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Stable Approximations for Hyperbolic Systems 
with Moving Internal Boundary Conditions* 

By M. Goldberg and S. Abarbanel 

Abstract. The work of Kreiss on the stability theory of difference schemes for the mixed 
initial boundary value problem for linear hyperbolic systems is extended to deal with the case 
of the pure initial value problem with an internal boundary. The case of an internal boundary 
XB that moves with constant speed c is treated, i.e., XB = Xo + ct. In particular, the stability 
of "hybrid" schemes is studied by using the Lax-Wendroff scheme at points that are not 
on the internal boundary, while using a first order accurate scheme at the internal boundary 
points. Numerical evidence is given that the results of the linear stability analysis describes 
the qualitative behavior of such schemes for nonlinear cases, when the internal boundary 
is a shock. 

0. Introduction. The treatment of boundary conditions associated with the 
finite difference approximations of initial value problems governed by systems of 
hyperbolic partial differential equations is of great importance in many computational 
applications. The analysis of the linear stability of such mixed initial boundary 
value problems in the one-dimensional quarter space case x > 0, t > 0 was given 
by Kreiss ([8], [9]), and it will be assumed that the reader is familiar with these works 
which are the basis of our paper. 

There are many cases where the initial value problem may be thought of as having 
conditions specified at internal boundaries. Internal boundaries may model, for 
example, in hydrodynamics, shock waves, contact discontinuities and, in general, 
very narrow regions with strong gradients. In many such cases, there is no external 
boundary and the analysis cannot be confined to the quarter space but must consider 
the full half space - O < x < a, t > 0. The stability theory of finite difference 
approximations in the half space, with conditions imposed on internal boundaries, 
is the main object of this paper. 

We show first, in Chapter 1, that Kreiss' Main Theorem of [9] is valid for prob- 
lems in the half space with slightly modified conditions applied at an internal bound- 
ary located at x = 0. In Chapter 2, we derive some general stability conditions for 
problems with internal boundaries moving at a constant speed. The motivation 
for seeking this type of result is clear, since, in general, the internal boundaries will 
not be stationary. In Chapters 3 and 4, we specialize and sharpen the results of 
Chapter 2 in the case of the Lax-Wendroff finite difference scheme with various 
types of boundary conditions. These boundary conditions are all in the form of first 
order accurate finite difference schemes. The reason why we pay this particular 

Received April 4, 1973. 
AMS (MOS) subject classifications (1970). Primary 65M10; Secondary 65N10. 
* This research has been sponsored in part by the Air Force Office of Scientific Research (NAM) 

through the European office of Aerospace Research, AFSC, United Air Force, under Grant AFOSR- 
72-2370. 

Copyright i 1974, American Mathematical Society 

413 



414 M. GOLDBERG AND S. ABARBANEL 

attention to the configurations of Chapters 3 and 4 is that, in order to avoid dif- 
ficulties in regions of strong gradients when performing practical computations 
in fields like fluid mechanics, first order accurate schemes are used in those regions 
even when the basic overall finite difference approximation is of higher order accuracy. 
In Chapter 5, we present numerical evidence that the results of the linear stability 
analysis presented here are, as is usually expected, valid also for nonlinear problems. 

It is hoped that the recent work of Gustafsson, Kreiss and Sundstrom [6] will 
allow the generalization of the present results to the case of nondissipative finite 
difference schemes, with variable coefficients. 

The computations reported in this work were done on the CDC 6600 computer 
at the Tel Aviv University Computation Center. 

1. Modification of Kreiss' Problem [9]. 
1.1 Formulation of the Problem. Consider the Cauchy problem for a first order 

hyperbolic system of partial differential equations with constant coefficients 

(1.1) ut = Au,; -o < x < c, t > 0, u(x, 0) = f(x). 

Here, u = (ul'1(x, t), ... u() (x, t))' is a n-dimensional unknown vector and A is 
a n X n coefficient matrix.** The assumption of hyperbolicity is that A can be diago- 
nalized by a similarity transformation and that its eigenvalues are real. Hence, we 
may assume without restriction that A is diagonal and has real elements. It is also 
assumed that A is nonsingular (Assumption 1) and that the dependent variables 
uw(x, t), 1 ? j < n, are arranged so that the diagonal terms of A, a_, 1 < j _ n, 
form a monotone increasing sequence 

(1.2) a, < a2 ? < a, < 0 < a,+, < < an. 

We take into account the possibility that 1 = 0 or 1 = n, i.e., that A can also be either 
positive or negative. 

Define a mesh-size h =Ax > 0, At > 0 such that X = At/lAx = constant. Using 
the notation x, -y nAx and v,(t) v(x,, t), consider a consistent difference approxi- 
mation to (1.1) of the form 

(1.3a) vQ(t + At) = Qv,(t); v'(0) = fp, l = 0, ?1, ?2, 

where 
7, 

(1.3b) Q = A A3E3, EvV = VP 

The Ai's are constant matrices of order n and it is assumed (Assumption 2) that, if 
r > 0, then A r is nonsingular; similarly, if p > 0, then Ap is nonsingular. We call 
the scheme (1.3) the basic scheme. 

We now let loo and q _ 0 be two fixed integers and suppose that we wish to apply, 
at every time step, the basic scheme at all lo 5 V 9 , Poo + q, while at 

Po ? V _ io + q we define v,(t + At) by a constant coefficient scheme, usually dif- 
ferent from (1.3). The transformation 

** If y is a vector, then y' is its transpose, y* is its adjoint and jyl = (Z (j)jyjJ2)112 its Euclidean 
norm. Similar notations hold for matrices; for example, JAI = sup jAyj, jyl = 1. 
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(1.4) ta-+t, X > ? +oh 

shows that we may assume So = 0, i.e., that the region of applicability of the basic 
scheme is all v p- 0, * * *, q, whereas the values of v,(t + At) in the range 0 ? Y ? q 
are defined by q + 1 relations of the form 

8 

(1.5) V8(t + At) = E cjvv+), V-= 0, q. 

Here Ci,, are constant matrices of order n. This process defines a sort of internal- 
boundary-conditions which constitute a perturbation of the basic scheme. We designate 
these conditions as the perturbation, and the combined process of applying the basic 
scheme (1.3) at all v # 0, O .. , q, together with applying the perturbation (1.5), 
shall be called the perturbed scheme. The integers r, p, k, s and q in (1.3) and (1.5) 
are called the indices of the perturbed scheme. 

By analogy with [9], we denote by H the space of all the vector grid functions 
w, defined for -o < v < co, for which Nix jwj12 < co. H is a Hilbert space, 
if an inner product and a norm are defined by 

(1.6) (W, V)h = E wvh, I I wI Ih = (W, W)h. 

We say that the perturbed scheme is stable if there exists a constant K, inde- 
pendent of At, such that 

(1.7) 11v(t)I1k ? K 1v(0) Ih for all t _ mAt and all v(O) ? H. 

In particular, if K < 1, we say that the scheme is strongly stable. If we write the 
perturbed scheme in operator form, we obtain 

(1.8) v(t + At) = Gv(t), v(t), v(t + At) E H, 

where G is a bounded linear operator on H, defined by (1.3) for v 0,O. *, q, together 
with (1.5). Hence the perturbed scheme is stable if there is a constant K such that 

(1.9) IIG"mI'h < K, m = 0, 1, 2, 

Hereafter, we shall assume that the basic scheme is strongly stable; i.e., we require 
that the norm of the operator, which represents Q of (1.3) in H, will be bounded by 1. 
This requirement shall take the following form. Evidently, H is isomorphic to the 
space 12, and, by the Riesz-Fisher Theorem, the spaces 12 and L2(- r, 7r) with the 
usual norms are isometric. Hence, it is clear that H is isometrically isomorphic to 
the space A of all functions 0(i) in L2(- r, 7r), with inner product and norm defined by 

h IC W1 2 
(1.10) (i,1V) = j do, IlwII = (W., w). 2rr 06dt 

The representation of the basic scheme in A is given by the amplification matrix 
p 

(1.11) Q(t) = E AAie"', j <r, 
i=-f 

and we have IIQ(t)II = max IQ( )I i 1j _r. Therefore, the assumption that the 
basic scheme is strongly stable (Assumption 3) is that 



416 M. GOLDBERG AND S. ABARBANEL 

1.12) 10(oI <_ I, 1r1 -< 7 
In addition, we assume (Assumption 4) that the basic scheme is dissipative in the 
sense of Kreiss, i.e., that there exists a constant r > 0 and a positive integer co such 
that, for each , 7j _ r, the eigenvalues IA(r) of Q(r) satisfy 

(1 .1 3) 1y(Ol~(~) < 1 rl 

All of the above assumptions are exactly those made in [9]. 
Our aim in this chapter is to make use of the results in Sections 1-3 of [9] and 

Section 3 of [8], in order to obtain sufficiency conditions for the stability of the 
perturbed difference scheme; i.e., conditions sufficient for the uniform boundedness 
of the natural powers of the operator G. 

The problem considered here is a modification of Kreiss' problem in [9]. He 
considered the system (1.1) in the quarter plane 0 _ x < c, t _ 0, with boundary 
conditions given at a single time level, whereas we consider (1.1) in the half plane 
- 00 < x < c, t _ 0, with boundary conditions (1.5) given at two time levels. 

The stability results for the modified problem will have exactly the same form 
as those in the Main Theorem of [9], and will be presented in the next section. 

1.2. Kreiss' Main Theorem [9] for the Modified Problem. Let 

detE ASK -ZI] = 

be the characteristic equation corresponding to the basic scheme (1.3). If p and r 
are nonnegative, then Lemma 2 of [9] assures us that, for all z with z X 1, IZI _ 1, 
this characteristic equation has exactly (r + p)n roots KS; nr of them with IK~ < 1 
and np with IKil > 1. It is clear that, if r < 0 (p < 0), then (1.14) has only np (nr) 
roots, all with Kil > 1 (IKi| < 1). Note that, by continuity, the roots of (1.14) satisfy 
milder inequalities for Izi > 1; i.e., in each of the above cases, IKil < 1 (IKJ| > 1) 
becomes KS < 1 (1Ki| _ 1). We shall henceforth refer to the results contained in this 
paragraph as Lemma 2 of [9]. 

We remark that Lemma 2-as well as Lemma 7 of [9] which we shall quote later 
in this section-depends on the properties of the basic scheme only, and not on the 
boundary conditions. Therefore, they are clearly valid in our case. 

We continue with the analysis in analogy with Section 1 of [9]. Let z with z X 1, 
Izi _ 1, be given. In order that G have an eigensolution g E H, with eigenvalue z, 
g must fulfill the requirements 
(1.15) (Q - z)g' = 0, v 0, ,q; 

(1.16) zg, = E Cj vg, v = 0, ... , q. 
i-kA 

Since Eq. (1.14) has roots Ki with Ku < 1 (IKil > 1) only when r > 0 (p > 0), it 
follows that the most general solution of the ordinary difference equation (1.15), 
belonging to H, is 

(1.17a) v = g^(z) = > P 7 > q + 1 - 
| Kji |<1 

if r > 0; or 
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(1. I7b) gy = , v 2' q + 1 

if r _ 0; and 

(1.1 8a) gy = gM(z) = E _ v < p - 1, 
Kij >1 

if p > 0; or 

(1.18b) gy = 0, v - 1, 

if p < 0. Here, Pi = Pj(P) are polynomials in v with vector coefficients, where the 
degree of Pj(v) is one less than the multiplicity of the corresponding Ki The part of 
the solution given by (1.17a), (1.18a), involves nr (np) independent solutions, and, 
therefore, it depends on nr (np) parameters aj. Define 

(l~~l9) r a r, r > O. p p, p > O. 
-0, r _< . _0, p O< , 

then we see that the general solution in H of (1.15), given by (1.17), (1.18), depends 
on (Q + p)n parameters oi. It is important to note that this solution is neither always 
defined nor always single valued. It might turn out to be either undefined or, on the 
contrary, defined twice, for certain values of v, depending on r, p and q. 

