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A Characterization of Superlinear Convergence and Its 
Application to Quasi-Newton Methods* 

By J. E. Dennis, Jr. and Jorge J. More 

Abstract. Let F be a mapping from real n-dimensional Euclidean space into itself. Most 
practical algorithms for finding a zero of F are of the form 

Xk+1 = Xk - Bk l FXk, 

where (Bkj is a sequence of nonsingular matrices. The main result of this paper is a 
characterization theorem for the superlinear convergence to a zero of F of sequences of the 
above form. This result is then used to give a unified treatment of the results on the super- 
linear convergence of the Davidon-Fletcher-Powell method obtained by Powell for the case 
in which exact line searches are used, and by Broyden, Dennis, and More for the case 
without line searches. As a by-product, several results on the asymptotic behavior of the 
sequence J Bk I are obtained. 

An interesting aspect of these results is that superlinear convergence is obtained without 
any consistency conditions; i.e., without requiring that the sequence {Bk converge to the 
Jacobian matrix of F at the zero. In fact, a modification of an example due to Powell shows 
that most of the known quasi-Newton methods are not, in general, consistent. Finally, it is 
pointed out that the above-mentioned characterization theorem applies to other single and 
double rank quasi-Newton methods, and that the results of this paper can be used to obtain 
their superlinear convergence. 

1. Introduction. This paper will be concerned with iterations of the form 

(1.1) Xk+1 = Xk - B, Fxk, k = 0, 1, *** 

for the solution of Fx = 0, where F: R' -- R' is a mapping of Euclidean n-space R' 
into itself. Each nonsingular matrix Bk is directly or indirectly (as in various quasi- 
Newton methods) intended to approximate F'(Xk), the Jacobian matrix of F at Xk. 

Virtually all practical methods for generating a sequence {Xk} of approximate zeros 
of F have the basic form (1.1) although they are often implemented in their damped 
version, 

(1.2) Xk+1 = Xk - XkBk FXk, k = 0, 1, * 

where Xk is a scalar chosen to prevent divergence of the sequence {Xk}. Even in this 
case, the hope is always that Xk = 1 will suffice near x*, a zero of F. 

No matter which of (1.1) or (1.2) is used to generate { Xk }, the utility of the method 
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is in large part dependent on the speed with which { x, I converges to x*. In order 
to be practical, a method should be at least Q-linear (for material on rates of con- 
vergence see [7, Chapter 9]) when F satisfies reasonable hypotheses and { x, I converges 
to x*; i.e., for some r E (0, 1), Xk+1 - X*II ? r xk - x*jj, k = 0, 1, . Further- 
more, if the method is to be competitive then it should in fact be Q-superlinear, i.e., 
I 1x+ - x*Il/ xI-x*1 I} converges to zero with k. Higher orders of convergence 

are desirable when obtainable without unreasonable additional computations al- 
though for general problems, orders higher than two are of minimal importance. 

The standard technique for proving that a method is Q-superlinear has always 
been to show that as { x*} converges to x$, { BI converges to F'(x*). It is well known 
that this consistency condition is sufficient but not necessary. (See Voigt [11] for a 
compendium of interesting theorems and examples.) Since, until recently, all the 
practical methods for which there were published proofs of Q-superlinearity satisfied 
this property, it seemed to be effectively necessary. 

Recently, M. J. D. Powell [8] proved that the Davidon-Fletcher-Powell method 
is Q-superlinear when implemented in the form (1.2) with X, chosen by the standard 
line minimization criterion. On the other hand, Broyden, Dennis and Mor6 [2] 
showed that many of the most important quasi-Newton methods are Q-superlinear 
when implemented in the form (1.1). Powell [9] has also furnished an example which 
shows that the celebrated Davidon-Fletcher-Powell method is indeed a practical 
Q-superlinear method which does not have the property that IBkI converges to 
F'(x*). When properly modified, this example shows that most of the known quasi- 
Newton methods are not, in general, consistent. In this paper, a quasi-Newton 
method refers to an algorithm of the form (1.1) or (1.2) where Bk+l is obtained by 
adding a matrix of rank at most two to Bk. For example, all the algorithms in the 
Huang [5] class are quasi-Newton methods, but the Goldstein-Price [4] algorithm 
is not a quasi-Newton method. 

Although the Powell and Broyden, Dennis, More convergence proofs are quite 
distinct, the parts of both papers which deal with Q-superlinearity turn out to be 
based on the same principle. The main purpose of this paper is to enunciate that 
principle and some of its consequences. 

In the next section, we prove a characterization theorem for Q-superlinear con- 
vergence to a zero of F which applies to sequences generated by either (1.1) or (1.2). 
We also obtain a simple, but apparently new, justification for using lxI+, - x 
as an estimate for tIxk - x* I. 

