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On Semicardinal Quadrature Formulae* 

By I. J. Schoenberg and S. D. Silliman 

Abstract. The present paper concerns the semicardinal quadrature formulae introduced 
in Part III of the reference [3]. These were the limiting forms of Sard's best quadrature 
formulae as the number of nodes increases indefinitely. Here we give a new derivation and 
characterization of these formulae. This derivation uses appropriate generating functions 
and also allows us to compute the coefficients very accurately. 

Introduction. The present paper is a slightly shortened version of the MRC 
report [5]. Let m be a natural number and let 

(1) 82m-1 = {S(x)} 

denote the class of functions S(x) satisfying the three conditions: 

(2) S(x) E C2m-2 

(3) S(x) C 7r2m-1 in each of the intervals (0, 1), (1, 2), * 

(4) S(x) G 7rm.- in the interval (- c, 0). 

These functions are the so-called natural semicardinal splines of degree 2m - 1. 
It was shown in [3, Lemma 5, Section 9] that if 

(5) S(x) C 8 2r-n Li(R) 

then 

(6) Z IS(v)I < C. 
Y=0 

It follows that, if B, is a sequence of constants such that 

(7) B., = 0(1) asp a,-+c 

then the functional 

(8) RS = f S(x) dx- E B, S(v) 
0 

is well defined for every S(x) satisfying (5). 
In the same paper [3, Theorem 6, Section 10], the following theorem was estab- 

lished. 
THEOREM 1. We consider a quadrature formula 

(9) f(x) dx = i Bjf(v) + Rf 
0 

Received February 14, 1973. 
AMS (MOS) subject classifications (1970). Primary 41A15, 41A55; Secondary 41A05. 
* Sponsored by the U. S. Army under Contract No. DA-31-124-ARO-D-462. 

Copyright i 1974, American Mathematical Society 

483 



484 I. J. SCHOENBERG AND S. D. SILLIMAN 

with perfectly arbitrary constant coefficients B, subject only to the condition (7). Among 
these formulae, there is exactly one with the property that 

(10) Rf = 0 whenever f(x) C 82m-1 r L1(R ). 

We denote this unique formula by 
co co 

(11) f 1(x) dx = E HmIf(v) + Rf 

and call it the semicardinal quadrature formula of order m. 
For the derivation of (11) by integra ing the semicardinal interpolation formula, 

see [3, Section 10], wherein its connection with some conjectures due to L. F. Meyers 
and A. Sard concerning best quadrature formulae is explained (see also [4, Lecture 8]). 
The purpose of the present note is the accurate computation of the values of the 
coefficients H, m) for m = 2, 3, ... , 7. The tables of Sections 7 and 8 are based on 
computations beautifully performed by Mrs. Julia Gray, of the Computing Staff 
of the Mathematics Research Center, on the CDC 3600. They were done in double 
precision and all decimals listed should be correct, as we had anywhere from 17 to 
24 correct decimals throughout. The zeros of the Euler-Frobenius polynomials of 
Section 7 were found by the algorithm due to D. H. Lehmer. It seems of some interest 
to observe that 

H47) < 0. 

We also give a new proof of Theorem 1 which is simpler than the proof presented 
in [3, Section 10] where the main emphasis was in establishing the harder Meyers- 
Sard conjectures. 

We conclude this Introduction by mentioning two further remarkable semi- 
cardinal formulae: The first is the Euler-Maclaurin formula 

co M-1 

(12) ] f(x) dx = 2f(0) + f(1) + f(2) + . + LI 12r - )(0) + R 
o ~~~2r-1 (2) 

The second is the so-called complete semicardinal formula 
00 m 0 tn-1 

(13) I (x) dx = fE(n) f () + E A (nI)(0) + R. 
0 i-1 

Both formulae are uniquely defined among quadrature formulae of their type (i.e., 
when all their terms are provided with arbitrary coefficients subject only to the 
condition that the coefficients of f(v) should form a bounded sequence) by the 
condition of being exact, hence Rf = 0, whenever f(x) is any spline of degree 2m - 1 
in the interval [0, + oD), with knots at 1, 2, * * , such that f(x) E L1(R+). Among 
the formulae (11), (12), and (13), the formula (13) is, as a rule, the most accurate 
in numerical applications (after an appropriate change of step), while (11) is the 
least accurate. The computation of the coefficients of the complete formula (13) is 
the subject of Silliman's forthcoming paper [6]. 