If q = ir + p - 1, then g, is uniquely defined via (1.17) and (1.18) for all v. In 
addition, as we saw, g must also satisfy (1.16) which constitutes a system of (q + 1)n 
homogeneous equations in the (p + r)n unknowns, oa. Thus, for the present case of 
q = r + p - 1, the number of equations is the same as the number of unknown 
parameters to be defined. 

If, on the other hand, q > p + 4 - 1, then g, remains undefined for q - - P + 1 
values of v, p v < q - r. Therefore, in order to complete the solution, we must 
define these g,'s. The definition of each of these n-dimensional vectors involves n 
additional parameters or,, i.e., 

95 = (T+;):+l s, 6(.+5+1)n)% 

=f+ 
= (cr(;rp+ l),+l) ***, (r+p, +2), etc. 

This procedure adds (q - - p + 1)n parameters cri, and thus again g depends, 
all told, on (q + 1)n parameters. The substitution of g in (1.16), again yields a homo- 
geneous system of (q + 1)n equations with (q + 1)n unknown parameters aj. 

For the remaining possibility of q < p + - 1, g, is indeed defined for every v; 
but for p + r - q - 1 values of v, q - r + 1 _ v p - 1, it is defined twice and 
thus it is possibly double valued over these points. Requiring uniqueness, we are led to 
a system of (p + ir - q - 1)n homogeneous equations in the (p + Ir)n parameters 
ai which define g. We also still have (1.16), which gives us (q + 1)n additional equa- 
tions. 

To summarize, we get in every case a homogeneous system of 

My max { (q + 1)n, ( + f)n} 

equations with an equal number of the unknowns oj, which define g completely 
and uniquely. This system may be written in the form 
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(1.20a) E(z)o = 0, a = (as,, . . . A, 

where E(z) is a y X y matrix. Since g is an eigensolution of G iff E(z)o- = 0 has 
a nontrivial solution, we are led to Lemma 3 of [9]: z with lzj > 1, z P 1, is an eigen- 
value of G, if det E(z) = 0. 

Now, Lemma 7 of [9] states that, as z 1-* (for jzj ? 1, z #d 1), precisely n roots 
of (1.14), Ki, tend to 1; ! of them from inside the unit disk and n - I from its exterior. 
Therefore, g(l), as defined above in (1.17), (1.18) and the subsequent discussion, 
does not in general belong to H; however, it does depend on the proper number 
of parameters ov;. Substitution of g(l) into (1.16) leads to the homogeneous system 

(1.20b) E(1)u = 0. 

Kreiss [9] defines z = 1 as a generalized eigenvalue of G iff (1.20b) has a nontrivial 
solution, i.e., if det E(1) = 0. 

We now assert that Kreiss' Main Theorem of [9] is also valid in our case, i.e., 
for the modified problem. We rephrase it as follows: 

The perturbed scheme is stable if 
(1) the Assumptions 1-4 are fulfilled, 
(2) z = 1 is not a generalized eigenvalue of G, 
(3) G has no eigenvalue z with IzI > 1, z $ 1. 
In order to prove this assertion, it is necessary to consider several steps needed 

in the various stages of the proof of the Main Theorem in Sections 2 and 3 of [9] 
and Section 3 of [8]. 

Following Kreiss in [9], we wish to estimate the solution v(t) of the finite difference 
approximation in the form 

(1.21) v =) zm(G - zI)- dz-v(?), t = mAt, 
Ir i r 

where r is any contour in the complex plane which includes the spectrum of G in 
its interior. To estimate (1.21), we now study the resolvent (G - zI) 1 of G. 

Consider first the case of a one-sided basic scheme, i.e., r < 0 or p ? 0. Say r _ 0 
and let v E H be given. Let us compute explicitly f = (G - zI)- v; this is equivalent 
to finding the solution of (G - zI)f = v, i.e., 

(1.22) [(G -zI)f], = VP) - < v < o . 

Therefore, we first consider 

(1.23a) (Q - zI)f = v^, v $ 0, .. q, 

or, alternatively, 
p-1 

(1.23b) fl+P = - A f,+( i - zf-, v. v * 0, q. 

Define the vector 

(1.24) Yv = (ff+p-l, fli+p-2, , . . . , 

which, together with (1.23b), leads to the one step formula 

(1.25a) Yv+1 = My, + e,, v i$ 0, * *, q, 
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here M is an np X np matrix and e, is a vector, defined by 

P 1 * AP AA 0 *.0 -zAP1 vv 

-I 0 ...0 0 0 

(1.25b) M= - 0 , e =A 

* . ~~~~~0 

o 0 -I 0 0 

The most general solution of (1.25) is 

(1.26a) YV Mv ie + M-a1y'+1, forv ? q + 2, 
i=q+1 

and 

(1.26b) yy = -E M e i e + M3yo, for v < -1, 
'=3, 

where y,+, and yo are arbitrarily chosen. Now note that the eigenvalues of M are 
those of the characteristic equation (1.14), and since r < 0 Lemma 2 of [9] shows 
that they are all outside the unit circle, provided Izi > 1, z $ 1. In this case, we have 
IMmI -o as m -e a, and therefore, the part of the solution of (1.25), given by 
(1.26a), satisfies ,=a+2iyl2 = a, except when y,+i takes on a particular value. 
Since ZE=-oIY3I2 < a) if and only if | Itfi I < co, we see that the general solution 
(1.26) does not usually define, through (1.24), a vector f which belongs to H. Thus, 
in order to obtain the most general solution of (1.25) which implies a vector f that 
belongs to H, we keep (1.26b), but replace (1.26a) by the unique special solution of 
(1.25) for which Z, =a+ 1W3IYPI2 K ~o. This special solution is 

co 

(1.26c) yy = -> v > q + 1. 

Equation (1.26c) uniquely defines the f,'s for all v > q + 1, while (1.26b) depends 
on yO = (f'p-, f'p-2, ... , flo)'. Hence, f is defined uniquely iff fo, ... *, f, are defined. 
The values of fo, ... , f, must satisfy (1.22b) for v = ... , q, and, with the aid of 
the boundary conditions (1.5), we obtain 

(1.27) cvZ if;+i - zf, = v, v = 0, ... , q. 
i=-k 

If we set y0 _ (f' ,, f 1,, * ... , fo)', (1.27) takes the form 

(1.28) C(z)y0 = e?, 

where C(z) is a square matrix depending on the C,, i's as well as on z, and eo is a 
vector defined by the matrices Ai and the given v E H (note that dim yo $ dim yo 
unless p = q + 1). 

Now Lemma 5 of [9] is established: if z with Izi > 1, z < 1, is not an eigenvalue 
of G, then (G - zI)-1 exists in H and is bounded. The proof is similar to Kreiss': If 
C(z)- 1 exists, then f is uniquely defined and the resolvent exists in H and is bounded. 
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If, on the other hand, C(z)-' does not exist, then the homogeneous system C(z)y0 = 0 
has a nontrivial solution jPC(f'a, f'a, *. , f'0)'. Now define 

(1.29a) To = (J'-1s, fP-2s 
.. 

s Y 
OY, p < q + 1, 

(?s I .. I 01 ?Psoas * OY s p > q + 1 

Thus, 

ye O. V 2q+ 1 

(1.29b) -9, = 0, 

_M".P0, v < O. 

is a solution of the homogeneous equation (1.25a) with e, = 0. Equations (1.29) 
define a nontrivial solution of (G - zI)f = 0 and, hence, z is an eigenvalue of G; 

From the above discussion, and with the help of the transformation T(z) of 
Lemma 4 of [9], it should now be clear that Lemma 5 of [9] is valid also when the 
basic scheme is two-sided (i.e., p > 0 and r > 0). We remark that Lemma 6, which 
is the conclusion of Section 2 of [9], follows immediately, as in [9], from Lemma 5. 

To complete the argument about the validity of the Main Theorem in our case, 
we note that Section 3 of [9] goes over with slight modifications; the same holds for 
Theorem 3 of [8], which is required at the end of the proof of the Main Theorem 
in [9]. 

At the end of this chapter, we should make the following remark: It would seem 
that the application of Kreiss' results to our problem could have been more easily 
effected by first transforming the problem from the half space - o < x < c, t > 0, 
to the quarter space, by defining a new unknown 2n-dimensional vector W(x, t) = 
(u(x, t), u(-x, t))', x > 0. This procedure would have yielded a new finite difference 
scheme 

S 

(1.30a) W(t + At) = E BWp+i(t), 

where 

(1.30b) S = max{r,p}. 

However, the matrix coefficients B-s and Bs will be singular unless in the original 
basic scheme r = p. Therefore, Assumption 2 of the Main Theorem is not fulfilled 
and Kreiss' results cannot be taken over to the present problem. In most of the 
applications presented in the following chapters, we encounter a situation which 
is equivalent to having an original basic scheme with p # r, and hence the approach 
adopted here. 

2. General Results. Before obtaining some general results concerning the 
stability of perturbed schemes, let us consider the basic scheme alone. Assume that, 
in (1.3), r < 0 (p _ 0). Because of consistency and dissipativity, Lemma 2 of [9] 
guarantees, as we previously saw, that, for all z with Izi > 1, z 5# 1, the characteristic 
equation (1.14) has exactly np (nr) roots KS, all of them satisfying Kit > 1 (IKjt < 1). 
Now, suppose that the number of negative (positive) eigenvalues of the coefficient 
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matrix A of (1.1) is I > 0 (n - 1> 0), then, due to consistency, we have the result of 
Lemma 7 of [9] that I (or respectively n - 1) of these KiDS tend to 1 from inside (outside) 
the unit disc, as z -* 1. This is a contradiction and we have 

COROLLARY 1. If the coefficient matrix of the P.D.E. system (1.1) has any negative 
(positive) eigenvalues, then there cannot exist a finite difference scheme of the form 
(1.3) with r _ 0 (p _ 0) which is both consistent and dissipative.*** 

This result means that, in the general case, when A in (1.1) has both negative 
and positive eigenvalues, it is impossible to construct one-sided finite difference 
schemes which are consistent as well as dissipative. However, as we shall see in the 
next chapter, where A is positive (negative), it is possible to construct such con- 
sistent and dissipative right (left) one-sided schemes. 

From now on, we consider the perturbed scheme, together with Assumptions 
1-4 of the previous chapter. We start with 

THEOREM 1. If, in the basic scheme (1.3) and in the perturbation (1.5), r < 0 
and - k > q (or alternatively, p ? 0 and - s > q), then the perturbed scheme is stable 
unless k = q = 0 (s = q = 0). In the latter case, the scheme is stable if the spectral 
radius of CO,, satisfies p(CoO) < 1 and is unstable if p(C0, ) > 1. 

Proof. We consider the first set of conditions r ? 0 and - k > q, and, in ac- 
cordance with the Main Theorem of Kreiss, we try to determine whether the operator 
G has eigenvalues z with IzI > 1. Since r < 0, the most general solution of (1.1 5), 
for v > q, that belongs to H, is given, as we, saw, by (1.17b); i.e., we have g, = 0 
forall v > q + 1. 

Let us assume, to start with, that - k > q + 1, rather than - k _ q. Then, using 
(1.17b), we get, from (1.16), 

(2.1) Zg9 = E C,,g,+= 0, z = 0, ... , q9 
i--k 

and, together with (1.17b), we have 

(2.2) 9v = 0, v ? 0. 

For v _ -1, Eq. (1.15) can be written, for r ? -1 and r = 0, as 

(2.3a) gv = z '(Apg,+, + * + 
A-,qpr), 

v ? -1, 

or 

(2.3b) 9v = (zI - Ao)-1(Apgp+ + *. + Aig,+1), v _ -1, 

respectively. Note that zI - A, is nonsingular for Izi > 1; otherwise, K = 0 is a root 
of (1.14), contradicting Lemma 2 of [9] which guarantees that all the roots of (1.14) 
satisfy IK, I 1 when r < 0. Using (2.2), we get from (2.3) that g, = 0 also for v _ -1 
and this, together with (2.2), gives g = 0. Thus we have failed to construct a nontrivial 
eigensolution of (G - zI)g = 0 that belongs to H, and hence jzi > 1 is not an eigen- 
value (generalized eigenvalue if z = 1) of G and, by Kreiss' Main Theorem, we are 
assured of stability. 

