct sum of Toeplitz matrices 

Al 

where 

-1 Xe-0 

Al 
-1 - 

The algorithm is thus carried out in three steps. First, we apply the FFT variant 
which corresponds to a real sine transform, to the blocks of the appropriately par- 
titioned data vector. The transformed vector is then permuted and the n tri-diagonal 
systems are solved by the Toeplitz method. Finally, an inverse Fourier transform is 
applied, after a permutation, to the blocks of the partitioned vector. 

We remark that the FFT involves a certain permutation corresponding to the 
inverse binary ordering, and that the inverse FFT involves the transpose of this 
permutation; cf. Cooley, Lewis and Welch [9]. These permutations can be eliminated 
from the algorithm if the block matrices A, are permuted suitably. 

We next consider the same finite difference approximations, but with the Dirichlet 
condition replaced by a periodicity condition in both directions. The corresponding 
matrix C takes the form 

Co -I 0 . 0 -I 

-I C -I 0 0~0 
0...~~~~~~ 

-TO I. 0-I 

\-I 0 . -I Co 
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where CO is the n X n matrix 

'4 -1 0 . . 0 -1 

-1 4 -1 0 

0O= . .. .Q. 0 

-2. 0 . . 0 -L I 

\-1 0 o -1 4/ 

For convenience, we assume that n is an even number. The matrix CO has the nor- 
malized eigenvectors (l/n)"2(1, 1, * , 1) and (l/n)"X2(1, -1, I., - 1) corre- 
sponding to the simple eigenvalues 2 and 6, respectively, and (n - 2)/2 double 
eigenvalues 4 - 2 cos(2irl/n), 1 = 1, , (n - 2)/2, with the corresponding eigen- 
vectors p and <p I I (i) given by 

(li = (2/n)'12 sin(jl2ir/n), *,#T'i = (2/n)"2 cos(jl2ir/n). 

The corresponding change of basis can again be executed with the aid of the FFT. 
The tri-diagonal Toeplitz matrices of the Dirichlet case are now replaced by the 
matrices 

/1-1 0 . . 0 -1L 

-1 1 -1 0 \ 
I 

0 O .- 

-1 0 . . 0 

where y = 4 - 2 cos(2w1/n), 1 = 0, 1, - , n/2. The matrix ro has a simple eigen- 
value equal to zero reflecting the singularity of the matrix C. Since Ce = 0, where 
e = (1, 1, * *-, 1)T, it follows that Cx = f has a solution only if eTf = 0, i.e., the 
sum of the components of f is zero. The components of the right-hand side j" of 
the linear system roxO = Jo, which is derived in a way completely analogous to the 
Dirichlet case, are the Fourier coefficients corresponding to the vector (1, 1, * - -, ,f 
and the sum of these components will thus vanish if Cx = f is solvable. If we set 
the last component of 20 equal to zero and remove the last equation, the system 
roxo = J0 reduces to a tri-diagonal, nonsingular system of equations of Toeplitz 
form. Its solution, augmented with zero, can be shown, by the linear dependence 
of the equations, to satisfy the original system. The remaining linear systems of 
equations, with 1 2 1, can be solved by the Toeplitz method modifying the (1, 1), 
(1, n) and (n, 1) elements of rF. After the inverse Fourier transform step, this algo- 
rithm will have produced a particular solution of Cx = f. Any other solution to the 
problem will differ from this particular solution by a constant. 

