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Methods for Modifying Matrix Factorizations 

P. E. Gill, G. H. Golub, W. Murray and M. A. Saunders* 

Abstract. In recent years, several algorithms have appeared for modifying the factors of a 
matrix following a rank-one change. These methods have always been given in the context 
of specific applications and this has probably inhibited their use over a wider field. In this 
report, several methods are described for modifying Cholesky factors. Some of these have 
been published previously while others appear for the first time. In addition, a new algorithm 
is presented for modifying the complete orthogonal factorization of a general matrix, from 
which the conventional QR factors are obtained as a special case. A uniform notation has 
been used and emphasis has been placed on illustrating the similarity between different 
methods. 

1. Introduction. Consider the system of equations 

Ax = b 

where A is an n X n matrix and b is an n-vector. It is well known that x should be 
computed by means of some factorization of A, rather than by direct computation 
of A -1. The same is true when A is an m X n matrix and the minimal least squares 
solution is required; in this case, it is usually neither advisable nor necessary to com- 
pute the pseudo-inverse of A explicitly (see Peters and Wilkinson [13]). 

Once x has been computed, it is often necessary to solve a modified system 

Ax9 = h. 

Clearly, we should be able to modify the factorization of A to obtain factors for A, 
from which x may be computed as before. In this paper, we consider one particular 
type of modification, in which A has the form 

A = A + ayz 

where a is a scalar and y and z are vectors of the appropriate dimensions. The matrix 
ayzT is a matrix of rank one, and the problem is usually described as that of updating 
the factors of A following a rank-one modification. 

There are at least three matters for consideration in computing modified factors: 
(a) The modification should be performed in as few operations as possible. This 

is especially true for large systems when there is a need for continual updating. 
(b) The numerical procedure should be stable. Many of the procedures for 

modifying matrix inverses or pseudo-inverses that have been recommended in the 
literature are numerically unstable. 

(c) If the original matrix is sparse, it is desirable to preserve its sparsity as much 
as possible. The factors of a matrix are far more likely to be sparse than its inverse. 
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Modification methods have been used extensively in numerical optimization, 
statistics and control theory. In this paper, we describe some methods that have 
appeared recently, and we also propose some new methods. We are concerned mainly 
with algebraic details and shall not consider sparsity hereafter. The reader is referred 
to the references marked with an asterisk for details about particular applications. 

1.1. Notation. The elements of a matrix A and a vector x will be denoted by 
aii and xi respectively. We will use AT to denote the transpose of A, and 11xlj2 to 
represent the 2-norm of x, i.e., 11x|j2 = (xTx)l/2. The symbols Q, R, L and D are 
reserved for matrices which are respectively orthogonal, upper triangular, unit lower 
triangular and diagonal. In particular, we will write D = diag(d1, d2, * * * , dc). The 
jth column of the identity matrix I will be written as e; and e will denote the vector 
[1, 1, ... , if. 

2. Preliminary Results. Most of the methods given in this paper are based in 
some way upon the properties of orthogonal matrices. In the following, we discuss 
some important properties of these matrices with the intention of using the material 
in later sections. 

2.1. Givens and Householder Matrices. The most common application of or- 
thogonal matrices in numerical analysis is the reduction of a given n-vector z to a 
multiple of a column of the identity matrix, e.g., find an n X n orthogonal matrix P 
such that 

(1) Pz = dzpe, 

or 

(2) Pz = i pen 

This can be done by using either a sequence of plane rotation (Givens) matrices or 
a single elementary hermitian (Householder) matrix. In order to simplify the notation 
we will define the former as 

(3) Lc s: 

and call this a Givens matrix rather than a plane rotation since it corresponds to a 
rotation followed by a reflection about an axis. 

This matrix has the same favorable numerical properties as the usual plane 
rotation matrix (see Wilkinson [16, pp. 131-152]), but it is symmetric. The choice 
of c and s to perform the reduction 

LC SLz] = [+P] 

is given by 
2 2 2 

P = Z1 + 2, 

(4) p = sign (Z1)(p2)1'2 and 

C = Zi/p, S = Z2/P. 
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Note that 0 ? c ? 1. In order to perform the reduction (1) or (2), we must embed 
the matrix (3) in the n-dimensional identity matrix. We shall use Pi' to denote the 
matrix which, when applied to the vector [zl, Z2, . . , Z.]T reduces z; to zero by 
forming a linear combination of this element with zi. If i < j, then 

i i 
1 ~~~~~~~~~~~~Z1 

C SZi 

PiZ= 

S -c z 

Alternatively, if i > j, the (i, i)th and (j, j)th elements of P7i are -c and +c, re- 
spectively. There are several sequences of Givens matrices which will perform the 
reduction (1) or (2); for example, if we want to reduce z to el, we can use 

(5) pAl p2 ... pn-2 n-z or P2P ... Pn-1 Pnz. 

To perform the same reduction in one step, using a single Householder matrix, 
we have 

P I+ r-1 uT 

where 

U Z + pel, 

(6) r = -pul and 

p = sign(zI) IzI12 

This time, P is such that Pz = -pel. 
In the 2-dimensional case, we can show that the Householder matrix is of the 

form 

=Lz: fl= -U :] 
where c, s are the quantities defined earlier for the Givens matrix. Hence, when 
embedded in n dimensions, the 2 X 2 Householder and 2 X 2 Givens transformations 
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are analytically the same, apart from a change of sign. (Although these matrices 
are n X n, we shall often refer to them as "2 X 2" orthogonal matrices.) 

There are several applications where 2-dimensional transformations are used. 
The amount of computation needed to multiply a 2 X n matrix A by a 2 X 2 House- 
holder matrix computed using Eqs. (6) is 4n + 0(1) multiplications and 3n + 0(1) 
additions. If this computation is arranged as suggested by Martin, Peters and Wilkin- 
son [1 1] and the relevant matrix is written as 

I + [U/P U1U2/U1], 

L-U2/Pi 

then the multiplication can be performed in 3n + 0(1) multiplications and 3n + 0(1) 
additions. Straightforward multiplication of A by a Givens matrix requires 4n + 0(1) 
multiplications and 2n + 0(1) additions. Again, the work can be reduced to 3n + 0(1) 
multiplications and 3n + 0(1) additions, as follows. 

Let the Givens matrix be defined as in (4). Define the quantity 

A =Z2/(Zl+ P), Jill 1. 