In Section 3, we apply our results to the Davidon-Fletcher-Powell method and 
show how the superlinear results of Powell and those of Broyden, Dennis and More 
can be obtained, while in Section 4 we indicate how these results can be applied to 
other quasi-Newton methods and we give Powell's example. We conclude with 
some general remarks. In particular, we compare our results to those obtained by 
McCormick and Ritter [6], and Ritter [10]. 

2. Characterization of Superlinear Convergence. Let I denote an arbi- 
trary vector norm in R' or the operator norm it induces in L(R')-the space of real 
matrices of order n. Now recall [7, Chapter 9] that if { x* I C R' converges to x*, 
then { Xk I converges Q-superlinearly to x* if and only if either xk = x* for all suffi- 
ciently large k or xk F x* for k > ko and 



A CHARACTERIZATION OF SUPERLINEAR CONVERGENCE 551 

iMr IIXk+l - x*II|/|Xk - X*II = 0. 
k-+ X0 

In this paper, when we assume that { xk} converges to x*, we will also make the un- 
stated assumption that X k -- x* for all sufficiently large k. In the context of (1.1), 
this simply means x,+, P x, for any k _ 0 and is thus quite reasonable. 

With these preliminaries out of the way, it is possible to proceed with the stated 
purpose of this section, the development of a characterization theorem for methods 
of the form (1.1) which are Q-superlinearly convergent. We begin with a result that 
gives a necessary condition for an arbitrary sequence. 

LEMMA 2.1. Let {Xk) C R' converge Q-superlinearly to x*. Then 

(2.1) HM tIxk+l - xktt/Ilxk - x*11 = 1. 
k-+ co 

Proof. Just note that 

jjXk+1 - X1j _jX - X*1 I I | Xk+1 X* I 

I|Xk - Xi | l||Xk - Xli = | iXk - X*ii 

The converse does not hold. For example, if x2k1 - (k!)-1 and x2, =2X2k l 
for k > 1, then this sequence satisfies (2.1) with x* = 0, but does not converge Q- 
superlinearly to zero. 

Lemma 2.1 justifies the very commonly used computational technique of esti- 
mating 1IXk - x* j with I Xk+1 - XkIl, if the underlying method is Q-superlinear. 

To obtain a characterization of Q-superlinear convergence for (1.1), we will 
assume that F is defined and (Gateaux) differentiable in an open, convex set D; 
that is, its Jacobian matrix F'(x) satisfies 

F(x + th) - F(x) - F'(x)h 
t-o t 

for each x in D and h in Rn. See, for example, [7, Chapter 3]. This facilitates the 
proofs but the existence of F'(x) is all that is really needed. 

THEOREM 2.2. Let F: R' -- R' be differentiable in the open, convex set D in R', 
and assume that for some x* in D F' is continuous at x* and F'(x*) is nonsingular. 
Let { Bk} in L(R') be a sequence of nonsingular matrices and suppose that for some xo 
in D the sequence {Xk} where 

(2.2) Xk+1 = Xk BjjFXk 

remains in D and converges to x*. Then {Xk} converges Q-superlinearly to x* and 
Fx* = O if and only if 

(2.3) lim ii[Bk - F(x*)](Xk+l Xk) -0. 
k- + oo |iXk+1 - Xkii 

Proof. Assume first that (2.3) holds. Since 

(2.4) [Bk - F (x*)](Xk+1 - Xk) = -Fxk- F'(x*)(Xk+ 1 Xk) 

= FXk+1 -Fxk F (x*)(Xk+l - Xk) - FXk+l, 

the continuity of F' at x* and (2.3) imply that 

(2.5) lim I iFxk+lii/iiXk+l - Xk11 = 0. 
k- +oo 
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Hence, Fx* = 0, and since F'(x*) is nonsingular, there is a # > 0 such that 

IIFxk+lIl = IIFxk+l FX*II > I3IXk+1 X- x, 

and, therefore, 

IIFxk+lll >Ix 1 - =d+ Pk 

|l1Xk+- Xk1 l - Xl|i + jlXk X- | + Pk 

where Pk = IlXk+l -X*ll/lXk - X*11. Thus, (2.5) implies that Pk/(l + Pl) converges 
to zero and hence { Pk} also converges to zero as desired. 

Conversely, assume that {xk} converges Q-superlinearly to x* and Fx* = 0. 
Since 

||FXk+lII I | FXk+1 - 
Fx*lI | Xk - X*|| 

| -Xk+l XkII l Xk - X*1| I|Xk+l - Xkll 

Lemma 2.1 and the hypotheses on F' imply that (2.5) holds. It then follows from 
(2.4) that condition (2.3) is satisfied. 