The reader will see that the use of the B-splines (Section 1) transforms a fairly 
formidable problem into one that is within easy reach of the Euler-Laplace method 
of generating functions. 
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I. The Construction of the Semicardinal Quadrature Formula. 
1. B-Splines and Euler-Frobenius Polynomials. Here we collect tools and results 

that have proved to be indispensable in the study of cardinal splines. Writing x+ = 
max(O, x), the forward B-spline is defined by (see [1, Section 1]) 

(1.1) Qm(x) = (m - 1)! (-l)i( *j(x - i)+W (x E R). 
(m - 1)!E( 

This is a spline function of degree m - 1, with knots at x = 0, 1, m. The sym- 
metry property Qm(x) Qm(m - x) shows that we may equivalently write it in the 
form 

(1 .2) Qx)3 - 1 E( )(( -X)+- 

This is a frequency function. More precisely, 

(1.3) Qm(X) > 0 if O < x < m, Qm(x) = 0 if x < 0, orx _ m. 

Euler's generating function 

(1.4) x-1 ll(x) z'n x - o (x-1) n! 

defines the polynomial IIn(x) of degree n - 1, called the Euler-Frobenius polynomial. 
For proofs of its properties described below in Lemma 1, we refer to [2, Lemma 7]. 

LEMMA 1. (i) Hn(X) is a reciprocal monic polynomial of degree n - 1 with integer 
coefficients satisfying the recurrence relation 

(1.5) IIn+i(x) = (1 + nx)lln(x) + x(1 - x)HII(x) (Hl(x) 1). 

(ii) The identity 

(1.6) Hln(X)/(1 X)n~ E (P + 1)n.'c (x I < 1), 
0 

holds. 
(iii) The zeros X, of lln(x) are all simple and negative. We label them so that 

(1.7) Xn-1 < Xn-2 < < X2 < X1 < 0 

(iv) The identity 
n-1 

(1.8) Hn(x) = n! Z Qn+l(v + l)x7 
0 

holds. 
The identity (1.8) shows the close relation between B-splines and Euler-Frobenius 

polynomials. In Section 7, the reader will find the polynomials 112m1-(x) and their 
zeros for m = 2, 3, 4, 5, 6, and 7. 

2. A Recurrence Relation. In Sections 2, 3, and 4, we determine the Q.F. (9) 
satisfying conditions (7) and (10). To begin with, we ignore condition (7) and argue 
as follows. 

We integrate the B-spline (1.2) m times so as to preserve the vanishing of the 
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function in (m, + co). This condition uniquely defines the integral 

(2.1) o(x) = o^(x) (2 1 1)! E (- (rn)(v-x)+ 

having the properties 

(2.2) a(m)(x) Qm(X) a(x) = 0 if x _ m. 

Moreover, since Qm(x) = 0 if x ! 0, we conclude that 

(2.3) o(x) E S2m-1 nr L,(R ). 

Clearly, this property of a(x) will remain valid if we shift its graph to the right by 
an integer amount, hence 

(2.4) o(x - n) E 8+m-1 n L1(R+) for n = 0, 1, 2, 

We conclude: The coefficients B, of an arbitrary Q.F. (9), (7), that enjoys the property 
(10), must satisfy the relations 

+nMm n+m-1 

(2.5) jo(x -n) dA E Ba(v -n) (n = 0, 1, 2, ). 

The series on the right side indeed breaks off as indicated because of the second 
relation (2.2). 

3. The Summation of Certain Power Series. The structure of the relations (2.5) 
suggests the use of generating functions for the determination of the B,. Indeed, 
the right side of (2.5) is seen to be equal to the coefficient of Xn+m-l in the product 
of power series 

(3.1) (I 1 B0i(M a~- I 
Ovx^) 

(A) To simplify notations, we define the sequence (s.; v = 0, 1, * ) by 

(3.2) sy = (-1)'(2m - 1)! 0(m - - v) = (- ) (r- + + v)2m, 
r-Or 

or 

(3.3) ()()( + k)+ 
k-0o 

Multiplying by xv and summing for v = 0, 1, ... , we obtain 

E sxV = (l)k m) E (V + 1-2- 
Ok-O k - 

E ) (v + 1 )2"-1x-k 
k-O k F-o 

Using (1.6), the right side becomes 

E ~(- 1)I)k 
M 

X7I2r1(X)/(1 - x)2" 
k-O 
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and we finally obtain that 