Since s = Z2/P, we can write s as s = ;i(c + 1). Similarly, we have c = 1- us. A 
typical product can be written in the form 

(7) _s _C_ _Y2Ly 

yp(c 

+ 
1) 

As - 

12 
YIA(C + 1) + Y2(AS - 

which will be denoted by 

Consequently, in order to perform the multiplication (7), we form 

y1 = cyI + sy2 and Y2 = $(Y1 + Y1)-Y2- 

Note that this scheme is preferable only if the time taken to compute a multiplication 
is more than the time taken to compute an addition. Also, it may be advisable with 
both algorithms to modify the computation of p to avoid underflow difficulties. 

In the following work, we will consider only 2 X 2 Givens matrices, although 
the results apply equally well to 2 X 2 Householder matrices since, as noted earlier, 
the two are essentially the same. 

2.2. Products of Givens Matrices. The following results will help define some 
new notation and present properties of certain products of orthogonal matrices. 

LEMMA I. Let P,+,' be a Givens matrix defined as in (4). Then the product 
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p-pn-2 pI 

is of the form 

P1d3 71 

P2(31 P2(32 72 

HL(P, (3 zy) = P341 P3/32 P3(3 * 

7Yn-2 

Pn-1l31 Pn-132 Pn-133 ... Pn-1/3n-l 'Yn-1 

PnA31 PA2 Pn.33 PnIn-1 PAn 

where the quantities pi, f3i and yj are defined by either of the following recurrence 
relations: 

Forward Recurrence. 
1. Setp, = c1/ir, ,31 = 7r, r1, = s1/i7r, 7y = s1, where 7r is an arbitrary nonzero scalar. 
2. For j = 2, 3, *, n - 1, set p, = cj?7j , = 5,, f = -c7.1/ti,.1, 7i = 

Si 7,i-i. 

3. Setpn = r7n-1 n = Cn-l/pn 
Backward Recurrence. 
1. Set pn = Vr, 13n =-Cn-c1/7r n- = Sn-1/7r, 7,-l s-1, where is an arbitrary 

nonzero scalar. 
2. For j = n - 1, n - 2, * *, 3, 2, set pi = ci/77i, ej-1 = Si-1 Oi = -1 t, 

7li-1 = Si-17 j. 

3. Set pi = c/,B1, f1 = 771. 

Proof. We will prove the lemma in the forward recurrence case; the remaining 
case can be proved in a similar way. Assume that the product Pk+,l,, IPck- * ... P43P32P21 

(k < n - 1) is given by 

Pi(3 71 

P211 P2(2 

PA Pk2 ... PA 7k 

(8) lk(1 1kf2 ... ' kfk -C 

1 

1 

This is true for k = 1 by definition. The next product Pk, k+ 2 Pk+1 kPk ...P3 P2 
is given by 
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PAF 71 

P2f1 P212 

PAk Pkf2 PAk Tk 

Ck+l1fkfl Ck+1fl 7k2 ... Ck + l 77 Ck+ lCk Sk+i 

Sk+i1 kfl Sk+1f7/2 ... Sk+l1fkfk -Sk+lCk Ck +1 

1 

If we definePk+1 = Ck+lflk, Yk+l = Sk+l, 1k+1 = -Ck/lk, ?7k+l = Sk+llk, then the product 
Pk+2~ ***... P2 iS of a similar form to (8). Continuing in this way, and finally setting 
Pn = 77n-1 and on = - Cn-1/Pn gives the required result. 

For later convenience, we shall use the notation 

(HL(p~3, y))T = Hu(f, p, y). 

The matrices HU(I, p, -y) and HL(P, #3, 7y) are defined as special upper- and lower- 
Hessenberg matrices respectively. In the same way, we define a special upper-tri- 
angular matrix R(3, p, y) as having the form 

71 f1P2 f1P3 . . . . . . 01Pn 

72 f2P3 . . 
.2Pn 

R(j, p, Y) = y3 . * 3Pn. 

7Jn-1 On-1 Pn 

7Yn 

The particular recurrence relation used to form HL(P, , 'y) will depend upon the 
order in which the Givens matrices are generated. For example, if Pnn-1 is formed 
first, then the backward recurrence relation can be used. 

We have only considered a particular sequence of Givens matrices. Similar 
formulae can be derived to compute the lower-Hessenberg matrix associated with 
the sequence 

Pn1P-2 P2 I- 

We state the following lemma without proof. 
LEMMA II. Let D = diag(d1, d2, ... , dn), r = diag(Ty, 72, * * * 1),.. r2 

diag(l, 71, 72, * * * , n-l) ande = (1, 1, * * * , 1, 1)T. Then 
1. DHL(P, f3 7) = HL(fi, 5, a)D where 5i = i fdil, Pi= dipi i = 1, 2, ... , n, 

,yj = dyi~/di~?, i = 1, 2, .. , n-1. 
2. R(f, p, -y)D = DR(#, p9, 7) where ,j = j3/dj, p = dipi, i = 1, 2, * * , n. 
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3. R(3, p, -y) = DR(, p, e) where 5i = oj/Tj, i = 1, 2, * , n - 1, di =Ji 
i= 1, 2, ..., n. 

4. HL(p, #3, -y) = rHL, 3, e) = HL(p, 5, e)r2 where p= pi/7i (i < n), Pn =Pn 
and 5i = 3i/yj (i > 1), = (1. 

5. If HL(P, , -y) = HL(P, , ,y) then j7i = TYi and pi = api, ,i = Oil/a for i = 

1, 2, ... , n, where a is some constant. 
The next three lemmas show~how the product of special matrices with various 

general matrices may be computed efficiently. 
LEMMA III. Let B be an m X n matrix and HL(P, ,B, y) an n X n special lower- 

Hessenberg matrix. The product B = BH can be formed using either of the following 
recurrence relations: 

Forward Recurrence. 
1. w111 Bp, bi = (3wj (11, i = 1, 2, . .. , m; 

2. w1i) = w8' - pi-bi~ ji = 1, 2, ... , 

5ij = Tj-jbj, -1 + Ojwt J j = 2, 3, *. , n. 

Backward Recurrence. 
1. Wi(n) = Pnbinq i = 1, 2, .., m; 

2. 6ij = j-jbj,i-j + #iwi i =1) 2, *** m, 

(i-i~l) = pibi i , + wi n, n 2; 

3. il= (1wj'l, I= 1,2, ,m. 