To finish the proof, we set - k = q. Again, using (1. 17b), we get, from (1.16), 
* * * This result might have implications concerning the treatment of boundary conditions by 

one-sided finite difference approximations. 
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(2.4a) zgP = E ijygv+; = 0, v = 1, * , q; 
i=-k 

and, for v = 0, 

(2.4b) Zgo = E C3 og, = Ck,Og-k. 

From (2.4), we see that, if q > 0, then g, = 0 for 0 < v _ q, i.e., we are back at 
(2.1) and the theorem follows. If, on the other hand, k = q = 0, then (2.4b) gives 

(2.5) (zI - coo)g0 = 0. 

Thus, if p(Coo) < 1, then (zI - Coo)- exists for all Izi > 1 and, therefore, go = 0, 
and again we are back at (2.1). If p(Co, o) > 1, then there exists zo with IzoI > 1 such 
that (zo! - CO, o) is singular and we can find a vector go $ 0 which satisfies (2.5). 
Therefore, for z = zo, we have the ordinary finite difference equation (2.3a) (or 
(2.3b) if r = 0) which is of degree p, with the following p initial conditions: 

(2.6) go 0 0, g1 = ... = gal = ? 

These initial conditions assume a nontrivial solution of (1.15) for v < 0. By Lemma 2 
of [9], if Izoj _ 1, zo - 1, then all np eigenvalues of (1.14) satisfy, in our case, (r < 0) 
the inequality Kil > 1; hence, it follows from (1.18a) that any solution of (1.15) for 
v < 0 belongs to H. Therefore, the nontrivial solution of (1.15) defined by the initial 
conditions (2.6) belongs to H and, together with (1.17b), it dictates an eigensolution 
of G, g $ 0, with eigenvalue zo. We now invoke Lemma I of [9] (which is independent 
of any other result of [9]). In this lemma, Kreiss shows that if G has an eigenvalue 
zo with Izol > 1, then G is unstable. This finishes our argument. The proof for the 
second set of conditions (p _ 0, s ? -q) is almost identical. 

So far, we have dealt with the perturbation of the basic scheme on a set of fixed 
points of the spatial mesh. However, our aim is to apply the stability analysis to 
nonlinear problems containing in their solutions discontinuities or large gradients. 
These systems are most conveniently thought of as initial value problems with moving 
internal boundaries. In general, these internal boundaries (such as shock waves, 
etc.) do not stay in a fixed position on the x-axis but move with time along some 
trajectory in the (x, t)-plane. When, due to the large gradients, the basic scheme does 
not provide smooth enough results in the neighborhood of these moving internal 
boundaries, it might be effective to apply at each time step a local perturbation in 
the (small) region of discontinuities or large gradients. The rest of this chapter is 
devoted to this problem, with the stability analysis applied to the linearized versions. 

Let x = X(t) be a function that, at the various time levels tm = mAt, m > 0O 
assumes grid-point values vth; i.e., vmh = X(tm) where the v,,s are integers. Suppose 
that, for every given m > 0, we apply the basic scheme at every spatial grid point 
V # Vms - * *, m + q, while, in the range vm _ V _ vm + q, v,(tm+i) is defined, by 
analogy with (1.5), by q + 1 relations of the form 

(2.7) Vv(tm+l) = 
E CjP-vmMV+j(tm)9 v = Vm, * , Vm + q. 

Here also, Cj1 are constant n X n matrices. This procedure defines, as before, internal 
boundary conditions, except that now the boundary is moving. 
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The stability problem of the perturbed scheme can be posed as follows. If G is 
the linear operator defined by (1.8) (i.e., the operator appropriate for the case vm = 0, 
m _ 0), and T is the translation operator in H, namely (Tv), = v,,,, then the basic 
finite difference scheme perturbed by (2.7) may be written in the form 

(2.8) v(t.+,) = T"-GT "-v(t.). 

Therefore, if we start with initial conditions v(O) E H, we get 
m-1 

V(tm) = II (TViGT vi) v(O) 
(2.9) _i=o 

= Tv 'GTm T- 2 - m-'G ... GTv?-^`GT"'?v(0). 

The difficulty we face here is that G and T do not commute (G is not a normal operator 
on H) and, therefore, even when we assume that the powers of G are uniformly 
bounded, and even though T is an isometry, we still cannot conclude anything con- 
cerning the boundedness of an operator of the form given in the square brackets 
of (2.9). Thus, we cannot deal with the most general perturbation; however, there 
are many important cases where we can solve the stability problem for the perturbed 
scheme. 

Let us assume that 

(2.10) X(t) = (t. 6/X) + v0h, 

where a is a given integer. In terms of the discrete variables, we have, taking without 
restrictions vo = 0, 

(2.11) Vm = (tm -)/(Xh) + vo = m -6 

The above choice for X(t) means that we perturb the basic scheme along a straight 
line in the (x, t)-plane, and that the perturbed region moves at a constant speed 
8/ X starting at t = 0 from the point vo Ax. It is clear that, when cS = O= 0, we go 
back to the original perturbation (1.5). Clearly, the line x = X(t) can be thought of 
as representing the trajectory of a "shock-wave" or any other physical discontinuity. 

Consider now the transformation 

(2.12) t -t, x d + x(t). 

Keep the time step At and choose At = h as before. By this transformation, we 
obtain a new mesh 

(2.13) ( ti) I -o < v < A:, m > 01, 

with the point (i, ti) being the image of (xV+M8, tm). Designating the solution of the 
finite difference approximation on the new net by w,(t) _ w(i,, t), we have W,(tm) = 

vp+ms(tm). The basic scheme (1.3), transformed to the new coordinates, takes the 
form 

(2.14a) w,(t + At) = Rw,(t), v $ 0, .. q, 

where 
p p, 

R QE = = A jE BiE, Ew, = Wv+i (2.14b) i- 
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Scheme (2.14), which we call the alternative basic scheme, has all the properties 
of the basic scheme (1.3) except one. In particular, its amplification matrix is 

(2.15) R(O)= = (e, 

and therefore, by (1.12) and (1.13), we see that scheme (2.14) is also strongly stable 
and dissipative in the sense of Kreiss. The only difference between the properties 
of (2.14) and (1.3) is that the alternative basic scheme is obviously not consistent 
with (1.1) but with the alternative differential system 

ut = But, - < < ,tO> O, 

(2.16) u(Q, 0) = f(Q + x(?)), 

B= A + Id X(t) = AI +(a/X)I, 
Ldt J 

which is the image of the original system (1.1) under the transformation (2.12). 
B, like A, is a constant diagonal matrix. 

Use of the transformation (2.12) means that, on the new net, the alternative 
basic scheme is applied (at all time steps) at v F 0, ... , q, and will be perturbed at 
v = 0, * **, q. The alternative perturbation, which is the image of (2.7) under the 
transformation (2.12), is 

(2.17a) w'(t + At) = E Cj,,w>+,+8(t) E Dj,,w,+i(t), v = 0, q, 
i --ki=k 

where 

(2.17b) D,;, Ci-a,, k'- k- (, s' s + (. 

Now, the advantage of employing the transformation (2.2) has become clear: 
The results of the last section are immediately applicable to the alternative perturbed 
scheme (2.14) and (2.17). 

Note that if i a Iis sufficiently large so that p' = p + 8 ? O or that r' = r - 8 < 0O 
then the alternative basic scheme (2.14) becomes one-sided. In that case, even though 
the coefficient matrix A of (1.1) may have both positive and negative eigenvalues, 
Corollary 1 guarantees that the coefficient matrix B = A + (8/X)I of (2.16) satisfies 
B ? 0 or B < 0, as a is positive or negative. We are not able, at this point, to establish 
that B is always nonsingular, because A might have - 8/ X for an eigenvalue. Never- 
theless, the results of Kreiss' Main Theorem are still valid for this case. This is so 
because the only place in the proof of Kreiss' theorem where use is made of the 
regularity of the coefficient matrix of the differential system is in Lemma 7 of [9]. There 
it is shown that, as z -* 1 (Izj ? 1), exactly n of the characteristic roots Ki approach 1: 
1 of them from inside the unit disc and n - 1 from its exterior, 1 being the number of 
the negative eigenvalues in the coefficient matrix A. By using these particular n roots 
and their properties, the partition of the matrix M (defined by Eq. (2.4) of [9]) is 
accomplished. In the present case where the coefficient matrix B might be singular, 
it is seen from Eq. (3.3) of [9] that the number of roots K, tending to 1 as z 1-* may 
exceed n. However, this is no longer of interest, due to the fact that if the finite dif- 
ference scheme (2.14) is one-sided when p' < 0 or r' < 0, the roots of the charac- 
teristic equation belonging to this scheme are all either inside or outside the unit 
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circle. Therefore, the partition of M, required in Lemma 7, is trivial; in fact, it is 
gi-fen by M itself. 

At this point, we submit the conjecture that when r' < 0 or p' < 0, B is indeed 
regular. While we cannot prove this in the general case, we shall, in the following 
chapter, show it for a particular scheme, namely the Lax-Wendroff scheme. 

From the transformation (2.12), it is clear that v(t) and w(t)-the solutions of 
the original and alternative perturbed schemes-satisfy 

(2.18) ||w(t)I|h = j|V(t)|lh 

for all t > 0. Therefore, we conclude that the original perturbed scheme is stable iff 
the alternative perturbed scheme is stable. Theorem 1 provides stability conditions 
concerning the indices of the alternative scheme r', p', k', s' and q. Thus, we are 
ready to state 

THEOREM 2. Let vo, 8 and q > 0 be given integers. Let the basic scheme (1.3) be 
perturbed at each time tm by (2.7) with vm = m a 8 + Po. If r' _ r-8 < 0 and -k' 
a-k _ q(p' = p + 8 ? 0 and -s't -s - a8 q), then the perturbed scheme is 
stable unless -k' _ 8-k = q = 0 (s' s + 8 = q = 0). In the latter case, the 
scheme is stable if p(C-kO) < 1 (p(C8,O) < 1) and is unstable if this spectral radius is 
greater than 1. 

Proof. When r' = r - 8 < 0 and -k 8-k > q (alternatively p' = p + 
a < 0, -s' s - 8 q), all cases except -k' q = 0 are clear from Theorem 1. 
When - k' = q = 0, we conform to Theorem 1 by requiring p(Do, o) < 1 for stability, 
and p(Doo) > 1 for instability. By (2.17), Do 0 = Ca 0 = Ck, o and Theorem 2 follows. 

Since r, p, s, k and q are given, Theorem 2 insures stability if 181 is sufficiently 
large. When 1 81 is not large enough to satisfy one of the two alternative sets of con- 
ditions of the theorem, we have not been able to find stability conditions. However, 
in the particular case of various perturbations of the Lax-Wendroff scheme, the 
problem is completely solved as is shown in the next chapter. 

Here we have dealt, in general terms, with perturbations moving at the speed 
dx/dt = 8 Ax/At where we are free to fix At within the range permitted by the stability 
condition of the basic scheme, and 8 is any integer. It might have been thought that 
we could have avoided carrying out the analysis for an infinite number of cases 
(8 = 0. 1, ...), by immediately transforming the original P.D.E. system (1.1), 
via (2.12), into (2.16), and then consider (2.16) as the given problem and construct 
a finite difference approximation to it, without further reference to the original 
problem. This would have meant that, from the beginning, we would have to consider 
only the case of a perturbation fixed at x = 0. All of this is quite true were we to 
restrict our attention only to linear systems with constant coefficients. However, the 
motivation for this work is to provide the (customary) linear stability analysis for 
nonlinear systems, in which case we have no a priori knowledge of the trajectories 
of internal boundaries such as shock-waves. The present approach which considers 
a spectrum of speeds of the internal boundaries allows us, as we shall see in Chapter 3, 
to find explicit stability criteria for the perturbed problem uniformly valid in 5. 