(3.4) : s'x = I12ml(X)/(l - x)m. 
0 

(B) For the integrand on the left side of (2.5), we find, by (2.1), 

0i(X - n) = 1 1) - (1Yn)(v + fl _-)2 ) (2m - 1)! E ( 1 v ( + n-)+- 

whence 
n+rn 1 in 

/I 
(3.5) j (x - n) dx = (2m)! Lv (1)1\/)( + n)2+ 

As in (3.2), we introduce the new quantities 
rn+tm 

Fn+ml = (-1)m(2m - 1)! o-(x - n) dx 

(3.6) 0 

1 (m m+ v + n)+ (n ), 

and wish to sum the series 
co 

(3.7) Fn+tn-JX 
nt 

n-0 

From (3.6) we obtain 

(3.8) 2m , Fn m~iXn+m-1 = 
( 
1y(-lm+zi) M (v + )2mXn+m- 

n=O '=0 V n=O 

while the inside sum is 

~ ( + )2m n+m-1 = - + )2m n+v-I 
(v + n)+x -x m- (n tv+x 

n=O n=O 

co '-2 

E (r + 1) 2mXr - xm-P E (r + 1)2mXr 
r=O r=O 

= xmmPII2n(x)/(l - x) - V,.(x) 

by (1.6). Here, V,(x) is an element of 7r.-2. Substituting this into (3.8), we obtain 

(3.9) , FVx) = 1 2m(X) e - V(x), where V(x) ? 7rm-2- 
rn-1 2 m (1 - x)m1 2m 

Evidently, V(x) is such as to cancel the first m - 1 terms of the power series expansion 
of the first term on the right side. 

The relations (2.5) may now be written as 
n 

(3.10) Fn= B,,s_,, for n _ m- 1. 

We may here select the first m - 1 terms 

(3.11) BO, BI, . * * Bm-2 
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arbitrarily and determine the entire sequence (B,) recursively by (3.10). Equivalently, 
we may select the m - 1 quantities F0, F1, * , Fm.2, arbitrarily and determine (B,) 
from the identity 

co CO co 

(3.12) ? Fvx' = ( Bx )( sx 

By (3.4) and (3.9), we have 

(3.13) > SX I2m.i(X)/(1 - x)', 
0 

and 

(3.14) ? FVx' = (1 2m() U(x) 
02 m (1I x)' 2m 

where U is an arbitrary element of 7m-2* Solving (3.12) for o'Bx', we obtain the 
following: 

THEOREM 2. The coefficients (B,) of the most general functional 
co co 

(3.15) Rf= f(x) dx- E Bj(v) 
0 

that vanishes for the functions of the sequence 

(3.16) o(x-n) (n = 0, 1, 2,...), 

are the expansion coefficients of 

co (3.17) Rm(x) = : B,x' 
0 

where 

(3.18) Rm(X) = (1m - (1 - XyU 2 (x) 2m(1 - X)llI2m-i(X) 2m]112m2I(X) 

Here, U(x) is an arbitrary element of rm-2* 

4. Determining the Coefficients H, m) This will be done by requiring the coeffi- 
cients (B,) of (3.17) to satisfy (7) or 

(4.1) B, =O(1) as .->c. 

The order of magnitude of the B, for large v is controlled by the location of the 
poles of the rational function Rm(x). Let us first transform its expression slightly. 
From the recurrence relation (1.5), we find that 

I12m(X) =(1 + (2m 1)X)II2m-l(X) + x(1 - X)II2-ml(X), 

and, substituting into (3.18), we obtain that 

(4.2) Rm (x) 1 + (2 m - 1)x + XH2m-i(X) _(1 
- 

X)m-U() 
2m(1 - x) 2 m112m 1(x) 2mI2ml(x) 

From (1.7) we know that the 2m - 2 zeros XA of II2m.2(x) are simple and negative. 
Also, that I12mil(X) is a reciprocal polynomial, whence the relations X1X2m-2 = 
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X2X2m-3 = = Xm-lXm = 1. It follows that these zeros satisfy the inequalities 

(4.3) X2m,-2 < ..< Xm < -I < Xn- 1 < ..< XI < O. 

Let 

(4.4) U(x) = ao + alx + + am_2xm2. 

It is now easy to decompose Rm(x) into partial fractions. Observing that Rm(x) is 
regular at x = a, we find that 

Rm(X) = -I + ( n 
( +Iam-2 + 

(4.5) 2m 2m -X 
1 2m-2 1 2m-2 U(X)(l - 

2m 1 x-X, 2m 1 (x- X)II2m-l(X 
) 

From (4.3) we see that the poles XA, . * *, Xm-I are inside the unit circle, while Xm, 
X2m-2 are outside. Also, x = 1 is a simple pole, by (4.5). It follows that (4.1) will 
hold if and only if the polynomial U(x) can be so chosen that the inside poles X1, . * *, 
Xm-, cancel out, i.e., their residues vanish. An inspection of (4.5) shows this to be 
the case if and only if U(x) satisfies the equations 

(4.6) U(XV) = Xjl2m-1(XV)(1 - s)' (V = 1 . * m - 1). 