As a third example, we consider the solution of the five-point difference ap- 
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proximation of Poisson's equation - Au = f on an infinite parallel strip, -o < 
x < co, 0 ? y < 1. We impose homogeneous Dirichlet conditions at y = 0 and 
y = 1 and assume that f vanishes outside a bounded region. The problem takes the 
form 

-I AO -I 0 X(-l) f (-1) 

-I AO -I x(o) | f(0) 

0 -I A0 -X.~1 

where x(') denotes the vector of values of the approximate solution for x = ih and 
h denotes the mesh length in the x-direction. The matrix AO is defined as in our first 
example. It is now natural to use a Fourier transform with respect to y. By using 
the same variant of the FFT as for the Dirichlet problem discussed above, we reduce 
our problem to the solution of n linear systems of equations. These systems are of 
infinite order with tri-diagonal coefficient matrices K, of Toeplitz form 

-1 0 

K = --1 e -0 

0 -1 X 

where, as before, X = 4 - 2 cos(lir/(n + 1)), 1 = 1, 2, * , n. From our assumption 
on the function f, we see that the components fin) of the data vector I(l) in the 
system K, 1- " = ](l) will vanish for j < N_ and j > N+ if N_ and N+ are chosen 
large enough. We can therefore write 

-2,-l + A - = 0, for j < N_ and j > N+. 

This homogeneous difference equation has the solution const jt4' + const ,41-7 
where A.l = X1/2 + (X,2/4 - 1)1/'2 > 1. Imposing the obvious free space boundary 
conditions, i.e., requiring that the solution remains bounded for all n, we find that 

(4.1)~~~~' X(l) =XA(l) (N+-i) _N+ 

Xij = XN *Ail j < N- 

By using relation (4.1) for] = N+ + 1 and j = Nk - 1 and some elementary algebra, 
we can set up a finite linear system of equations: 
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lPI-1 ZN |N r 

? N +10 \ | t_+1 N | _ 

-1~~~~~~~~~~~~~~~+- 

0QI~ i 
-1 

j { | l 
N+ - 

This system can be solved very nicely by the Toeplitz method because 

z A -1 \ 

-1 Xe -l1 

0~ 
1 -1 AZ0 

(_-1 1 ? Y '-1 ? 

Finally, the values of the solution on any mesh line parallel to the y-axis can be 
found via an inverse Fourier transform. 

A half infinite strip, 0 _ x < co, 0 < y < 1, with the Dirichlet boundary con- 
dition added at x = 0, 0 < y _ 1, can also be handled easily by the Fourier-Toeplitz 
method without using the Woodbury formula. Only a change of the right-most 
element of the last row of the coefficient matrices and their upper triangular factors 
have to be made in comparison with the case discussed above, if we order the un- 
knowns from right to left. 
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For further discussion of the solution of Poisson's equation on infinite strips, 
cf. Buneman [6]. Buneman has also suggested the following alternative method of 
solving the linear system of equations just considered. We refer to it as a twisted 
Toeplitz factorization; for a related idea, cf. Strang [23]. The matrix under study 
can, as is easily verified, be written as a product of two, very special tri-diagonal 
matrices 

- 1. -.. 01. 

:77 -1A. 

0 m O A 0 As! I Ln- 

where the m X m matrix Lm is given by 

The solution of the linear system of equations corresponding to the first matrix 
reduces to an inward sweep and the solution of a 2 X 2 system of the form 

-2. 2. Q + Al ++ -1 

inIJ= ~ ~ ~ ~ ~ f~ +A Yn2 

The second matrix corresponds to a simple outward sweep. This algorithm will not 
save arithmetic operations compared to the previous one, but it has a nice symmetry 
in that it treats the two endpoints in the same way. 
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Twisted Toeplitz factorizations can be worked out for general Toeplitz matrices 
but, in the general case, their use must of course be combined with the Woodbury 
formula for necessary modifications of certain matrix elements. It does not seem to 
offer any particular computational advantages to the methods discussed in Section 3. 

The Fourier-Toeplitz method can be extended to positive definite, symmetric 
matrices of the form 

A A1 Ak 

Al AO 

Ak AO Ak 

A1 0 A1 

where all the block matrices Ai commute and can be simultaneously diagonalized 
by a change of variables corresponding to one of the FFT variants. Certain finite 
difference approximations to the bi-harmonic equation with boundary conditions 
which allow for separation of variables belong to this category as well as certain 
fourth order finite difference approximations to Poisson's equation. 