3. Stability of Certain Perturbed Lax-Wendroff Schemes. In this chapter, 
the basic scheme which approximates the system (1.1) is the Lax-Wendroff (L-W) 
one [11], i.e., 
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m+1~~~~~~~~ 
y = Qv = E Ajv'+i, A1 = (D2 :: D), 

(3.1) 
A0 = I - D2, D XA, X = At/Ax, 

where vtm v,(t.), and A is the coefficient matrix in (1.1). It is known (see for ex- 
ample [12, Chapter 12]) that the condition which we shall assume henceforth, 

(3.2) 0 < Xp(A) < 1, 

with p(A) the spectral radius of A, assures the strong stability and dissipativity of 
(3.1). We now proceed to consider certain perturbations of (3.1). 

3.1. General Consistent and Diagonal Three-Point Perturbations Along the Tra- 
jectory of a Single Grid Point. Let vo and a be given integers, as in the previous 
chapter. Consider a perturbation of (3.1), at each time level tim at the single grid 
point 

(3.3) vm = ma + Vo, 

given by a three-point formula of the form 

(3.4) Gy Ej ,0~~ 
i=-1 

This corresponds to (2.7) with q = 0. The perturbation considered as a scheme by 
itself is not necessarily consistent with (1.1); if it is, we call (3.4) a consistent perturba- 
tion. In the case of a consistent perturbation, it still does not necessarily follow that 
the Cio's are diagonal, even though A is. When the matrices C1,o are diagonal, we 
say that we have a diagonal perturbation. Notet that diagonality does not necessarily 
imply that the C1, o's are polynomials in A. In practice, it turns out that if A is diagonal, 
then the perturbation (3.4) is usually chosen to be diagonal and consistent. We now 
prove 

THEOREM 3. (a) The L-W scheme (3.1) perturbed by the general three-point 
perturbation (3.4) is stable for all I a > 2. 

(b) p(C:i, o) < 1 is a sufficient condition for stability when a = :1 1. If the inequality 
is reversed, the perturbed scheme is unstable. 

(c) If the perturbation (3.4) is consistent and diagonal, then the inequalities 

(3.5) -1(I + (4- 3X2 jaij2)1/2) < (coo), K 1 + X jail, 1 < 1 < n, 

constitute a sufficient condition for stability when a = 0. Here as and (co o)i are the 
eigenvalues of A and CO O, respectively. If, for any 1 < j _ n, one of the inequalities 
in (3.5) is reversed, the perturbed scheme is unstable. 

Proof. Since here q = 0 and r = p = k = s = 1, (a) and (b) follow immediately 
from Theorem 2. In this connection, we remark that for I a1 > 0 the alternative 
scheme for (3.1) is one-sided. The dissipativity condition (3.2) implies that IaiI < 1/X 
for all 1 ? j ? n. Therefore, the eigenvalues of the coefficient matrix B of the alter- 
native differential system (2.16), b, = a3 + S/X, are all positive or all negative ac- 

t For example, approximate ut = Au,,, A = diag{a, b}, by a finite difference operator Q = 
1 CjEi. If C1 = 1X Xb 3) and CO = (2 x,0), then Q is consistent but not diagonal. If C~, 

= diag {(1 i Xa - b)/2, (1 i - a)/21 and CO = diag {b, a), then Q is diagonal and consistent 
but the C,'s are not polynomials in A. 



HYPERBOLIC SYSTEMS WITH MOVING INTERNAL BOUNDARY 427 

cording to the sign of 5, showing the conjecture on page 425 to be valid in this case. 
Next, we set a = 0 and prove (c). Since, in this case, the perturbation is taken 

to be diagonal, the various components of the perturbed scheme are decoupled and 
we may assume without restrictions that v,2, Cio, A, and Ai are all scalars. Hence, 
the condition (3.2) takes the form 

(3.6) 0 < X [AI <.1 or equivalently 0 < IDI < 1. 

In order to be able to use Kreiss' Main Theorem, we will show that z, with Izi > 1, 
is not an eigenvalue (generalized eigenvalue if z = 1) of the appropriate operator 
G given in (1.8). 

We start by presenting the characteristic equation (see (1.14)) of the L-W scheme, 
which is 

(3.7) z = A1/K + Ao + A1K, 

the Ai's being given in (3.1). By Lemma 2 of [9], both roots of (3.7) satisfy, for jzI _ 1, 
KIJ ? 1 and IK21 > 1. 

Now we let z satisfy zj >_ 1 and seek an eigensolution g E H of G with z being 
its eigenvalue. From (1.17a) and (1.18a), we find that the most general solution in H 
of the (scalar) equation (1.15) is 

(3.8) 9, = olK4, v > 0; gv = 072K2 , v 0. 

We see that go has been defined twice, and the requirement of uniqueness implies 

(3.9a) r = 2. 

In addition, g must also be an eigenfunction of the perturbation (3.4) (with vm = vO = 0 
for simplicity); therefore, (1.16) becomes 

(3.9b) zo1 = C_1,oK2 io2 + CoOal + C1,oKI(o . 

Equations (3.9) define the homogeneous linear system E(z)o = 0 , (u1, 02)Y, 

and we obtain 

(3.10) det E(z) = C-1,OK2 + C0,O + C1,0K1 - Z. 

Since we do not want G to have eigenvalues outside or on the unit circle, then, by 
Lemma 3 of [9] and (1.20), we have to look for conditions for which det E(z) $ 0, 
for all JzJ > 1. From (3.7), we have K1K2 = A 1/A1 = (D - 1)/(D + 1) and, there- 
fore, 

(3.11) K2 = [(D + 1)/(D - 1)]K1. 

The consistency of the perturbation implies E1=_C3,O = 1 and E= 1 jCi 0 = XA 
= D, from which we obtain 

(3.12) C 1,0 = 2(1 D - CO,0). 

Substituting (3.11), (3.12), and (3.7) with K = K1, into (3.10), we find that det E(z) = 0 
iff K1 satisfies 

(3.13) D(2CO,0 - 1 + D2)K2 + 2(1 - D)(CO 0 + D2 _ l)K1 + D(1 - D)2 = 0. 

Hence, we look for the range of C0,0 for which (3.13) is contradicted for all lzI > 1. 



428 M. GOLDBERG AND S. ABARBANEL 

If the coefficient of K1, in (3.13) vanishes, i.e., if 

(3.14) Co,0 = 2(1 - D2), 

then the only solution of (3.13) is K1 = D/(D + 1). Using (3.7), we obtain z = 21 

Hence, in this case, det E(z) $ 0 when jzj > 1; therefore, from now on, we take 

(3.15) Co,0 $ '(1 - 2), 

in which case (3.13) has the two solutions 

(3.16) 

K1= [(1 - D)/D][1 - C0,0 - D2 _d ((1 - Co 0)2 - D2)1/2]/[2C0,0 - 1 + D2]. 

Substituting (3.16) into (3.7), we find that 

(3.17) z = C, 0[CO,0 i ((1 - C, 0)2 _ D2)1/2]/[2Co,0 - 1 + D2]. 

Let A (1 C )2-D2 and assume first that A < 0, i.e., 

(3.18) 1 - |Dj < C0,0 < 1 + DI. 

In that case, z is complex and, from (3.17), we get 

(3.19) jzj = COo,/(2Coo - 1 + D2)1/2. 

Since here A < 0, it is easily checked that the R.H.S. of (3.19) is smaller than 1. 
Thus, whenever C0o, satisfies (3.18), det E(z) $ 0 for Izi ? 1 and G has no eigenvalues 
outside the unit disc. 

Next, we check out the case A 0, i.e., 

(3.20a) C0,0 = 1 - ID 

or 

(3.20b) C0,0 = 1 + D1. 

We first treat the case (3.20a) (for which it is easy to verify from (3.17) that z = 1). 
Here, (3.16) has a single solution K1. The corresponding value of K2 is given by (3.11), 
and we have 

(3.21) K1 = [fDf(1 - D)]/[D(1 - IDI)], K2 = [D(IDI - 1)]/[fDf(D + 1)]. 

By (3.6), we see that IK21 < 1 or |K11 > 1, when D > 0 or D < 0, respectively. 
By Lemma 2 of [9], this is a contradiction to the fact that IK11 _ 1 and IK21 _ 1 for 
all IzI _ 1. Thus again, det E(z) 9 0 for IzI > 1. The case of (3.20b) will be treated 
later. 

There remains the case of A > 0, where 

(3.22a) C0,0 < 1 - IDI 

or 

(3.22b) C0,0 > 1 + ID1. 

As in the case A -= 0, we first consider only (3.22a). The K1 in (3.16) now has two 
real values. If we take the larger of the two 1K11 and obtain the corresponding 'K2 
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from (3.11), we get 

(3.23) 

max {I K11, 1K211} 

= (1 + I D 1)(1 Co, - D2 + ((1 - C0, 0)2 - D2)1/2)/[ID I 12C0,o + 1 - D 21] 

> [(1 + IDI)(1 - Co,0- D2)]/[IDI 12C0,o + 1 - D21]. 

Using (3.22a), a short calculation shows that the R.H.S. of (3.23) is greater than or 
equal to 1, and we have a contradiction of the same sort as that following (3.21). 
This does not complete the discussion in the (3.22a) case, since (3.16) has an additional 
value. 

So, consider the smaller of the two IK11 in (3.16). The corresponding value of z 
is obtained from (3.17) with the minus sign, i.e., 

(3.24a) z = C, 0[CO,0 - ((1 - Co 0)2 - D2)1/2]/[2CO,0 - 1 + D2] 

Recalling that, by (3.22a), Co,0 < 1 - ID, we look for the range of Co,0 such that z 
in (3.24a) will satisfy Izi < 1. When C0 ? 0, it is easy to verify directly that z in 
(3.24a) satisfies 0 ? z < 1. When Co,0 < 0, (3.24a) implies 

(3.24b) IzI = ICOl . [ICo o1 + ((1 + Cool)2 - D 2)2]/[2 |COOl + 1 - D ] 
and the requirement Izi < 1 leads to the condition -(1 + (4 - 3D2)112)/3 < C0, o < 0. 
Thus, the required condition on C0,o yielding Izi < 1 in the present case is 

(3.25) - '(I + (4 - 3D2)1/2) < CO 0 < 1 - IDI. 

By combining (3.18), (3.20a), and (3.25), we find that for Co,0 such that 

(3.26) - '(I + (4 - 3D2)1/2) < CO 0 < 1 + IDI (D = XA), 

detE(z) 5 0 for all Izi > 1, and, by Kreiss' Theorem, the perturbed scheme is stable 
for these values of C0 o. 

This agrees with (3.5) in the scalar case. It is clear that when we have an n X n 
diagonal system, (3.26) would have to be satisfied component-wise and (3.5) follows. 

In order to complete the proof of part (c) of the theorem, it remains to investigate 
the following cases: 

(3.27) C0,0 _ 1 + IDI, C0,0 ? - '(1 + (4 - 3D 2)2). 

For any value of C0,o obeying one of the strict inequalities in (3.27), we can show 
that there exists a zo with I zoI > 1, such that det E(zo) = 0; hence, zo is an eigenvalue 
of G outside the unit disc and, by Lemma 1 of [9], the perturbed scheme is unstable. 
This completes the proof. We note that when C0,o = 1 + IDI, then det E(1) = 0, 
i.e., z = 1 is a generalized eigenvalue; and when C0,0 '= -3(1 + (4 - 3D2)1"2), 
it can be shown that det E(- 1) = 0. Therefore, in these two special cases, G has 
eigenvalues on the unit disc and we cannot determine whether or not the scheme is 
stable. 

Next, we illustrate the application of Theorem 3. Consider the scheme 

(3.28) v1 = [Om'L + (1 - Om)Q] m 

where Q represents the L-W scheme (3.1) and Lv2m is some constant coefficient 
finite difference approximation, consistent with (1.1), using the points v, v -+ 1. It 
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is clear that (3.28) itself is consistent with (1.1), provided I G7 'I is bounded. We 
now take 

(3.29) 0O = 0 = constant, v = vm = ma + Va. 

(3.29= Os 
= 

iM 
3 +V 

- 0, v i'm, 

Note that here vm is that of (3.3). With this definition of tm, (3.28) becomes a L-W 
scheme perturbed, at each time level to, at the single point v = v., the perturbation 
being given by 

(3.30) V,, = [OL + (1 - O)Q]Vm. 