We see that U(x) exists uniquely, because (4.6) describes an ordinary Lagrange 
interpolation problem. This establishes 

THEOREM 3. There is a unique Q.F. 
AX co 

(4.7) f f(x) dx = A Hnm)f(v) + Rf 
0 

having bounded coefficients and which is exact for the sequence offunctions a(x - n) 
(n = 0, 1, ***). Its coefficients are given by the expansion 

co 

(4.8) Rm(X) = E H(m)xv (lXI < 1). 
0 

Here 

Rm(X) = + 2 1)M+an-2 + 1 

(4.9) 2m 2m 
I- 

-X 

+ m-2 { - U(2s)(i1X;) } _ I 
where U(x) = am_2xm-2 + lower degree terms, is the solution of the interpolation 
problem (4.6). 

In order to complete a proof of Theorem 1, we are still to show that the remainder 
functional Rf of the formula (4.7) satisfies the condition (10) of Theorem 1. For a 
proof of this, we refer to [5, Section 5]. 

5. Final Computational Details. We return to the rational function Rm(x), defined 
by (4.9), that generates the H, Cm) by (4.8). For even moderately large values of m, 
the zero X, is small and its reciprocal X2m-2 is correspondingly large (e.g., for m = 7, 
we find that X, = -.0001251). It is therefore important from the computational 
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point of view to express the right side of (4.9) in terms of the zeros XA, , Xm-i 

This is easily done by the following device: We define the new polynomials U* and 
I12m-l* by setting 

(5.1) U*(x) = m-2 U(-1), II*m-I(X) = X 2m i 3I(X-). 

In terms of these polynomials, (4.9) becomes 

I 
m-1 

(5.2) Rm(X) = C + 1 ECI 1p 

where 

(5.3) C = - + (-2 2m 2m 

-~fU*(X,)(X, I 1)n ' 
(5.4) C, - 2m lm(X I) _ II (v= 1,* ,m- 1). 

Expanding the right side of (5.2) in powers of x and using (4.8), we obtain 
COROLLARY 1. The coefficients of the semicardinal Q.F. (11) have the values 

m-1 

(5.5) Hom) = C + 1 + E2 C,, 
v=1 

m-1 

(5.6) Him) = 1 + E Clin (i = 1, 2, 
v=1 

where C and C, are given by (5.3), (5.4). 
It is convenient to define 

(5.7) h m) = H m) - 1 h (m) = H m) -1 (- _ 1), 

and to write the Q.F. (11) in the form 

cow co 
(5.8) f(x) dx = T + Z h(m)f(v) + Rf, 

1v=0 

where T stands for the trapezoidal sum 
co 

(5.9) T = 2f(0) + E f(v). 

From (5.5), (5.6) and in view of (5.7), we obtain that 
m-i 

(5.10) h C + I 
P-Il 

v-1 
rn-I 

(him) = ZCX (i = 1, 2, *.) 
v=1 

6. The Case m = 2 of Cubic Splines. We mention this case separately because 
the results are explicit and also because, for this case, Meyers and Sard established 
their conjecture. From our formulae (4.4), (4.6), (5.3) to (5.6), we easily find that 

-2+-= -1 C 3 + \/3 C, = -I XI=-2 +V\3, ao 3-\~/3, = 1 2 2 
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and therefore 

12)=3+12 H, = 1- 2X (1= 1 ,2,.). 

These agree with the values given by Meyers and Sard. For references to the work 
of Meyers and Sard, see [3]. 