Proof. We will give a proof for the forward recurrence case. The backward 
recurrence case can be shown in a similar way. The first column of B is given by 

n 

bil = (1 E bijp;, i = 1, 2, *.-, m. 
j=l 

If we define 
(1) 

Bp w'1 = Bp, 

or 
n 

(9) w?1l) = E bfbpi, i = 1, 2, * , , 
j=l 

then 

6il dlw~l), i = 1, 2, im 

Forming the second column, we have 
n 

(10) 6 i2 = ylbi2 + 01 1: bi ipi i = 1, 2, * ,m. 
j=2 

From Eq. (9), we have 
n 

i bilp1 = F bip,, i = 1, 2, . .. , 
j-=2 
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and, if this vector is defined as w(2), then (10) becomes 

bi2 = -ylbil + 32wi, i = 1, 2, , m. 

The other columns of B are formed in exactly the same way. 
The backward recurrence is more efficient, unless the product Bp is known a priori. 

It is also more convenient if B occupies the same storage as B. 
The forward and backward recurrence relations require approximately 75% of 

the work necessary to form the same product by successively multiplying B by each 
of the individual Givens matrices. Since HL(p, 1, 7) is an orthogonal matrix, there 
exists a vector v such that HL(p, , -y)v = ael, and we can regard HL(p, 1, y) as the 
matrix which reduces v to ael. An equivalent reduction can be obtained by multi- 
plying v by a single Householder matrix. If we have a product of the form 

HL(P(1) t (1) d ,)K1)) . .. HL(plr) L 0(r) _Ylr )B9 

the computational effort involved in applying Lemma III is less than that using a 
similar product of the equivalent Householder matrices. This is because for D, a 
certain diagonal matrix, the product can be written as 

DHL(p"l), p(1), e) . H 
L(plr), 01r) e)B 

using Lemma IL, parts 1 and 4. 
LEMMA IV. Let R be an upper-triangular matrix and H,(13, p, y) a special upper- 

Hessenberg matrix. The product ft = H,(1, p, 7y)R is an upper-Hessenberg matrix 
which can be determined using either of the following recurrence relations: 

Forward Recurrence. 
1. Set wi1) = RTp, 

hii = ojwj')' i = ,2, **,n. 

2. For i = 2, 3,~ ., n, set 

hij,j-j = 7j_jrj_l ,j-l, 

Wj(i) = pw--(i-i= 
hi ., i = = n.i_, i i) 

hij= yjjj~~ + 13jw5iJ 

Backward Recurrence. 
1. W = Pnrnn 
2. Fori= n,n- 1, ... ,3,2, set 

hj~j-j = yjjrj-1 i-1, wiLj' =pi-ir-1, 

hij = yjjrjjj + 13iwji)t i = i, i + 1 *-, n. 

pi-irij= + wi'i ) 

3. hi, = 131wj' , j = 1, 2, ... , n. 

Proof. This lemma is proved in a similar way to Lemma III. 
LEMMA V. Let R be upper-triangular and R(13, p, -y) a special upper-triangular 

matrix. The product A = R(1, p, -y)R can be found using either of the following recur- 
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rence relations: 
Forward Recurrence. 
1. Set we" = RTp. 
2. For i = 1, 2, ... , n, set 

Pii =~ yirii , 

(~i+1) (~i) i 

whirl) = we) - p~r~, j i + 1, i + 2,** n. 

Pi= 'y iri + o w~i J 

Backward Recurrence. 
1. For i= n, n- 1, * * I ,lset 

iW(i) = piri i, rii -,= yirii, 
Pii= y r i+ . =i~i 

= 'iri + I13w~ I j =i+ 1, i + 2, ,n. 
wet) = whirl) + Pr1 J 

The forward recurrence relation can be formulated in the following alternative 
manner: 

1. Set we" RTp. 
2. For i= 1, 2,. * *, n, set 

Pii =yirii, 

w(i+1) = w(i) -p rli = 
Iw ,+1, 

- 
n 

rii = (yi - fipi)rii +fiw = + 

This formulation requires an additional n2/2 multiplications. It has been shown by 
Gentleman [4] that the use of the more efficient relationship can lead to numerical 
instabilities in certain applications. 

If the products of n 2 X 2 Givens matrices are accumulated into a single special 
matrix, it has been demonstrated in Lemmas I-V how certain savings can be made 
in subsequent computations. The nature of the forward and backward recurrence 
relations are such that, when a value of s5 is very small, underflow could occur in the 
subsequent computation of i,. This will result in a division by zero during the com- 
putation of the next hi. It will be shown in the following section how this difficulty 
can be avoided by judicious choice of the scalar 'r. 

In certain applications, the vector v which is such that 

HUWp , PI_)V = I IVI 12 e, 

is known. Since Hu(f3, p, -y) is orthogonal, we have, from its definition, that 

Hu( piy)THu(g, piy)v = I fVj 12 HU(fi piy)'el = I vjj 12 HL&,f 3 y)el 

which gives v =3 1lVi 12p, and the vector v is parallel to the vector p. If the value of vr 
is chosen as ir = cl/vi, then the vector p is equal to v. If pi denotes the quantity 
defined at (4), this gives the modified algorithm: 

Backward Recurrence. 
1. Set on = -Cnl/V, -Yn-i = Sn-lo 

2. For = n - 1, * , 3, 2, set i3 = -c-11/pi, yi-I = si-. 

3. Set 31 = cl/v1 = l/pi. 
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In the cases where v, is not known a priori, 7r can be set at 2', where the com- 
putation is carried out on a machine with a t-digit binary mantissa. Since the value 
of 7, is such that 

7ji= S .S- . . S1/7r 

during forward recurrence, and 

fj = Si Si+ . .* Sn-1/7r 

during backward recurrence, this choice of or is such that qj is unlikely to underflow. 
If even this strategy is insufficient, the product of the Givens matrices can be 

split into subproducts. For example, if at the kth product, Ok is intolerably small, 
we can form the subproduct: 

FI 0 ]k fHL(p",f3"y) 0] 
0 Hz (p O' , THL (P,, 0 
~O :HL(p',f3'YJ?1): 

where HL(p', a', Ty') and HL(p", 3", my") are smaller special matrices of dimension 
(n - k) X (n - k) and k X k, respectively. Clearly, a product of separate Givens 
matrices can be viewed as being a product of special matrices in which a "split" 
has occurred at every step. Each element in the subproduct is an individual Givens 
matrix. 