As a first example, we take L to be the staggered Lax-Friedrichs (L-F) scheme [10]: 

(3.31a) Lvm = Klv1_ + K+ v1m, K?1 = -(I + D), D = XA. 

This L is a first order accurate operator, stable under the condition Xp(A) ? 1. The 
perturbation (3.30) is now put in the form of (3.4) with 

(3.31b) C 1,0 = 4(I + D)(O ? D T GD), C0,0 = (1 - 0)(I- D- 2 

and we prove 
COROLLARY 2. (a) The Lax-Wendroff scheme perturbed by (3.30), with L being 

the L-F operator, is stable for all I I _ 2, for all 0. 
(b) For - = 1 or 6 = -1, the perturbed scheme is stable for every 0 satisfying, 

respectively, 

(3.32a) I + max[(Xa -3)/(1 -X2aj)] K 0 < 1 + (I -X min a1) 

(3.32b) 1 - min[(Xa,- 3)/(1 -X2a2)] < 0 < 1+ I + X-max a;) 

(c) For 3 = 0 the perturbed scheme is stable for every 0 satisfying 

(3.33) X. (A)/(X. (A) - 1) < 0 < 1 + [1 + (4 - 3A22(A))12]/[3 (A)] 

where q(A) -minks,, jIail. Specifically, the most stringent conditions obtained from 
(3.32) and (3.33) are -(1 + V/8) < 0 < 4 and 0 _ 0 < 2, respectively. Hence, 
stability is obtained, uniformly in 5, for all 0 _ 0 < 2. 

Proof. (a) follows immediately from Theorem 3. To prove (b) again via Theorem 
3, all that is necessary to do is to determine the range of 0 for which the inequalities 
p(C 1,o) < 1 are valid, where the C 1,o are given by (3.31b). We see that 0 must 
satisfy 

(3.34) 14(1 T Xai)(0 T Xai + 0Xai)l < 1, 1 ? ] ? n, 

where the upper and lower signs correspond to a = 1 and a = -1, respectively. 
This implies that 0 must satisfy, for all 1 _ j < n, the inequalities (3.32), taken 
without the extrema notation. Hence, the L.H.S.'s of (3.32) follow directly. From 
(3.2), we have IXajI < 1 and the L.H.S.'s, taken as functions of the argument Xaj 
in the interval (- 1, 1), attain their maxima at- the points Xaj = +(3 - -\/8), where 
both take the value -4(1 + V8). The R.H.S.'s of (3.32) follow because (1 T Xaj)-' 
is a monotone function of Xa, over the interval (-1, 1), increasing or decreasing 
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according to the minus or plus sign. The R.H.S.'s are always greater than 3, and, 
therefore, for I 8 = 1, the perturbed scheme is stable for all - (I + \/8) < 0 < 3. 

To prove (c), we have to check out the inequalities (3.5) of Theorem 3 where, 
by (3.31b), (c0,0)i = (1 - 0)(l - X2 jail') in which, from (3.2), Xjail belongs to the 
interval (0, 1). This leads to a condition identical with (3.33), except that we have ai 
rather than n(A) for every 1 _ j < n. The right- and left-hand sides of this condition 
are, respectively, monotone increasing and monotone decreasing, as functions of 
Xlail over the interval (0, 1). Therefore, this condition is equivalent to (3.33). In 
particular, it is easily checked that the most stringent condition is 0 ? 0 < 2. 

As a second example, we take for L of (3.30) the first order accurate, consistent, 
unconditionally unstable Euler scheme 

(3.35) Lvy = M_1v_1 + v' + M1v1+1, M1 = +D/2. 

The resulting perturbation (3.35) is again put in the form of (3.4) with 

(3.36) C,0 = D(D ? I - 0D)/2, CO o = I + (0 - 1)D'. 

Despite the fact that the Euler operator is unconditionally unstable, we have 
COROLLARY 2'. (a) The Lax-Wendroff scheme perturbed by (3.30), with L being 

the Euler operator, is stable for all I1 6 > 2, for all 0. 
(b) For 1 61 = 1, the perturbed scheme is stable for every 0 satisfying 

(3.37) 1 F min(Xai i 2)/(Xa,)2 < 0 < 1 + min[(2 TF Xaa)/(Xai)2], 
i i 

where the upper and lower signs refer to 8 = 1 and 8 = -1, respectively. 
(c) For a = 0, the perturbed scheme is stable if 

(3.38) 1 [4 + (4 - 3X2p2(A))"/2]/[3X2p2(A)] < 0 < [1 + Xp(A)]/[Xp(A)]. 

Specifically, the most stringent conditions obtained from (3.37) and (3.38) are, re- 
spectively, 0 ? 0 _ 2 and - < _ 0 < 2. Therefore, stability is assured, uniformly 
in 8forallO < 0 < 2. 

The proof follows exactly the same lines of argument as that of Corollary 2. 
At this point, we note that the results of Ciment in [3], regarding perturbed schemes, 
constitute special cases of Corollary 2 with a = 0, 0 = 1, and of Corollary 2' with 
8 = 0 and 0 = , 1. 

3.2. A Five-Point Perturbation Along the Trajectory of a Single Grid Point. Con- 
sider the five-point approximation ([1], [2]) which is based on a single iteration of 
the L-W operator Q of (3.1), 

(3.39) vp' = [I + (1 - 0)(Q - I) + 0(Q - I)Q]vT, 0 < 0 = const < 1. 

This scheme is conditionally stable [5] and is consistent with (1.1), but unlike the 
L-W scheme, is only first order accurate for 0 > 0; when 0 = 0, it coincides with L-W. 

As before, let v0 and 6 be given integers and let vm be defined by (3.3). Next, 
in (3.39) take 0 0_ om, where om is given by (3.29). This means that, for all P 5 v$ , 
the P.D.E. system (1.1) is approximated by the L-W scheme, while, at P = Pm, we 
have the perturbation (3.39) which, in accordance with (2.7), here takes the form 

2 

(3.40a) vm+1 = E Ci ovm+i; 
i --2 
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(3.40b) C12,0 = OD2(1 i D)2/4, C1,o = D(D i 1)(1 - OD2), 

C0,0 = I - D2 + OD2(3D2 - 1)/2, D = XA, 0 < 0 ? 1. 

We now prove 
THEOREM 4. The L-W scheme perturbed by the iterated approximation (3.40) 

is stable for all S. 

Proof. In agreement with our notation of Chapter 1, we have that the indices 
of the perturbed scheme are r = p = 1, k = s = 2 and q = 0; so, by Theorem 2, 
we have stability for all 8 with 1I 1 _ 3. When 8 = F2, then, according to Theorem 2, 
the scheme is stable, provided that p(C12,0) < 1 where C12,0 is given in (3.40b). Since 
o ? 0 < 1 and, by (3.2), p(D) < 1, this condition is clearly met. 

When 8 = 1, the alternative basic scheme is 

(3.41a) W+= A-lw- + Aow'+1 + Alw'+2, 

where the Ai's are the L-W coefficients given in (3.1). The alternative perturbation 
to (3.40a) is (with vo = 0, for simplicity) 

3 

(3.41b) wO = E C,1,0w7, 
j --1 

the C,,O's given by (3.40b). Since we are dealing with a diagonal finite difference 
approximation, we may assume, without restrictions, that it is scalar. Hence, the 
characteristic equation corresponding to (3.41a) is 

(3.42) A1(D2 + D)K2 + (1 - D2)K + 1(D2 - D) -z = 0 (D = XA), 

and, by Lemma 2 of [9], the two roots K1 and K2 are not inside the unit disc for all z 
with Izi _ 1. Here, the indices of the alternative scheme are r' = q = 0, k' = 1, 
p/= 2 and s' = 3. Therefore, if g ? H is an eigensolution of the appropriate operator 
G (that represents the perturbed scheme), with an eigenvalue Izi > 1, then, by (1. 17b) 
and (1.18a), we have g, 0 for all v > 1, and g, = E PiKi" for v ? 1. 

Assume first that K1 = K2. From (3.42), this happens when 

(3.43a) z = z0 -(D- 1)/(2D), 

from which 

(3.43b) K1 = K2 = (D - 1)/D. 

The case Izol < 1 is of no interest for us and since, by (3.6), Izol ? 1, we assume that 
Izol > 1. In this case, g takes the form 

(3.44) gP = 0, V _ 1; g, = a" 1K1 + OT2PK2, V <1 

where al and a2 are two parameters yet to be defined. The uniqueness requirement 
at v = 1 gives 

(3.45a) K1a1 + K2a2 = 0. 

Now, g must be an eigensolution of the internal boundary conditions (3.41b) as 
well, namely 
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3 

(3.46) z0g0 = E Ci-1,09i. 
a--1 

By substituting the g-1, * , g3 from (3.44), (3.46) takes the form 

(3 .45b) (K'1C-2,0 + C-1,0 - 
ZO)rl 

- K1 C-2,0Of2 = 0. 

Equations (3.45) define the system E(zo)u = 0. Substituting zo and K, from (3.43) 
and C2,0, C.,,0 from (3.40b), we obtain 

(3.47) det E(zo) = (1 - D)2(1 - D2 + OD4)/(2D2), 

which does not vanish for 0 < IDI < 1 and 0 _ 0 ? 1. Thus, if zo in (3.43a) satisfies 
Izol > 1, then, by Lemma 3 of [9], it is not an eigenvalue of G. 

Next, assume that the roots of (3.42) satisfy K1 0 K2 and that jzj > 1. Then 

(3.48) V= 0, v 1; g9 = OjKlv + CT2K2, V < 1. 

The uniqueness requirement at v = 1 again gives (3.45a), while (3.46) with g-1, ** ,g 

from (3.48) leads to 

(3.49) (K 1C2,2 + C1,0 - z)of1 + (K'C- 2,0 + C-1,0 Z)0f2 0. 

Equations (3.45a) and (3.49) define E(z)a = 0, where 

(3.50) det E(z) = [(K1 + K2)C-2,0 + KlK2(C-1,0 - Z)](K1 K2)/(K-K2)- 

The determinant is zero iff the expression in the square brackets vanishes. Computing 
K1 + K2 and K1K2 from the characteristic equation (3.42) and using C-2,0 and C1,0 
from (3.40b), we find that det E(z) = 0 iff 

(3.51) A(z) 4z2 + 4D(1 - D)(1 - OD2)z + D1(1 - D)2(1 - 0 D 0 

We shall show that z1 and Z2, the roots of (3.51), are inside the unit disc; hence, G 
does not have eigenvalues z with jzj > 1, thereby proving stability. 

It is readily shown that 

(3.52a) Iz_,21 < 2 jDj(1 + |Dj)[l - OD2 + (0 - OD2 + 02D4)1/2]. 

Thus, to show that Iz1,21 < 1, it is sufficient to verify that 

(3.52b) A(A + 1)(G - GA2 + 02A4)"2 < 2 + A(OA + 1)(GA2- 1) A jD19 

where, by (3.6), 0 < A < 1. Squaring both sides leads to the requirement 

(3.53) 4(O, A) (I - A)[4 - A2(3 + A)] - OA2(1 - A2)(1 - 2A - A2) 
0< 0< 1. 

The expression for V/'(G, A) is linear in 0 and we find that 0&(0, A) and ,(1, A) are 
positive for all 0 < A < 1. Hence, the requirement (3.53) is met. 

For = - 1, the proof is almost identical. 
It remains to consider the case 8 = 0. Again we take, without restrictions, the 

scalar case. The basic alternative scheme reverts back to the L-W one and, following 
the proof of part (c) of Theorem 3, we obtain the characteristic equation (3.7), the 
relation (3.11), and, for IzI _ 1, g is given by (3.8) with (3.9a). Again, requiring that 
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g be an eigensolution of the internal boundary conditions as well (Eq. (3.40a) with 
Vn = am + vO = 0 for simplicity), we obtain 

2 

(3.54a) zgv = ECi 0i, 
i =-2 

which, after using the values of gi from (3.8), takes the form 

(3.54b) (COO - z + C1,0K1 + C2,0K1 + (C-2 ,OK2 + C_1,0K2 )U2 = 0. 