II. Numerical Results. 
7. The Polynomials IH2m l(x) and Their Zeros for m = 2, 3, * , 7. 

m = 2: 11(XI (==x2+ 4x?1 3, 

V 

1 -.26794 91924 31123 

2 -3.73205 08075 68877 

m = 3: 31 (x) =x4 + 26x3 4 66x2 + 26x + 1 5 

V X 
V 

1 -.04309 6Z882 03264 7 

2 -.43057 53470 99974 

3 - 2. 32247 38869 40428 

4 - 23. 2038 5 44777 56334 

6 5 4 3 2 
m = 4: I1 (x) - x + IZ0x + 1191x + 2416x + 1191x ? 12Ox ? 1 

v X 

1 . 00(z91a 86948 09608 28 

2 -. 12255 46151 92326 69 

3 -. 53528 04307 96438 17 

4 -1.86817 96353 214553 

5 -8. 15962 74316 61271 

6 -199.30520 91922 18903 
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8 
m =5: II(x)9 = L cx co1 8 

0 ~ ~ ~ ~ 
502 c1= c 

14 608 c = c 

88 234 =c = c 

1 56 190 - 4 

v X 
v 

1 -.00212 13069 03180 8184 

2 -. 04322 26085 40481 7521 

3 -.20175 05201 93153 2388 

4 -.60799 73891 68625 78 

5 --1.64474 39048 50311 

6 -4.95661 67117 81528 

7 -23.13603 99977 57483 

8 -471.40750 75608 05236 

10 
m 6: H1(x) clx 1 = c -c 

0 0 1 

2 036 = I= c9 

152 637 =0 = C 

2 203 438 =c = c 

9 738 114 = c 4- =c6 

15 724 248 = 5 
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v X 

1 -.00051 U5575 34446 50o06 

2 -. 01666 9627 3 66 234 65610 

3 -.08975 95997 93713 30994 

4 -. 27218 03492 94785 88569 

5 -. 66126 60689 00734 70691 

6 -1.51225 05857 02007 

7 -3.67403 45237 66984 

8 -11.14086 96373 22505 

9 -59.98934 33746 19 208 

10 -1958.64311 56756 99381 

12 
r=7: 13 c Ix 1 C0 c12 

0 
8 178= c c 

1 1 

1 479 726=c2 c10 

45 533 450 = c3 -c9 

423 281 535 = c 4 c8 

1 505 621 508 = c 5 c7 

2 275 172 004 -c c6 

v X 

1 -.00012 51001 13214 4187) 596 

2 -.00673 80314 15244 91399 848 

3 -.04321 38667 40363 66964 776 

4 -.13890 11131 94319 43021 

5 -.33310 7 2329 30623 59248 

6 -.70189 42518 16807 86245 

7 - 1.4247 1 60414 99933 

8 -3.00203 62848 38854 

9 -7.19936 63477 77381 

10 -23.14072 02231 67524 

11 -148.41129 97362 23031 

12 -7993.59788 17702 82704 
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8. The Numerical Values of ho(m) = (m) - h1" = H1(m) - i (j _ 1), 
for m = 2, 3, , 7. We have written the Q.F. (11) in the form (5.8), (5.9), where the 
coefficients h, () are defined by (5.7). Below we give the values of the coefficients 
C, C1, * * *, C,_., appearing in the formulae (5.10), (5.11), which were used through- 
out the computation. The corresponding XA, for each m, are known from Section 7. 

m = 2: C = -.10566 24327 02594 

C = -.50000 00000 00000 

J 109 . h( ) 109 . h(2)| 109 . h(2) 109 . h 2) 
J J1 J J 

0 -105 662 433 4 - 2 577 388 8 -13 286 12 -68 

1 133 974 596 5 690 609 9 3 560 13 18 

2 -35 898 38 5 6 -185 048 10 -9 54 14 - 5 

3 9 618 943 7 49 583 1 1 256 15 1 

m = 3: C = -1.55683 40723 44005 

C1 = 1.61253 86058 42966 

C2 = -. 69966 7 6766 67689 

J i)9 . h(3) i 109 (3) j 9 (3) i (J 10 . h _ 109_. 
- I 1 - 

0 -143 963 143 7 1 9 19 711 14 -5 267 21 14 

1 231 765 224 8 -SZ6 580 15 2 268 22 -6 

2 -126 720 028 9 355 905 16 -977 23 .3 

3 55 7 23 001 10 - 153 244 17 420 24 -1 

4 - 24 042 963 1 1 65 983 1 8 - 181 

5 10 354 462 1 2 -28 411 19 78 

6 -4 458 469 13 12 233 20 -34 

m = 4: C = 29.79116 16580 89087 

C1 = -34.33080 08334 22275 

CZ = 5.03831 17952 59740 

C3 = -1.16658 41207 39341 
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109 . h(4) | 10 9 * h (4)| 109 
* h(4) i 

10 
9 

h(4) 