3. Modification of the Cholesky Factor. In this section, we consider the case 
where a symmetric positive definite matrix A is modified by a symmetric matrix of 
rank one, i.e., we have 

A = A + azzT. 

Assuming that the Cholesky factors of A are known, viz. A = LDLT, we wish to 
determine the factors 

A = LDLT . 

It is necessary to make the assumption that A and A are positive definite since other- 
wise the algorithms for determining the modified factors are numerically unstable, 
even if the factorization of A exists. Several alternative algorithms will be presented 
and comments made upon their relative merits. Any of these general methods can 
be applied when A is of the form A = BTB and rows or columns of the matrix B 
are being added or deleted. In this case, it may be better to use specialized methods 
which modify the orthogonal factorization of B: 

QB= LR1 

The reader is referred to Section 5 for further details. The methods in this section 
are all based upon the fundamental equality 

A = A + azzT = L(D + appT)LT, 

where Lp = z, and p is obtained from z by a forward substitution. If we form the 
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factorization 

(11) D + appT = L T, 

the required modified Cholesky factors are of the form 

i = LL DLTLT 

giving 

L = LL and D = b, 

since the product of two lower-triangular matrices is a lower-triangular matrix. The 
manner in which the factorization (11) is performed will characterize a particular 
method. 

Method Cl. Using Classical Cholesky Factorization. The Cholesky factoriza- 
tion of D + appT can be formed directly. We will use this method to prove inductively 
that L is special. 

Assume at the jth stage of the computation that 

(12) Ira = PrAy r = j1i + 1, ... , n; s = 1, 2, * * , j - 1, 

and that all these elements have been determined. Explicitly forming the jth column 
of LDLT gives the following equations for d and ri, r = j + 1, * ,: 

(13) a ili + d = d, + ap2 

and 

(14) E aidljjir + dalri = aPiPr, r = i + 1* , n. 

Using Eq. (12) with (13) and (14) gives 
i-i 

P. E I23" + dj = dj + ap2 

and 
j -1 

PiPr Zd daf3 + dir = ?YPjPr, r = i + 1, * , n. 
5=1 

From the last equation, we have 

r =ii PrZ r = + 1,***,n, 

and defining 

gives Irj = P r Ij. Hence, the subdiagonal elements of the jth column of L are multi- 
ples of the corresponding elements of the vector p. 

Now forming the first column of LbL T, we obtain the equations 
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aI = di + ap , 

ar1 a=PiPr., r = 2,** ,n, 

which shows that the subdiagonal elements of the first column of L are multiples 
of the corresponding elements of p. Consequently, we have proved by induction 
that L is special. 

This result implies that we need only compute the values of 7,, f3M, j = 1, * n, 
in order to obtain the factorization of D + appT. In practice, we define the auxiliary 
quantity 

;-1 

a,= a a- E df. 
i=1 

The recurrence relations for a,, Ji and By then become 

a1 = a 

A= d, + aip1 

= aip,/i , j = 1, 2,, n. 

aj+j= aod /, , 

The product L = LL can be computed in terms of the f31 by forward recurrence 
using Lemma V. Note that L and L are both unit lower-triangular matrices and that 
this results in some simplification of the algorithm. The vector w (1) needed to initialize 
the recurrence relations is known since w') = Lp = z. Also, each of the vectors 
w (j = 1, 2, *. , n) can be obtained during the jth stage of the initial back sub- 
stitution Lp = z, since 

n - 

r= E IriPi = Zr -E IriPi r = i, i + 1, * *, n. 
i-i i=1 

The final recurrence relations for modifying L and D are as follows: 
Algorithm Cl. 
1. Define a, = a, w (1) = z. 
2. For j= 1, 2, * *, n, compute 

pi = Wi) 

di = di + 2ipi, 

f3 = pjajl/j, 

aji+j = djagj1Wj, 
W(j+1) Wj ) 

Wr = Wr - r= j+ 1, ,n. 
'ri = r j + pi wr' 

Using the expression for w.r we can rearrange the equation for r; in the 
form 

Tr = Iri + f3i(Wr pi-ri) 

= (1 - jPj)lni + fwr 

= (dj/di)lrj + f3,wri) I 
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which is the form of the algorithm given by Gill and Murray [5]. However, this 
increases the number of multiplications by 50%. 

One of the earliest papers devoted to modifying matrix factorizations is that by 
Bennett [2], in which LDU factors are updated following a rank m modification: 

EDU = LDU + XCYT, 

where X, Y are n X m and C is m X m. It should be noted that 
(i) the algorithm given by Bennett is numerically stable only when L = UT, 

X = Y and both D and D are positive definite, and 
(ii) Algorithm Cl is almost identical to the special case of Bennett's algorithm 

when m = 1, C = a and X = Y = z. 
The number of operations necessary to compute the modified factorization using 

Algorithm Cl is n2 + 0(n) multiplications and n2 + 0(n) additions. 
If the matrix A is sufficiently positive definite, that is, its smallest eigenvalue is 

sufficiently large relative to some norm of A, then Algorithm CI is numerically stable. 
However, if a < 0 and A is near to singularity, it is possible that rounding error could 
cause the diagonal elements d, to become zero or arbitrarily small. In such cases, 
it is also possible that the di could change sign, even when the modification may be 
known from theoretical analysis to give a positive definite factorization. It may then 
be advantageous to use one of the following methods, because with these the resulting 
matrix will be positive definite regardless of any numerical errors made. 

Method C2. Using Householder Matrices. In this method, the factorization 
(11) is performed using Householder matrices. To do this, we must write 

A = LD112(I + avvT)Dl/2LT, 

where v is the solution of the equations LD112v = z. The matrix I + avvT can be 
factorized into the form 

(15) 1 + avv v)(I + ovvT) 

by choosing oa = a/(I + (1 + aVTV)112). 

The expression under the root sign is a positive multiple of the determinant of A. 
If A is positive definite oa will be real. 

We now perform the Householder reduction of I + _VVT to lower-triangular 
form 

L = (1 + ovv )P1P2 p._. . 

We will only consider application of the first Householder matrix P1. The effect 
of the remainder can easily be deduced. 

Let P1 = I + UUT/r and partition v in the form vT = [vl wT]. The (1, 1) element 
of I + _VVT is then 0 = 1 + ovl2 and P1 must reduce the vector [0 *. vJwT] to a 
multiple of elT. Using the relations of Section 2, we define 

2 02 +2 2 T 
p = a + aVlW W, 

ul = 0 + p and 

T = -pUl. 