This together with (3.9a) defines 

(3.55) det E(z) = C2OK2 + C_1OK2 + COO + C1Z0.1 + C2,0K- Z. 

Since Izi > 1, then a necessary condition for z to be an eigenvalue of G is that 
det E(z) = 0. We shall show that this condition is not fulfilled and we first consider 
thecaseofO < D < 1. 

Assume that det E(z) = 0, and in (3.55) substitute K1 from (3.11), z from (3.7) 
with K = K2, and C,,O from (3.40b). We obtain the following equation for =K2- 

(3.56) 0 r) GD(1 - D)2r3 + (1 - D)(40D2- 1)r2 

+ OD(3 D2- 1)r - (D + 1) = 0. 

By Lemma 2 of [9], we have that jTj jK2-'I < 1 for Izi _ 1. However, we shall 
show that (3.56) has no roots r with rIn ? 1 when 0 < D < 1, hence, contradicting 
the assumption of det E(z) 0. The product of the roots of (3.56), say Q, satisfies 

(3.57a) = (D + 1)/[OD(1 - D)2] > 1. 

We also have 

(3.57b) 4(1) = 2(0D2 - 1) < 0, t(P) = 2(2 + 20D2 _ O)/[O(1 - D)] > 0, 

where 

(3.57c) 1 < f =/[OD(1 - D)] = Q(1 - D)/(1 + D) < U. 

This shows that (3.56) has a root r, with 

(3.57d) I < r1 < U. 

Equation (3.56) does not have zeros in the interval [0, 1], since, for allr with 0 ? r _ 1, 
we have 

4(r) - OD(1 - D)2r3 + 40D2(1 - D)r2 + OD(3D2 _ 1)r - (1 + D) 

(3.58a) < OD(1 - D2)r + 40D2(1 - D)r + OD(3D2 - 1)r- 1 - D 

2 
= 20D r - D - 1 < 0. 

Equation (3.56) does not have zeros in the interval [- 1, 0] either, because, for all 
r with -1 < r < 0O 

(3.58b) 0(r) _ 40D2(1- D) + OD- D- 1 _ 46D2(1 - D)- 1 

? 40D- max [D(1 - D)] - 1 = OD - 1 < 0. 
O!D: 1 
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It follows, therefore, that the two remaining roots of (3.56) are either real and outside 
the interval [- 1, 1], or complex conjugate and, from (3.57d), we get r2r3 = 0/r1 > 1, 
as was to be shown. 

Next, we consider the case -1 < D < 0 and again assume that det E(z) = 0. 
In (3.55) substituting K2- from (3.11), z from (3.7) with K = K1, and C3,0 from (3.40b), 
we find that K1 must satisfy 

(3.59) - GD(1 + D)2K3 + (1 + D)(40D2- 1)KI 

- OD (3D2- 1)Kj + D - 1 = 0. 

Note that (3.59) yields (3.56) when we replace D by -D. Hence, by the previous 
argnment, (3.59) does not have roots K1 with K, I _ 1, when jzj > 1. It follows that 
det E(z) 5 1 for all Izi 2 1, and, by Kreiss' Main Theorem, stability is assured. 

4. Certain Divergenceless Perturbed Lax-Wendroff Schemes. In practice, 
we often consider schemes which are in conservation-form [12, Chapter 12]. Such 
schemes are also called divergence-free or divergenceless; by this we mean that, for 
any given range N, < v < N2, the solution vm satisfies 

N, N, 

(4.1) E vP' -> E v' = B(Nj, N2, m). 
P=N, v=Ni 

Here, B(N,, N2, m) consists of those terms that are the contribution of the external 
boundaries N, Ax and N2Ax only. 

The advantage of conservation law schemes lies in the fact that they approximate 
weak solutions more correctly than nondivergenceless algorithms. For example, 
they are known to predict the correct propagation-speed of discontinuities in the 
solution, such as shock-waves. This is of particular importance in the nonlinear 
problems; however, the stability analysis of the corresponding finite difference 
approximation is usually carried out for the linear version. In this chapter, we shall 
construct certain divergence-free perturbed L-W schemes and prove their stability. 

It should be noted that when divergence-free basic schemes are perturbed at a 
single grid point in the manner discussed in the previous chapter, the resulting per- 
turbed schemes are never in conservation form, even though the perturbation itself 
might be divergenceless. For example, if we take a perturbed scheme of the form 
given in (3.28) together with (3.29), we obtain 

N, N, 

(4.2) E vP - 
_ vP = 6(L - Q)v'm + B(N,, N2, mi), 

v=NL v=N 

thus showing that the conservation-form is lost unless we have the trivial case of 
0 = 0 or L Q. 

We would like now to construct and analyze divergenceless versions of the per- 
turbed schemes considered in Corollaries 2 and 2', and in Theorem 4 of Chapter 3. 
We shall see that the analysis of the divergence-free approximations is closely related 
in each case to the analysis of the analogous case discussed in the previous chapter. 

We start with the case considered in Corollary 2, namely with the perturbed 
combination, described in (3.28), of the L-W scheme (3.1) and the L-F approximation 
(3.31a). A divergence-free version of this perturbed scheme is 
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O = -112K-1v^-1 + O,+1/2K+lv +m 
+ (1 - O@1_12)(Ajv^n1 + 1Aovn) + (1 - 0"+1/2)(1 Aovm + Alvm+1), 

where the Ai's and Ki's are defined in (3.1) and (3.31a), respectively. It is easy to see 
that this scheme is indeed in conservation form for any definition of OV+1,2m. 

As before, let a and v0 be given integers and take 

(4.4) OM+1/2 = 0 = constant, v = VM, = ma + . 

- 0, V id ale 

We see that by this definition the basic L-W scheme is perturbed at each time step, 
at only two grid points, vm and vm + 1. Obviously, this is the minimal number of 
grid points at which a perturbation can be applied so that the achieved perturbed 
scheme will be divergence-free. We write the perturbation in the form of (2.7): 

1 1 

(4.5a) vPm = CV 0V+ii V.im -= Cv+l+i, 
i=-1 i- 

where 

C-10 = (D2 - D)/2, C0,0 = C0o1 = (1 - o/2)(I - D2), 

(4.5b) C1, 1 = (D2 + D)/2, C1,0 = (I + D)(O + D - OD)/2, 

C-1.1 = (I - D)(O - D + OD)/2 (D = XA). 

Note that each of the internal boundary conditions in (4.5) is inconsistent with (1.1). 
It seems that this is the price one pays for obtaining a divergenceless perturbed 
scheme. We now prove 

THEOREM 5. The L-W approximation perturbed by (4.5) is stable under the con- 
ditions of Corollary 2. 

Proof. The indices of the perturbed scheme satisfy r = p = s = k = q = 1, 
hence, by Theorem 2, the scheme is stable for 1I 1 _ 2. 

When a = 1, the alternative basic scheme is given by (3.46a) and the alternative 
perturbation is 

2 2 

(4.6) w+= E C,1lw, w1 = E i-O j-O 

with the C, U'S given by (4.5b). The corresponding characteristic equation is (3.42) 
and, for all z with jzj 2 1, its roots K1 and K2 satisfy jK1j _ 1, jK2 >- 1. The indices 
of this alternative perturbed scheme are r' = V = 0, p' = s' = 2 and q = 1. There- 
fore, by (1.17b) and (1.18a), g-an eigensolution of G with an eigenvalue jzj ? 1- 
must satisfy g, = 0 for all v ? 2 and g, = E PiKij for v ? 1. In addition, g must 
be an eigensolution of (4.6) and, since g2 = g3 = 0, we get 

(4.7) zg0 = C 1,0g0 + C0,0g1, zg1 = C- l 1 

Assume at first K1 = K2; then 

(4.8a) g, = 0, v > 2; g =o1K + o-2VK1, v <. 

Substituting these values of g, into (4.7), we obtain the system E(z)o = 0, where 
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(4.9a) det E(z) = K1(C-1, - z)(C,,l - z). 

Therefore, det E(z) $ 0 for all jzj > 1 iff 

(4.10) fC-1,o0 < 1 and IC-,11j < 1. 

Next, take the case K1 $ K2. We have 

(4.8b) gy = 0, v > 2; gy = o1Ky + 02K2, V <1; 

and the same procedure as above gives 

(4.9b) det E(z) = (K2 - K-)(C- -Z)(C -l - z). 

It follows that a sufficient condition for stability is again (4.10). Clearly, in the n X n 
case, this generalizes to 

(4.11) p(C 1,o) < 1 and p(C 1,1) < 1, 

where we recall that C1, 0 and C 1,1 are given in (4.5b). 
By (3.2), we do have p(C 1,0) < 1. Now notice that C 1,1 in (4.5b) is identical 

with C_1,0 in (3.31b), therefore, using part (b) of the proof of Corollary 2, we also 
obtain p(C 1, ) < 1, provided that 0 satisfies (3.32a). Similarly, for 8 =-1, it follows 
that the scheme is stable if 0 satisfies (3.32b). 

Lastly, we consider the case 8 = 0. Then the alternative basic scheme reverts 
back to the L-W approximation, and the alternative perturbation is given by (4.5) 
with vm = 0. The characteristic equation is (3.7) and, for IzI > 1, its two roots satisfy 
K11 < 1 and 1K21 _ 1. We also have the relation (3.11). Since r = p = q = 1, (1.17a) 

and (1.18a) yield (for jzj 2 1) 

(4.12) g = U1K1, V > 1 gy = 2K2, V < 0. 

Again, requiring that g also be an eigensolution of the internal boundary conditions, 
we find that 

1 1 

(4.13) zg0 = E Ci.0g, zg1 = Ci'9+1 

Substituting the values of g, given by (4.12) into (4.13), we arrive at a pair of linear 
equations for which 

(4.14a) det E(z) = K1[C1,0C-1j1 - (K2'C-1,o + C0,0 - z)(Co,1 + KC1,1 z)1. 

Once again, we recall that a necessary condition for z with IzI > 1 to be an eigenvalue 
of G is that det E(z) = 0. Substituting for z from (3.7) with K = K1, for K2-1 from 
(3.11), and for Ci,, from (4.5b), we conclude that det E(z) = 0 iff 

(4.14b) (D - 1)[D(1 + D)(20 - 1)K 2 + 20(1 - D2)KI - D(1 - D)] = 0. 

Using C (1 - 0)(1 - D2) to eliminate 0 from (4.14b), we find that Ki must satisfy 
(3.13), with C0,0 replaced by C. Therefore, by the argument following (3.13), stability 
is assured if ci, the eigenvalues of C, satisfy (see Eq. (3.5)) 

(4.15) - 1(1 + (4 - 3 X2 Iaj12)12) < c_ (1X- )(1 -X2a2) < 1 + j ail, 
1 _ j ? n. 
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These inequalities were dealt with in proving part (c) of Corollary 2, and the resulting 
restrictions on 0, needed for stability, are given by (3.33). This completes the proof 
of Theorem 5. 

As a second illustration of a divergence-free perturbed scheme, we take the case 
considered in Corollary 2', namely, we perturb the L-W operator by the Euler scheme 
(3.35) in the manner described by (3.28). A divergence-free version of this perturbed 
scheme is 

(4.16) v = Om-1/2(M-Iv1_1 + 1v') + O'+1/2((2V + Mv,+1) 
+ (1 - Gm 1/2)(Ajv'1 I + Aovr) + (1 - 

Om+1/2)(1 Aovv' + Alvm+1), 

where the Aj's and the Mi's are defined in (3.1) and in (3.35), respectively. Define 
Gv+l/2 as in (4.7). Then again the L-W scheme is perturbed at each time step at the 
two grid points vm and vm + 1. The perturbation is in the form of (4.5a), where 

C-10 = (D2 - D)/2, CO 0 = Co,1 = I- D2 + OD2/2, 

(4.17) C1, 1 = (D2 + D)/2, C1,0 = D(D + I- OD2)/2, 

C_1.1 = D(D - I - OD)/2. 