0 -167 911 501 9 4 208 672 18 -15 184 27 54 

1 321 063 307 10 -2 252 833 19 8 128 28 -29 

2 -261 455 521 1 1 1 205 899 20 -4 351 29 16 

3 169 672 663 12 -645 494 21 2 329 30 -8 

4 -94 636 306 1 3 345 520 22 - 1 247 31 4 

5 51 125 936 14 -184 950 23 667 32 -2 

6 -27 424 202 15 99 000 24 -357 33 1 

7 14 686 684 16 -52 993 25 191 

8 -7 862 358 17 28 366 26 -102 

m= 5: C= -1185.60066 69187 87416 

C = 1278.39)416 47945 01574 

c2= -104.82413 90602 217 26 

C3 = 13.49945 93367 63573 

C4 = -2.15378 46634 437 02 

9 
j 

9 . (5 9 (5) 9 (5) 

0 -184 996 511 11 9 038 7 11 22 -37 935 33 159 

1 404 878 934 12 -5 495 637 23 23 064 34 -97 

2 -436 776 761 13 3 341 358 24 -14 023 35 59 

3 381 665 032 14 -2 031 542 25 8 526 36 -36 

4 -272 313 302 15 1 235 173 26 -5 184 37 22 

5 174 415 008 16 -750 982 27 3 152 38 -13 

6 -107 886 251 17 456 595 28 -1 916 39 8 

7 65 963 996 18 -277 609 29 1 165 40 -5 

8 -40 180 533 19 168 785 30 -708 41 3 

9 24 444 711 20 -102 621 31 431 42 -2 

10 -14 865 358 21 62 393 32 -262 43 1 
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m = 6: C = 75691.58329 09095 55732 

C1= -78988.38815 48082 40699 

C = 3556.66826 01136 24533 

C3 = -291.24484 63712 04503 

C4 = 34.93429 00662 62594 

C5 = -4.25089 68338 22148 

10 9 . h(6) 
1 

10 9 . h(6) 109. h (6)1 109h(6) 

0 -198 056 924 14 -12 993 723 28 -39 721 42 -121 

1 484 349 563 15 8 592 475 29 26 266 43 80 

2 -649 567 27 3 16 -5 681 9 57 30 -17 369 44 -53 

3 718 914 116 17 3 757 298 31 11 485 45 35 

4 -639 708 909 18 -2 484 577 32 -7 595 46 -23 

5 486 987 860 19 1 642 967 33 5 022 47 15 

6 -341 365 669 20 -1 086 439 34 -3 321 48 -10 

7 231 172 876 21 718 425 35 2 196 49 7 

8 -154 363 128 22 -475 070 36 -1 452 50 -4 

9 102 483 801 23 314 148 37 960 51 3 

10 -67 880 429 24 -207 735 38 -635 52 -2 

11 44 917 348 25 137 368 39 420 53 1 

12 -29 710 573 26 -90 837 40 -278 54 -1 

13 19 648 841 27 60 067 41 184 55 1 

rn = 7: C = -71 24756.13044 78377 42764 

C = 72 97768.36419 88111 56638 

CZ -1 81492.08505 99971 63019 

C3 = 9205.14045 15342 90528 

C4 = -806.75362 55949 48760 

C5 = 89.551 7 21836 35045 

C6= -8.79549 99208 94050 
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10 9 * h(7) | 109 h h(7) j 109 . h (7)| 10 9- . (7) 
A_~~~ - 1 _o__._h7 _ j _@I 

0 -208 500 822 17 21 422 260 34 -52 179 51 127 

1 560 220 481 18 -15 036 414 35 36 624 52 -89 

2 -897 279 922 19 10 554 057 36 -25 706 53 63 

3 1 206 104 998 20 -7 407 860 37 18 043 54 -44 

4 -1 300 751 517 21 5 199 544 38 -1z 664 55 31 

5 1 171 420 907 22- 3 649 533 39 8 889 56-2.2 

6 -935 088 480 23 2 561 587 40 -6 239 57 15 

7 698 229 096 24 -1 797 964 41 4 379 58 -11 

8 -504 660 854 25 1 261 980 42 -3 074 59 7 

9 359 162 044 26 -885 777 43 2 157 60 -5 

10 - 2.53 7 52 687 27 621 722 44 -1 514 61 4 

11 178 661 845 28 -436 383 45 1 063 62 -3 

12 -1 25 586 597 29 306 29 5 46 -746 63 2 

13 88 210 126 30 - 214 986 47 524 64 -1 

14 -61 934 710 31 150 898 48 -368 65 1 

1 5 43 478 456 32 -105 914 49 258 66 -1 

16 -30 519 557 33 74 341 50 -181 
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