(Note that we have taken p = +(p2)1/2, because we know that 0 > 0.) Now u has 
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the form 

U= [Ul W ] 

i.e., the vector of elements u2, * *, u, is a multiple of the vector w. 
The result of applying the first Householder transformation can therefore be 

written as 

(I+ qV~V)(I + UU) = KW+ W? 
T HO~w I + awWWT 

for suitable values of the scalars a and a which will be determined as follows. The 
first column is given by 

= (I + cTvv )Lel + - uiuj 

+ T 1 ]-2 
cy'W II+ oWWT -Uq1 L ~W I I OLav 

which implies that 

8w = + - u)ovlw + ulavl(1 + owTw)w 

so 

a= +(1 +Uu2ov (1 + wTw). 

A small amount of algebraic manipulation gives 

a = -a VI (2 + crvTv). 
p 

Similarly, for the scalar a, we have 

1+ WWT =aJ +v ~ q+WWT]r 

- 2 2 T 
I+av~ww j 

giving 

a =!1 ula~v22 + o 122+132 Tw & Ula V1 - (7 V1 -a l VW 

which can be shown to be equal to 

a= --o(1 + P) - (1 + P r ~~P(O+ P) 
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The (n - 1) X (n - 1) submatrix I + &wwT has the same structure as I + avvT 
and a Householder matrix can be applied in exactly the same fashion. It can be 
shown that 

1 + _Tw - ( 1 + VT) 

and so the sign choice in the definition of each of the Householder matrices remains 
the same. 

For notational convenience, we will write pi, 0i, 6,, and ofi + for the quantities 
p, 0, 6, and a at the jth step of the reduction, and use p, a for the vectors (pi), (Sb). 

The full reduction is now 

(I + vv T)PiP2 ... P-,l = R(3, v, _pP) 

which gives 

A = LD"2R(av, Vp)TR(6 v, p)Dl/2LT 

From Lemma II, we have 

R(6 v, -p)D"12 = R( 12 D2v, p) = D/2R(D1/2 , p, p) = D r121R(J, p, e), 

where 

r = diag(p,), 

= d2 v, i 

fA2 =pj) 

(Note that p is the solution of Lp = z, as before.) 
Following our convention for unit-triangular matrices, we define 

L(p, 3, e) = R(3, p, e)T. 

The net result is that 

L=LL(p, f, e) and D = rDr, 

which must be analytically equivalent to the factors obtained by Algorithm C1. 
What we have done is find alternative expressions for 0j and di, the most important 
being di = pi 2di. Since pi , is computed as a sum of squares, this expression guarantees 
that the computed di can never become negative. In Algorithm Cl, the corresponding 
relation is di = di + a p ,2 where sign(ai) = sign(a). If a < 0 and LDLT is nearly 
singular, it is possible that rounding errors could give di << 0. In such cases, Algo- 
rithm C2 is to be preferred. 

The analytical equivalence of the two algorithms can be seen through the relation 
between as and ai. For example, Eq. (15) implies that 

a, = oa(2 + ovTv) 

and if this is substituted into di = di + a p12 we get 
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which agrees with D = rDr. In general, if we define 

ai = ai(2 + ai vi) 

the expression for bi simplifies, giving 

USi a vi Ofi pi ?tiPi 
--l/2 

= d1/2p dip2 - d- 

which is the expression obtained for f3i in Algorithm C1. In practice, we retain this 
form for Algorithm C2. The method for computing L from L and L(p, fi, e) is also 
the same as before. The iteration can be summarized as follows. 

Algorithm C2. 
1. Solve Lp = z. 
2. Define 

n nqi{ = 1 2, * n , n, 

sj=E P2i/di = E i 

a1 = a, 

al = a/[1 + (1 + as1)"12]. 

3. For = 1, 2, ,n, compute 

(a) q = p2/d 

(b) 0= 1 + ajqi, 

(c) s+,1 = S - q, 

(d) p = s + oqjsj+1, 

(e) di = Pi 

(f) fi = oipildi, 

(g) aX+1 = aj 

(h) 0j+l = o,(l + p,)/[p,(0i + pi)], 
(ij+1) = (j 

(i) n = 'r + Piri , r=Ij + 1, j + 2, n. 
Irj frj+ SIBi W, 

Note that the initial back substitution takes place separately from the computation 
of L(p, 3, e), because of the need to compute the vector p before computing si. This 
adds n2/2 + 0(n) multiplications to the method but ensures that the algorithm will 
always yield a positive definite factorization even under extreme circumstances and 
allows L to be computed by either the forward or backward recurrence relations 
given in Lemma V. The method requires 3n2/2 + 0(n) multiplications and n + 1 
square roots. 

Method C3. Using Givens Matrices I. One of the most obvious methods of 
modifying the Cholesky factors of A in the particular case when a > 0 is as follows. 



METHODS FOR MODIFYING MATRIX FACTORIZATIONS 521 

Consider the reduction of the matrix [a1/2z RT] to lower-triangular form, i.e., 

[a1/2z 
* 

RT]P = [aT 0], 

where P is a sequence of Givens matrices of the form P = P2P3 ... Pn+1n. We have 

F~~] ATA 1/2 F i~~~~/2 T] 
*0 --- = =[az --- = R + azz 

Consequently, AT is the required factor. 
This algorithm can be generalized when a < 0. The rank-one modification will 

be written as 

RT = R R - R azzT, a > O, 

for convenience. The vector p is computed such that 

RTp =Z, 

and we set 

= (1 - apTp)/a. 

We now form the matrix 

[P 1? 

and premultiply by an orthogonal matrix P of the form P = p1n+l *P* p P ln+l 

such that the vector p is reduced to zero. This gives 

I - L T?--i 
a^n I 0- FL JO rg 

in which case the following relations must hold 

(16) pp + a2 = 
60 

(17) RTp= =or, 

(18) R TR = R +rr 

Equation (16) implies that 302 = I/a, Eq. (17) implies that r = z/o= al/2Z, and, 
finally, (18) gives RTR = ATR + aZZT, as required. This method requires 5n2/2 + 0(n) 
multiplications and n + 1 square roots. 

Method C4. Using Givens Matrices II. For this method, we shall be modifying 
the factorization 

ARTA = R TR + azzT. 