We now prove 
THEOREM 5'. The L-W approximation perturbed by (4.5a), with its coefficients 

given by (4.17), is stable under the conditions of Corollary 2'. 
Proof. The proof for the case I _ 2 is the same as in Theorem 5. When 8 = 1, 

an argument identical to the one used in Theorem 5 leads us to the stability condition 
(4.11), in which C 1, 0 and C l, are now defined by (4.17). By (3.2), it is clear that 
p(C-lo) < 1. Since C1,1 in (4.17) is identical with C-1,, in (3.36), the proof of part 
(b) of Corollary 2' shows that p(C 1, ) < 1, provided 0 satisfies (3.37) with the upper 
signs. Similarly, when a =-1, we find that the stability condition is given by (3.37) 
with the lower signs. 

When a = 0, we follow the argument in the proof of Theorem 5 and arrive at 
(4.14a). As in Theorem 5, we substitute in (3.17a) for z from (3.7) with K = K1, for 
K2- 1 from (3.11), but for CI,, from (4.17). We obtain that det E(z) = 0 iff 

(4.18) D(20D2 + 1 - D2)K2 + 20D2(1 - D)K1 + D(1 - D)2 = 0. 

Using C' I I + (0 - 1)D2 to eliminate 0 from (4.18), we see that K1 must satisfy 
(3.13), with COO being replaced by C'. Again, by the argument following (3.13), 
stability is assured if (see Eq. (3.5)) the eigenvalues of C', say c;', satisfy (4.15) with 

c 1 + (0 - 1)X2a 2 replacing ci. Following the proof of part (c) of Corollary 2', 
the restrictions on 0, needed for stability, are given by (3.38) and the proof of the 
theorem is completed. 

As a last example of a divergence-free perturbed scheme, consider the iterated 
L-W approximation (3.39) with 0 =07 defined in (3.29). Let Q = E Ai E' be the 
L-W operator defined in (3.1), then, by the consistency condition E Ai = I, the 
operator Q - I is found to be 

(4.19) (Q - I)v7, = 
(A-lvm 1 - Ajvm') + (Alv7m+I - Ajvm'). 

With this we can build the following divergence-free form of (3.39): 
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(4,20) = + - - Av) (1 - 
+2)(Alv - A-lvm) 

+ OPU112(A_1Qv,_- - AQQv,) + 6p+1/2(AQvm+1 - A-1Qvm). 

This scheme is obviously in conservation form for any choice of Ov+112m. Define 
V+1/,2m as in (4.4), with 0 < 0 ? 1 as in (3.39); then (4.20) describes a L-W scheme 

perturbed at the two grid points vm and vm + 1. Notice that, unlike the two previous 
examples, we now have a five-point perturbation which may be written in accordance 
with (2.7) in the form 

2 2 

(4.21a) V _ Cj v = C- 
i=-2 j=-2 

Defining J OD/2, it can be verified that 

C2= 0 = C2,1 = 0, C-2,1 = (D - 1)JA-1, 

C-1, = -(I + J - DJ)A-l, 

C-1, l= A-, + JA, - DJ(2A-l + Al), 

(4.21b) Co,0 = Ao - JA, + DJ(2A-l + Al), 

Co,1 = Ao + JA-1 + DJ(2A, + A-,), 

C1,0 = Al - JA-1 - DJ(2A, + A-,), 

C1,1 = (I- J - DJ)Al, C2,0 = (D + 1)JAj. 

Here, the Ai's are given in (3.1). We now prove 
THEOREM 6. The L- W scheme, perturbed by (4.21), is stable for all 8. 
Proof. The indices of the perturbed scheme are r = p = q = 1 and k = s = 2; 

hence, by Theorem 2, the scheme is stable for all 1I1 _ 3. 
For a = 2, the alternative basic scheme is 

(4.22) w = A-lw1 + AOwM+2 + Alwm+3, 

where the Ai's are defined in (3.1). The perturbation alternative to (4.21a) is 
4 4 

(4.23) wo = E C-2, w7, wi = iE C-2,1wi'+1, 
j=0 j=o 

with the C,, i's given by (4.21b), 
Again, for simplicity, we consider the scalar case and find that the characteristic 

equation corresponding to (4.22) is 

(4.24) A1K3 + AOK2 + A_1K - Z = 0. 

By Lemma 2 of [9], for all z with jzj > 1, each of the three roots Ki of (4.24) satisfies 
IK K _ 1. In the alternative perturbed scheme, r' = -1, p' = 3, k' = 0, s' = 4, and 
q = 1. Therefore by (1. 17b) and (1.1 8a), we see that for g E H to be an eigensolution 
of G, with eigenvalue z, Izi _ 1, it must satisfy 

(4.25) g = 0, v > 2; g9= PK, V < 2. 

For v _ 2, there are three possible solutions: 
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v v ~~~2 v 
gy= 7lKl + Y2VKP1 + U3V K1, ifK1 = K2 = K3, 

(4.26) = UjK1 + U72VKi + 3K3, if K1 = K2 $? K3, 

- c71K1 + 02K2 + a3K3, if Ki $? Ki for i $ j. 

As we see, g2 has been defined twice and for uniqueness we require g2 = 0. In addition, 
g must be an eigensolution of the internal boundary conditions (4.23); since g, = 0 
for v ? 2 and C2,0 = 0, we get 

(4.27) zg0 = C-1,g01, Zg1 = C-2, 1g 1 

Using g1 and. g2 of (4.26) in (4.27) and in the equation g2 = 0, we obtain a homo- 
geneous system E(z)or = 0, o = (al, a2, W3), with 

d et E(z) = z[z - 1 0D2(1 - D)2] .2K 3 if K1 - K2 = K3, 

(4.28) K1(K3 - K1)2, if K1 = K2 7 K3, 

*2 - K1)(K3 - Kj)(K3 - K2), if Ki # ,K for i $ j. 

Since 0 < IDI < 1 and 0 ? <0 1, det E(z) cannot vanish for zj l 1. Hence, z with 
jzj - 1 is not an eigenvalue of the operator G and Kreiss' Main Theorem assures 
stability. The proof in the case a = -2 is almost identical. 

When a = 1, the alternative basic scheme is given by (3.41a), and the alternative 
perturbation is 

3 3 

(4.29) Wo ci-1,0wi; W = E Ci1,1W+1. 

The characteristic equation is (3.42) and, for all z with IzI > 1, the roots of this 
equation, K1 and K2, are not inside the unit disc. The indices of the perturbed scheme 
are r' = 0, p' = 2, s' = 3 and k' = q = 1. Therefore, from (1.17b) and (1.18a), 
we have that g, an eigensolution of G with an eigenvalue Izi > 1, must satisfy 

(4.30) g = 0O v > 2; g9= PjK', V < 1I 

For ii < 1, there are two possible solutions 

(4.31) gv = 0flK1 + a2VK1, if K1 = K2, 

- 01Kt a2K2, if K1 74 K2. 

Since g must also be an eigensolution of (4.29) and g2 = 93 = 94 = 0, g 

must satisfy 

(4.32) zg0 = C-1 0g0 + C0og01, Zg1 = C-2,1g0 + C-1,1g1, 

which leads us to the system E(z)a = 0 with 

(4.33) det E(z) = 4S(z) K1, K1 = K2, 

'(K2 - K1), K1 $ 
K2. 

Here, E(z) is quadratic in z and is given by (3.51). In the proof of Theorem 4, we 
have shown that the two roots z1 and Z2 of E(z) = 0 are inside the unit disc. Hence, 
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for Izi - 1, det E(z) 5 0, and z with Izi ? 1 is not an eigenvalue of G, thus assuring 
stability. For 8 = - 1, the proof is similar. 

Finally, we consider a = 0 and, as usual, assume the scalar case. The basic scheme 
remains the L-W scheme (3.1), and the corresponding characteristic equation is 
(3.7). The roots of (3.7), Ki and K2, satisfy (3.11), and for all z with Izi 2 1, we have 
IKgl < 1, i2| 2 1. Here, p = r = q = 1 and g, an eigensolution of G, is defined 
by (1.17a) and (1.18a) to be 

(4.34) gy = 0K;, V ? 1; gv = 02K2, V < 0. 

The appropriate internal boundary conditions are the original ones; namely (4.21a), 
and g, being their eigensolution, must satisfy 

2 1 

(4.35) zgo = E Ci,0g,, zgl = E C; l+ 
i__1 j=-2 

In these two equations, we substitute for the gj's from (4.34), for the C,, 's from 
(4.21b), and for z from (3.7) with K = K2. In addition, eliminating K, by (3.11), we 
obtain a homogeneous system for the vector a = (as,, 72), with 

(4.36) det E(z) = D2(D- 1)K20(r), 

where r K21, and +(r) is defined by (3.56). Now, if z with jzj > 1 is an eigenvalue 
of G, we must have det E(z) = 0, and since 0 < IDI < 1, det E(z) vanishes iff +(r) = 0. 
We have shown in the last part of the proof of Theorem 4 that, for 0 < D < 1, 
all the roots of ?(r) = 0 are outside the unit disc, which contradicts the fact that 
IK21 2 1 for Izi > 1. If, on the other hand, -1 < D < 0, we use (3.11) to eliminate 
K2 from (4.36) and thereby find that det E(z) = 0 iff Eq. (3.59) is satisfied. As we 
argued after (3.59), this does not occur for K1 with jK1j < 1 and again a contradiction 
results. Therefore, det E(z) $ 0 for all z with jzj > 1, and we have stability. 

5. Numerical Results. In this chapter, we test the practical applicability of 
some of the linear stability analysis results of the two previous chapters, to non- 
linear systems of the form 

(5.1) U = F(u).; A(u)-3F(u)1au; 

00o < X < a>, t 2 0, U(x, 0) =AfX) 

The scalar test problem we selected is [4] 

(5.2a) ut = (-u2/2).; A(u) = - -X < x < a, t _ 0; 

u(x,0)= 1, < - 

(5.2b) =-x, -1 x <0 

= x, O < x <1 

= 1, 1 < x. 

The solution of (5.2) remains continuous until t = 1, at which point the compression 
region, initially located on -1 < x < 0 becomes a discontinuity ("shock-wave"), 
while the rarefaction wave on its right has positive gradients which continue to 
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decrease with time. The solution for t < 1 is given by 

u(x, t) = 1, x ? t- 1, 

(5.3a) = x/(t- 1), t- 1 ? x < 0, 
= x/(t + 1), 0 < x t + 1, 

= 1, t+I <x; 

and, for t _ 1, by 

u(x, t) = 1, x < t + 1 - (2(t + 1))2, 

(5.3b) = x/(t + 1), t + 1- (2(t+ 1))1/2 ? x ? t+ 1, 

= 1, t+ 1 ?x. 

In this problem, we regard the shock-wave as a moving internal boundary, its tra- 
jectory being given by 

(5.4) x = X(t) = t + 1 - (2(t + 1))1/2. 

The choice of (5.2) as a test problem was dictated by the following considerations. 
As we saw, at t = 1, the solution develops a discontinuity which is preceded by a 
nonuniform rarefaction region with time varying gradients. This allows us to compare 
the numerical and exact solutions with regard to shock-speed and order of accuracy 
of the finite difference approximation in the rarefaction region. Note that the piece- 
wise smooth initial values (5.2b) describe a polygonal function. Therefore, the 
solution (5.3) is polygonal as well, hence easily calculated-for comparison purposes 
with the numerical solution-to any degree of accuracy. 

5.1. Three-Point Perturbations. The Lax-Wendroff finite difference approxima- 
tion to (5.1) is well known to be [11]. 

m+1 inm +1XF 
(5.5) v+ = Qv_ vY + 2>(Fm+1 - FU_) + 2 

* [Am AF"' I- Fm) - Am /2(Fm - Fln- )] 

where we use the abbreviations F~m F(vm) and A,112m A[yvm + v,?1m)]. 
The Lax-Friedrichs approximation to (5.1) is (see [10]) 

(5.6) v+= LvY -(V+1 + vm 1) + 'X(F7+1 - FVn J. 
Consider now the scheme 

(5.7) v+ = [iL + (1 - O )167. 
If .'m is given by (3.29), then (5.7) is exactly the nondivergenceless nonlinear version 
of the perturbed scheme dealt with in Corollary 2. In applying (5.7) to nonlinear 
problems, it must be understood that the condition of constant perturbation speed, 
stipulated in (3.29), cannot be realized in practice. In practical computations there- 
fore, O,' is taken to be nonzero only on the actual trajectory of the internal boundary. 
For our particular test-case, it means that 6,m will differ from zero only along the 
locus of the numerically created shock-wave which should approximate (5.4). 