A possible improvement of the Fourier-Toeplitz method, which has not been 
tried experimentally, could be obtained by one or a few block odd-even reduction 
steps before the FFT is applied; cf. Hockney [15], [16], Buzbee, Golub, and Nielson 
[7] or Widlund [25]. This would result in the application of the Fourier transform 
to vectors with fewer components at the expense of an increased band width of the 
Toeplitz matrices and the work connected with the odd-even reduction steps. This 
idea has proven quite useful in Hockney's method. Our method can also be extended 
to three dimensions, if we use FFT for two of the variables. 

5. Numerical Results. The Fourier-Toeplitz methods discussed in Section 4 
have been tried on the CDC 6600 of the AEC Computing Center at the Courant 
Institute, New York, and on the IBM 360/75 of the Institute of Technology (K.T.H.) 
in Stockholm. We will describe the results of some of our tests in New York. The 
programs were written in assembly language and the execution time of one of them 
was compared with a machine code program implementing Buneman's algorithm 
which Dr. .B. Buzbee of Los Alamos was kind enough to make available to us. The 
FFT program used was kindly made available to us by Dr. R. Singleton of Stanford 
Research Institute. The rounding errors only affected the last few digits in all our 
experiments. 

Case 1. Poisson's equation with homogeneous Dirichlet boundary conditions. 
(a) 127 X 127 mesh. Total time: 1.40 sec. of which 1.12 sec. were used for 

the Fourier transforms. For the Buneman algorithm: 1.81 sec. 
(b) 63 X 63 mesh. Total time: 0.346 sec. For the Buneman algorithm: 0.42 

sec. Storage used (excluding the program) n2 + 5n for an n X n mesh. 
Case 2. Homogeneous Neumann conditions. 

(a) 129 X 129 mesh. Total time: 1.57 sec. 
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(b) 65 X 65 mesh. Total time: 0.387 sec. Storage used: n2 + 7n. 
Case 3. Periodic boundary conditions. 

(a) 128 X 128 mesh. Total time: 1.14 sec. Total time for the Buneman program: 
1.90 sec. 

(b) 64 X 64 mesh. Total time: 0.268 sec. Total time for the Buneman program: 
0.389 sec. Storage used: n2 + 4n. 

Case 4. Infinite strip with Dirichlet boundary condition. 
127 X 127 mesh, 127 mesh points in the x-direction were involved in the 

solution of the tri-diagonal linear systems of equations and in the inverse Fourier 
transform steps. Total time: 1.42 sec. Storage used: n2 + 4n. 

Another set of numerical experiments was carried out at Uppsala University 
in order to test the numerical stability of the algorithms discussed in Section 3. Two 
Algol 60 programs, Toeplitz I and II, which both implement Eq. (3.2), were run, 
in double precision, on an IBM 370/155. The first algorithm uses the modification 
technique which we developed in Section 3 in order to save storage. In the second 
algorithm, the data vector is retained and its first k components altered after the 
solution of the k X k linear system of equations. The performance of our algorithms 
was compared with that of Martin and Wilkinson's Cholesky program; cf. Wilkinson 
and Reinsch [26, p. 50]. 

Case 1. A linear system of equations with the 100 X 100 principal submatrix 
of the doubly infinite Toeplitz matrix corresponding to the characteristic function 

a(z) = z2 4z + 6 - 4z-' + Z-2 

= (1 - 2z + z2)( - 2z-1 + z-2). 

This problem is quite ill conditioned. The relative error in maximum norm: 
Toeplitz I: 2.5 X lo-8 
Toeplitz II: 6.0 X 101 
Cholesky: 5.5 X 10-1l 

Case 2. A quite well-conditioned problem corresponding to 

a(z) = 4Z2 + 5z + 18 + 5z1 + 4z2 

= (4 + z + z2)(4 + z- + Z-2). 

The three algorithms produced solutions differing from the correct one only in the 
last digit. 
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