From this equation we have 

(19) = R T(I + appT )R, 

where RTP = z. We can write A in the form 

(20) A = R TPTP(I + appT)PTPR 
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where P is an orthogonal matrix. The matrix P is chosen as a product of Givens 
matrices such that 

(21) pp = 
l 
p32 ... pn - 2P P = pe- I 

where IpI = IP112. Eq. (19) can be written as 

A RTPT(I + aP ele,)PR 

As each Givens matrix Pi+,, is formed, it is multiplied into the upper-triangular 
matrix R. This has the effect of filling in the subdiagonal elements of R to give an 
upper-Hessenberg matrix H. We have 

H= PR, = HTjT JH, 

where J is an identity matrix except for the (1, 1) element which has the value 
(1 + tapTp)112. If A is positive definite, the square root will be real. The formation 
of the product JH modifies the first row of H to give H which is still upper Hessen- 
berg. 

A second sequence of Givens matrices is now chosen to reduce H to upper- 
triangular form, i.e., 

Pr =pnn-lpnnl ... p32pl= R. 

Then 

i= JfT17= fTpTpR = ATR 

as required. This algorithm requires 9n2/2 + 0(n) multiplications and 2n - 1 square 
roots. 

Method C5. Using Givens Matrices III. If we write Eq. (19) as in Method C2, 
viz. 

A = R T(I + crppT)(I + rppT )R, 

where oa = a/(l + (1 + apTp)112). If P is the matrix defined in (21), we can write 

(22) = R T(I + 0_ppT)pTp(I + OPPT )R = RTHTHR, 

where H = P(I + oppT) = P + ope pT. According to Lemma I, P is a special upper- 
Hessenberg matrix of the form P = Hu(f3, fl, e) for some vectors P, ( and T. Now 
the first row of P is a multiple of pT by definition, and, furthermore, Pp = pel implies 
that p = pPTel, so the first row of P is also a multiple of p. From Lemma II, it follows 
that by choosing pn = p,, when forming P as a special matrix, we can ensure that 
P = Hu(3, p, oy) for some ( and y. 

Assuming this choice of n,, is made, we have 

H = Hu(3, p, y) + orpelpT Hu(, p,, Y) 

where : differs from (3 only in the first element, i.e. 5 = (3 + apel. Now H can be 
reduced to upper-triangular form P by a second sequence of Givens matrices P: 

PH = pn-pn ... P3P1H = R 

It can be readily shown that A is of the form 

R = R(0, p ,5) 
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where the vectors , and jI are given by the following recurrence relations: 

1. 1 = 

2. 
1i = Cii + Sip 1 

i= cihp; + S I = 1, 2, , n - 1; 

?7i+l -siv; -C; cA 

3. in= 77n. 

The quantities ci and s; are the elements of the Givens matrices in P. They reduce 
the subdiagonal elements yr of H to zero at each stage, and are defined in the usual 
way. The final product R = AR can be computed using Lemma V. 

This algorithm requires 2n2 + 0(n) multiplications and 2n - 1 square roots. 
The work has been reduced, relative to Method C4, by accumulating both sequences 
of Givens matrices into the special matrix R and modifying R just once, rather than 
twice. 

4. Modification of the Complete Orthogonal Factorization. If A is an m X n 
matrix of rank t, m > n, t < n, the complete orthogonal factorization of A is 

(23) QAZ R Oj 
I 0:o 

where Q is an m X m orthogonal matrix, Z an n X n orthogonal matrix and R a 
t X t upper-triangular matrix (see Faddeev et al. [3], Hanson and Lawson [10]). 

The pseudo-inverse of A is given by 

A+ = Z[ --]Q. 

In order to obtain the pseudo-inverse of A = A + yz, where y and z are m and n 
vectors respectively, we consider modifying the complete orthogonal factorization 
of A. (With no loss of generality we have omitted the scalar a.) 

From Eq. (23), we have 

Q9Z 0R 0 p T 
Q Lo :RIOj+ T 

where p = Qy and q = ZTz. If the vectors p and q are partitioned as follows: 

P [U jt , q[Wjt 
= 

}m- 
q - t 

we can choose Q and Z1 to be either single Householder matrices or products of 
Givens matrices such that 

QIU = ae1 and TZ = De 1, 

where a and g are scalars such that I aI = 111712 and I,81 = L1 lw2. Note that application 
of these matrices leaves the matrix R unchanged. For convenience, we will now work 
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with the (t + 1) X (t + 1) matrix S, which is defined as 

SI= ---- + [ 1JWT . 

We next perform two major steps which will be called sweeps. 
First Sweep. Choose an orthogonal matrix Q, I such that 

QII[---]= PiP3 + [---] = y1e1 

where y12 = llull22 + a2. If SI is multiplied on the left by QII and the resulting 
product defined as SI I, we have 

r TI ] T~ 
SII = QIISI = + yie,[w (3] - X 1, 

L III 02 LRI, 0 1 
where R11 is an upper-triangular matrix. The t diagonal elements of RI, are filled 
in one at a time by the application of each 2 X 2 orthogonal matrix. We have defined 

riI = rII + 7yiw 

Second Sweep. We now construct an orthogonal matrix QIII which, when 
applied to SI I from the left, reduces SI I to upper-triangular form. If this triangular 
matrix is defined as SI II, we have 

SIII = rIIS--S =l FRI,,: sIII1 
L TI I 

where Q I I I is of the form 

Q =i Pt= ... 
2 QI II = t+ 1 P3 P2. 

The matrix SI II may or may not be the upper-triangular matrix required, depending 
upon p(4), the rank of A. The different cases that can arise are summarized in the 
following table: 

=0 70 

a 

-0 p(A)= t or t-1 p(A)= t 

7D 0 P(A) = t P(A) = t +1 

Case I. a 0, 7 -- 0. In this case, SI II has full rank and 

ERIIII SIII = 

L R. 
0 61- 
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The final orthogonal matrix Q is given by 

(24) Q = [ --:'---i j---j ---[ Q 
0 I 0 I J li QI J 

t+1 t+ 1t 

and 

z = zK K} l 

t 

Case II. a 5Z 0, / = 0. If the first and second sweeps are followed carefully, 
it can be seen that SI I I is of the form 

0 I 

0 0 

i.e., s I = 0 and a I I I = 0. As in Case I, SI I I is in the required form and we define 
the modified factors accordingly. 