While the basic L-W approximation, applied to problems like (5.2), is well known 
to preserve the correct shock-speed as well as second order accuracy in sm6oth 
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regions of the solution, it also introduces strong overshoots directly behind the 
shock. On the other hand, it is known that the employment of first order accurate 
schemes, such as the L-F approximation, yields monotone solutions in regions of 
discontinuities and strong gradients. In addition, shock-profiles computed by L-W 
are usually much steeper than those computed by L-F. This gave us the motivation 
for using the L-W scheme, perturbed locally by a L-F type of perturbation. However, 
three questions remain to be answered by the numerical computations: 

(a) Will local employment of first order approximations be as effective as their 
global employment in smoothing out post-shock oscillations and overshoots? 

(b) Will the overall second order accuracy of the L-W scheme be adversely affected 
by the introduction of first order perturbations at the moving boundary? 

(c) Will the shock-profiles computed by the perturbed scheme be steeper than 
those computed by first order accurate schemes? 

Our test problem (5.2) was first solved numerically using the perturbed scheme 
(5.7) where 62 , by analogy to (3.29), is different from zero at a single point only, 
at each time level, and is defined by 

(5.8a) 6. = 0 = constant, V = Vm max. 

= O V 7i Vm,max 

Here, vmmax is the grid-index at which the numerical shock-wave is defined to be 
located, i.e., the index which satisfies 

(5.8b) mvm iI = max - 

The numerical computations were carried out for Ax = 0.1, 0.02, 0.01; 0 = 

0, 0.2, 0.5, 1.0, 1.25, 1.5; and 0 ? t ? 2. Note that the range of 0 is dictated by the 
mutual range of stability given in Corollary 2, and that 0 = 0 is the case for which 
the perturbed L-W scheme reduces to the L-W scheme itself. 

The numerical results allow us to answer the question posed above as follows: 
(a) The local employment of our L-F-type first order accurate perturbation, at a 
single point only at each time level, is not quite as effective as its global employment 
in reducing the post-shock overshoot. However, as 0 is increased, the overshoot 
becomes significantly smaller. (b) The overall accuracy of the solution, outside the 
shock region, is well preserved. (c) The shock-profiles are much steeper than those 
computed by the L-F scheme, though not as steep as the L-W results. 

In order to increase the effectiveness of the perturbation in reducing the post- 
shock overshoot, we decided to use the perturbed scheme (5.7), with the perturba- 
tion still employed locally though not necessarily at a single point only. Therefore, 
instead of 6~m of (5.8), we use, in (5.7), 

() = 0 = const, for all v satisfying Iv m+1 - vM_1I > aAx (a = const), 
= 0, otherwise. 

Hence, 6~m is defined by a dynamic process, and the number of grid points at which 
6~m differs from zero-which depends on the predetermined positive value of a- 
varies from one time level to another. Obviously, as the threshold gradient, a/2, 
is set at lower values, the number of points at which the perturbation appears in- 
creases. 
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The numerical computations were carried out for the same range of parameters 
as in the previous case with cxAX = 0.8, 0.4, 0.2, 0.1. The expected reduction in the 
post-shock overshoot was realized in all cases except aAx = 0.8. For this value 
of aAx, we found that the perturbation was employed, on the average, at only one 
point approximately, at each time level. Hence, its effect was similar to the previous 
cases, where 0,m was defined by (5.8). It turns out that the mean number of perturbed 
grid points per time level, say Np, depends only on aAx. Since the discontinuity 
in the solution first appears at t = 1, the computation of Np is based on all tM, > 1. 
For aAx = 0.4, 0.2, 0.1, Np - 2, 3, 4, respectively. These values of N, constitute 
a small fraction of the total number of grid points in the nonuniform region of the 
solution, provided Ax is small enough. Thus, we expected the second order accuracy 
to be preserved. This is indeed the case when Ax = 0.02, 0.01. When Ax = 0.1, 
then N, = 4 means that about 25% of the grid points in the nonuniform region 
are perturbed. This explains why the overall results are only first order accurate 
in this case. On the basis of the above empirical results, we conclude that, for a 
given Ax, the perturbed scheme (5.7) with (5.9) is effective in reducing post-shock 
overshoots and maintaining second order accuracy, provided a is neither too large 
nor too small. In addition, it seemed to us that 0 = 0.5 gave the best results. 

Another point which was checked had to do with the steepness of the computed 
shock-profile. The shock, described as a discontinuity in the exact solution, is smeared 
over several mesh intervals in the numerical case. Accordingly, we denote by N. 
the number of mesh-intervals over which 99% of the expected jump across the shock 
is spread. 

A sample of the numerical results of (5.7), relating to the two choices of 02, 
defined in (5.8) and (5.9), are given in Table 1. For comparison purposes, we give 
the first order accurate results of the pure L-F scheme as well. 

No. of *Mean Error in 
time over- **10-5 X shock 

Type of scheme 0 a?Ax steps N, N, shoot error (2, 2) location Remarks 

(5.6) Pure L-F - 200 8 - .0000 244.800 0 D, I 
(5.5) pure L-W - 213 2 .1228 1.414 0 D 
(5.7) + (5.6) + (5.8) 1.5 - 204 2 1 .0340 1.468 -18Ax 
(5.7) + (5.6) + (5.9) 0.5 0.8 205 3 1.10 .0516 1.464 - 5Ax 
(5.7) + (5.6) + (5.9) 0.5 0.4 201 3 2.19 .0109 1.490 - 3Ax 
(5.7) + (5.6) + (5.9) 0.5 0.2 200 4 3.02 .0025 1.497 - 2Ax 
(5.7) + (5.6) + (5.9) 0.5 0.1 200 4 3.65 .0007 1.498 - ax 

TABLE 1. Nondivergenceless L-F-type perturbations. All results are for Ax = 
0.01, and t - 2. The letters I and D denote first order accuracy and divergenceless 
schemes, respectively. 

* Behind the shock, the correct value of the solution is always 1; therefore, we define the over- 
shoot to be max, {Vm - 1 1. 

** We define error(2, 2) lv(2, 2) - u(2, 2)1 where v(2, 2) and u(2, 2) are the numerical and 
exact solutions at the point (x, t) = (2, 2), respectively. When t = 2, then x = 2 is near the center 
of the rarefaction region. 
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We see from Table 1 that the L-W or L-F schemes predict the correct shock 
location. However, scheme (5.7), with 6 m given either by (5.8) or (5.9), does not 
agree with the theoretical location given by (5.4). This is expected, since (5.7) is 
not in conservation form. 

In order to get the divergence-free version of (5.7), we have to construct a non- 
linear analogue of (4.3), which takes the form, (see [7]), 

+1 = VP + +[6v+1/2(vv+1 - VV) - 07-112(VT -v-l)] + 2X(Fv+ - P P_ 

(5.10) + KX2[(1 - 1^+1/2)Am+112(FP+1 - Fm') 

- (1 - 07-1/2) Am 1/2(Fm - Fm 1)]. 

The fact that (4.3) is indeed the linearized version of (5.10) is verified by setting in 
the last scheme A, 1/2m = A and F~m = Av2m. 

Now, if OV+1/2m is given by (4.4), then (5.10) is exactly the nonlinear version 
of the perturbed scheme considered in Theorem 5. Obviously, the remarks following 
(5.7), concerning the nonlinearity of the shock-trajectory, are valid here as well. 
Therefore, by analogy with (5.8), we take 

(5.1 1 a) 07+1/2 
= 0 = const, V = Vmmax9 

= 0, V iVm,max 9 

where vm max is the grid-index which now satisfies 

(5.1 lb) IVvm max+l = max (vm - v l . 

The numerical computations using (5.10) and (5.11) yield, as far as the overall 
accuracy and post-shock overshoot reduction are concerned, almost identical re- 
sults to those obtained from (5.7) with (5.8). However, this time, we obtain the 
correct shock location. 

Again, in order to increase the effectiveness of the perturbation in reducing post- 
shock oscillation, we redefine O+1/2m by analogy with (5.10) to be 

07+1/2 = 0 = const, for all v satisfying Iv,+ -V I _ f3Ax (0 = const), 
(5.12) 

= 0, otherwise, 

where fi is the present threshold gradient. The computations using (5.10) with (5.12) 
were carried out for the same range of parameters as before. Note that this means 
using BlAx = 0.4, 0.2, 0.1 and 0.05. The numerical calculations show, as we had 
hoped, that this scheme gives the best results in the sense that the overall second 
order accuracy is maintained, a correct shock location is obtained and the post- 
shock overshoots are drastically reduced. A sample of the numerical results of 
using (5.10) with (5.11) or (5.12) are given in Table 2. 

5.2. Five-Point Perturbations. So far, we consider in this chapter the nonlinear 
versions of three-point perturbations. We now turn our attention to five-point per- 
turbations such as the ones considered in Theorems 4 and 6. 

We start with the nonlinear analogue of (3.44): 

(5.1) v I= [I + (1 - 
07)(Q 

- 
I) + 06(Q 

- IV , < < 1, 
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No. of Mean 
time over- 10-5 X 

0v+1/2m 3Ax steps N. N2, shoot error(2, 2) 

(5.11) - 203 3 1 .0267 1.474 
(5.12) 0.4 202 3 1.00 .0222 1.482 
(5.12) 0.2 200 3 2.05 .0034 1.497 
(5.12) 0.1 200 4 2.74 .0007 1.498 
(5.12) 0.05 200 4 3.38 .0001 1.498 

TABLE 2. Divergence-free L-F-type perturbations (Eq. (5.10)). Ax = 0.01, 
o = 0.5, t - 2. No error in shock location. 

where Q, the nonlinear L-W difference operator, is defined in (5.5). When 0,m is 
given by (3.29), (5.13) becomes the nonlinear version of the perturbed scheme con- 
sidered in Theorem 4. However, due to the nonlinearity of the shock trajectory 
02M must be redefined. If we take 02' to be given by either (5.8) or (5.9) we have, 
respectively; the cases where the perturbation, at each time level, is applied either 
at a single point only, or, depending on the value of the preset threshold gradient, 
at a variable number of points. These two versions of (5.13) are not divergence-free 
and, using the same range of parameters as for the two corresponding versions of 
(5.7) (except that here 0 is bounded by 1), we obtained very similar results. 

The divergence-free version of (5.13) is 
m+1 

V.n~l = vY' + 2X[(1 - 0,M+1/2)(Fm+1 + F'v) - (1 - MV-12)(Fm + Ftn 1)] 

+ V2Ix1 - 0'+112)Aw7+,,2(F7+1 - FV ) - (1 - 01,/2)(AF, -2(F + F-L,)] 

(5.14a) + 2X[OVm+,,2(t'm+, + P'^4) - 0 -122(FA7 + Pt l)D] 

+ 'x\om Am (F - fm0) - 0,122 Amn 1(F'm-F- _ m)I 

where 

(5.14b) Fv F(Qvv), A?,1/2 [A(QvV,) + A(Qvt)I/2. 

If 0,+1/2m is given by (4.4), then (5.14) is the nonlinear version of the perturbed 
scheme considered in Theorem 6. In practice, however, 0vm is chosen, as before, 
to be given either by (5.11) or by (5.12). The numerical results of these two versions 
of (5.14) are again of the same quality as those found in the corresponding cases 
of the three-point perturbation (5.10). 

We remark that in all of the numerical computations described in subsections 
5.1 and 5.2 the time step at each time level, Atm, was chosen to be the maximal one 
allowed by the stability condition of the L-W scheme, i.e., 

(5.15) tm = 
A 

max~vm)} 

By taking smaller time steps, the results obtained were not improved in any respect, 
and usually were worse. 
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