Case III. a = 0, ,3# 0. The first orthogonal transformation of the first sweep 
is an identity, and the matrix SI I has the form 

t 

It 
SIe s f 

0 

Application of the second sweep (Q II ) gives the matrix SI in the form 
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t 

5111= \\ \ h It1 sIII= ~ ~~~RI 

0 iO 

i.e., aIII = 0. 
An orthogonal matrix Z I I is now applied on the right to reduce s I Ito zero, thus 

-. 
I 7 

SIIIZII = SIIIpt+ptjptR 0 PI = 

Lo Oj 

The modified factors are Q as defined in (22), and 

[ ZI ][ I 

Case IV. a = 0, 0, p(A) = t. The matrix SI,, has the following form: 

RI,, 

SIII = I \ O Pt +1 

0 

0 0 

If the diagonal elements of RIII are all nonzero, then rank(4) = rank(RIII) = t 
and the factors are completely determined. Otherwise, exactly one of the diagonal 
elements of RI I I may be zero, since the rank of A -can drop to t - 1. In this case, 
two more partial sweeps must be made to reduce RIII to strictly upper-triangular 
form, as follows. 

Case V. a = 0, ,3 = 0, p(A) = t - 1. Suppose that the kth diagonal of RIII 
is zero. The matrix can be partitioned in the form 



METHODS FOR MODIFYING MATRIX FACTORIZATIONS 527 

k- I t-k 

\ RIV I 

W 1k-1 

R rjv 

Rv t-k 

where R IV, RV are upper-triangular with dimensions (k - 1) X (k - 1) and (t - k) X 
(t - k), respectively. An orthogonal transformation QIV is now applied on the left 
to reduce the submatrix L 

riy 

to upper-triangular form in exactly the same way as the first sweep. Similarly, a 
transformation ZII is applied (independently) from the right to reduce slv to zero 
in the submatrix [R I s IV]. Thus 

R I I 

0 RV 

0 

where Qi = v Ptpk_.. Pk+2kkk and Z11 ic .. kP' 

Finally, a permutation matrix Z111 is applied to move the column of zeros to 
the right: 

RIV ~ ~ #I 0 ? RI W 

O 
0 - - - - - - - --I- 

0hr Q pp k = p k p 0- p 

The modified factors are 
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[Q I V 4FQ I 1 I I I1 

--A J~ ~ ~~~Q 
and 

I ZII: ZIII: l= z -- Z- E I --- 

The number of operations necessary to compute the modified factors are sum- 
marized in the following table: 

Description Order of multiplications 

Compute p, q Mn2 + n2 
Determine a, i3 4m(m - t) + 4n(n - t) 
First sweep 2t2 + 4mt 
Second sweep 2t2 + 4mt 
Additional computation for case III 2t2 + 4nt 

*Additional computation for case v 4t2 + 2t(n + m) 
3 

* It has been assumed that if W(k) is the amount of work when the kth diagonal element of RIII 
is zero, then the expected work is (1 /t) 5k=l W(k). 

The maximum amount of computation necessary, which is of the order of 623t2 + 
5(M2 + n2) + 2t(3m - n) multiplications, will occur when Case V applies. In the 
special case, when A and A are both of full column rank, then Z is the identity matrix 
and the amount of computation is of the order of Sm2 + 4n2 + 4mn multiplications. 
This reduces to 13n2 when m = n. 

4.1. Use of Special Matrices. The number of operations can be decreased if some 
of the properties of special matrices outlined in Section 2 are utilized. Each Givens 
matrix must be multiplied into a Q matrix, Z matrix or upper-triangular matrix, 
depending upon the current stage of the algorithm. These multiplications can be 
performed by accumulating the product of each set of Givens matrices into the 
associated special matrix. Each QI, ZI, QII, ZII, ... , etc. will be either a special 
matrix or a permutation matrix. The orthogonal matrices Q I, ZI, * * *, etc. will be 
formed, using Lemma I and Lemma II, as products of the form A Io II V 1Z 1, A I IQ I I, 
V I IZI I, , etc. where AI, V 1, AI I, V I I, , etc. are diagonal matrices and 
QI, ZI, II , etc. are special upper- (lower-) Hessenberg matrices with unit sub- 
(super-) diagonals. In addition, we assume that we modify the factorization 

QAZ DL 0 

At the initial stage, DLT is unaffected by the pre- and post-multiplication with A QI 
and Z IV 1. The products 

I ] I 0 
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can be formed using Lemma III, the diagonal matrices being kept separate from the 
orthogonal products. 

During the first sweep, we require the product 

QI I 0---- - 

If this matrix is written in the form 
F TI 

DL i0 

L o 01o 
it can be evaluated by bringing the diagonal matrix D to the left of Q by suitably 
altering the special matrix QII to QII' as in Lemma II. The remaining product 
involving Q II' and LT can be formed using Lemma III with backward recurrence. 
The multiplication of Q II' by the current orthogonal matrix is performed similarly 
to that involving Q I except that again the diagonal AI must be brought through by 
altering Q II to Q II/" (say). 

If the remainder of the computation is carried out using the same techniques as 
those just described, the number of multiplications can be summarized as follows: 

Description Order of multiplications 

Compute p, q m2 + n2 
Determine a, f3 2m(m - t) + 2n(n - t) 
First sweep t2 + 2mt 
Second sweep 2t2 + 2mt 
Additional computation for case III 2t2 + 2nt 

Additional computation for case V 
4 

t2 + t(n + m) 
3 

The maximum amount of computation necessary is now of the order of 41 t2 + 
3(M2 + n2) + t(3m - n) multiplications, and this reduces to 3(M2 + n2) + 2mn 
multiplications in the full rank case. When n = m = t the algorithm requires 
8n2 + 0(n) operations. 

5. Special Rank-One Modifications. We now consider some special cases of 
the complete orthogonal factorization which occur frequently, namely adding and 
deleting rows and columns from A. These cases deserve special attention because 
the modifications can be done in approximately half as many operations as in the 
general case. Since, in most applications, A is of full column rank, we will deal 
specifically with this case and modify the factorization 

QA =[? 

where A is m X n, m _ n. 
5.1. Adding and Deleting Rows of A. We first consider adding a row aT to A. 

Assuming, without loss of generality, that this row is added in the (m + l)th position, 
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we have 
I ~~~R 

Q 0 A -- 
--= 0 | T. 

0 1 aT Ta 

Elementary orthogonal transformations are now applied from the left to reduce aT 

to zero while maintaining the triangularity of R. This is done by defining the sequence 

T") = T, T('+') = P' T" = 1, 2, * n, 

where Pm+i reduces the (m + 1, j)th element of T'i to zero. Note in particular the 
effect on the column em+, which has been added to Q. The first n elements are filled 
in one by one, thereby forming the last column of Q: 

Pm+1Pm~ 
_ i = Q 

= K'm *m+iI 
say. p, +1rQ Qe=+1j 

Elements n + 1, n + 2, * , m of q"+1 remain zero. 
To remove a row from A, we now simply reverse the above process. This time, 

we have 
I ~~~~R }n 

QA= Qm'qm+l = 0 |m-n 

a. 04J11 
giving Qin + qn+laT = QA. Transformations Pmm+l, Pmm+l, *.., P1's are 
chosen such that 

Pqm+l - Pr+1 ... PmniPn qm+l = em+i. 

The last n transformations each introduce a nonzero into the bottom row of 

R 

0 

(from right to left), giving 

R 

PQA= 0 

r 

Looking at the effect on the various partitions of Q, we have 

PQ= {---I-1J 

and, since PQ is orthogonal, it follows immediately that u = 0. Thus 
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PQ(? A t= K= [!A 

= 0 

T [ r [ 

so that r = a, and also 

0 

as required. 
Often, it is necessary to modify R without the help of Q. In this case, we really 

want A such that 

ATA = RTR i aaT 

so, clearly, the methods of Section 3 would be applicable. Alternatively, we can 
continue to use elementary orthogonal transformations as just described. Adding 
a row to A is simple because Q was not required in any case. To delete a row, we 
first solve RTp = a and compute 52 = 1I I JpJ 12. The vector 

p I 

(25) 0 }m-n 

now plays exactly the same role as q,,,?l above. Dropping the unnecessary zeros in the 
center of this vector, we have 

pn+1 pn+lpn+l[pR1 = [O R 
P1 ... 11a 0 r J 

where as usual, the sequence { Jpn+l } has the effect of reducing p in (23) to zero and 
introducing the vector rT beneath R. Since the pjn+l are orthogonal, it follows that 

[TI] KT_1 = [;VP_ iPV i ] 

R r I rT R I 0 J L a 0 

or 

1 I 
II II2 + 

1 
pTR (1 r ____= 2____IT_ 

r R+ rrT 1 R p RTRJ 

so that r = RTp = a, and T = RTR - aaT as required. 
5.2. Adding and Deleting Columns of A. Suppose a column is added to the 

matrix A, giving 

= [A a]. 
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Since 

QA = R__0 
0 

we have 

(26) Q4= 
R u 

where [uT .T] = aTQT and u and v are n and m -n vectors, respectively. If an 
orthogonal matrix P is constructed such that 

U 

where y = i lvi 12, then, premultiplying (24) by P leaves the upper-triangular matrix 
R unchanged and the new factors of A are 

= -- and iQ= PQ. 

This method represents just a columnwise recursive definition of the QR factorization 
of A. 

When Q is not stored or is unavailable, the vector u can be found by solving the 
system 

R u = A a. 

The scalar y is then given by the relation 
212 _ IU112 ly = IIal 1- 2 

Rounding errors could cause this method to fail, however, if the new column a is 
nearly dependent on the columns of A. In fact, if R is built up by a sequence of these 
modifications, in which the columns of A are added one by one, the process is exactly 
that of computing the product B = ATA and finding the Cholesky factorization 
B = RTR. It is well known that this is numerically less satisfactory than computing 
R using orthogonal matrices. In some applications, the sth column of Q is available 
even when Q is not and, consequently, oy can be computed more accurately from the 
relationship -y = a Tq., where qe is the sth column of Q. 

Some improvement in accuracy can also be obtained on machines which have 
the facility for performing the double-length accumulation of inner-products. In 
this case, the ith element of u is set to 

1 n 

Ui = - ' aia,- E uirii} , 
ri j l jowl 

where the two inner-products are formed as a single sum. Despite these improvements, 
this is still numerically less satisfactory than the previous method where Q was 
available. 
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A further possibility of improving the method arises when one column is being 
deleted and another is being added. A new column 'replacing the deleted column is 
equivalent to a rank-two change in ATA and can be performed by any one of the 
methods given in Section 3. Even this is still not ideal, since the computation of the 
rank-one vectors require the matrix vector product AT(a - el), where a is the column 
being added and a is the column being deleted. 

Finally, we describe how to modify the factors when a column is deleted from A. 
It will be assumed that A is obtained from A by deleting the sth column, which as 
usual will be denoted by a. Deleting the sth column of R gives 

R1 I T1 s- 1 

Q = 0 | T2 In-s + 

0 10 - I n 

where R1 is an (s - 1) X (s - 1) upper-triangular matrix, T1 is an (s - 1) X (n - s) 
rectangular matrix and T2 is an (n - s + 1) X (n - s) upper-Hessenberg matrix. 
For example, with n = 5, s = 3 and m = 7, we have 

X X ix X 
o x xx 
0 0x x 

R. T, 00 x x 

0 T2 = 0 O Ix x. 

0 :0 O O Oi x 

0 010 0 

0 0 0 0 

Let partition T2 be of the form 

In-s 

We now choose an orthogonal matrix P which reduces T2 to upper-triangular form, 
using one of the methods described earlier. Thus 

PT2= { -2 -ls 

where P is of the form P = P , *, * P32P21. The modified triangular factor for 
A is 
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A 0 T1 2}s- 1 

R = ORi 2 }n-s 

00 }m-n + 1 

If Q is to be updated also, the appropriate rows must be modified; thus 

Q1 }s -1 Q 

Q= Q2 }n-s + 1, Q= PQ2 

Q3 }m-n ,Q3 

It is sometimes profitable to regard this computation from a different point of 
view. The partitions of T2 satisfy the relation R2TA2 = R2TR2 + rrT, and this is 
analogous to the equation ATA = RTR + aaT which holds when we add a row aT 

to A. We conclude that deleting a column may be accomplished by essentially the 
same techniques as used for adding a row. 

6. Conclusions. In this report, we have presented a comprehensive set of 
methods which can be used to modify nearly all the factorizations most frequently 
used in numerical linear algebra. It has not been our purpose to recommend a par- 
ticular method where more than one exist. Although the amount of computation 
required for each is given, this will not be the only consideration since the relative 
efficiencies of the algorithms may alter when applied to particular problems. An 
example of this is when the Cholesky factors of a positive definite matrix are stored 
in product form. In this case, the choice of algorithm is restricted to those that form 
the special matrices explicitly. The relative efficiencies of Methods Cl and C2 are 
consequently altered. 
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