In some cases, it is very easy to verify that (2.3) holds. For example, in a Newton 
or discretized Newton method, { Bk} converges to F'(x*) and hence (2.3) holds. 
We will later show that (2.3) also holds for many quasi-Newton methods, even though 
in this case { Bk} does not necessarily converge to F'(x*) (see Section 4). 

The Newton, discretized Newton, and quasi-Newton methods are sometimes 
implemented in the form (1.2) where the sequence { Xk} is chosen so as to enlarge 
the domain of convergence. The next result shows that this sequence will still be 
Q-superlinear if and only if { Xk } converges to unity. 

COROLLARY 2.3. Let F: RX - R" satisfy the hypotheses of Theorem 2.2 on the 
set D. Let { Bk} be a sequence of nonsingular matrices, and suppose that for some x0 
in D the sequence { Xk} generated by (1.2) remains in D and converges to x*. If (2.3) 
holds, then { Xk} converges Q-superlinearly to x* where Fx* = 0 if and only if { Xk 

converges to unity. 
Proof. Assume that {Xk} converges Q-superlinearly to x* and Fx* 0. By 

Theorem 2.2, we must have 

(2.6) lim II[1'Bk- FI(x*)](xk+l - X)1 I= 0, 
k--*+ co |IXk+1 Xkll 

and therefore (2.3) implies that 

lim I I(X1 - 1)Bk(xk+l Xk)Il/IjXk+l - Xk| = 0 
ken+ oo 

But Bk(xk+l - Xk) = -XkFXk, so that 

lim ll(Xk - 1)Fxkl/llxlk+l - Xkll = 0. 
ken+ to 

Now F'(x*) is nonsingular, and thus there is a j > 0 such that IIFxkII >_ I3IIXk -x*1. 
Therefore, Lemma 2.1 implies that { Sk } must converge to unity. 

Conversely, if {I Nk} converges to unity, it is clear from (2.3) that (2.6) holds. 
Hence, Theorem 2.2 guarantees that the sequence given by (1.2) converges Q-super- 
linearly to x* where Fx* = 0. 

If (2.3) holds, Corollary 2.3 explains why techniques for finding { XkI must even- 
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tually produce values close to unity if there is to be Q-superlinear convergence to 
a zero of F. For example, in the often-quoted technique of Goldstein and Price [4] 
for discretized Newton methods, Xk = 1 for all large k. Corollary 2.3 then explains 
why they were able to obtain Q-superlinear convergence. Later on, we will prove 
that a number of quasi-Newton methods also satisfy (2.3) so that the above remarks 
also apply to these methods. 

Finally, note that the results of this section can be used to prove that certain 
methods of the form (2.2) are not Q-superlinearly convergent to a zero of F. For 
example, in the "reset" methods, one sets Bki = B for some fixed nonsingular matrix, 
and some subsequence {ki1. If { Xk converges Q-superlinearly to a zero of F, then 
Theorem 2.2 implies that (2.3) holds, and thus Bs = F'(x*)s for some vector s with 
11sIl = 1. In particular, 1 is an eigenvalue of B-lF'(x*). This indicates that unless B 
is chosen with great care, resetting will prevent Q-superlinear convergence to a zero 
of F. 

3. Superlinear Convergence of the Davidon-Fletcher-Powell Method. For a 
mapping F: R' > R', the Davidon-Fletcher-Powell method is defined by 

(3.1) Xk+1 = Xk - XkHkFXk 

where 

(3.2) Hk+l = Hk + SkS k/S kYk -HkykyHk/y kHkyk, 

and 

(3.3) Sk = Xk+1 - Xk, Yk = Fxk+1 - FXkE 

There are two results which guarantee that the Davidon-Fletcher-Powell method 
is Q-superlinearly convergent. The first result is due to Powell [8]; he assumes that 
(a) F is the gradient of a uniformly convex functional f: R' -- R1, (b) Xk is chosen 
so that 

f(xk - XkPk) = min {f (Xk - XPk): X > O} 

where Pk = HkVf(xk), and (c) F is a continuously differentiable mapping on R' 
which satisfies the one-sided Lipschitz condition 

JIF'(x) - F'(x*)Il ? L11 x - x*|| 

in the level set { x: f(x) ? f(xo) }. Here, x* is the unique solution of Fx = 0. Under 
these hypotheses, Powell proved that for any x0 in R' and any symmetric, positive 
definite Ho, the Davidon-Fletcher-Powell method is Q-superlinearly convergent to x*. 

On the other hand, Broyden, Dennis, and More [2] assumed that (a) F: Rn R- 

is differentiable in an open convex neighborhood D of a point x* for which Fx* = 0 
and F'(x*) is symmetric and positive definite, and that (b) F' satisfies the one-sided 
Lipschitz condition 

(3.4) JIF'(x) - F'(x*)Il < KIIx - x*IIP 

for some p > 0 and all x in D. With these hypotheses, they proved that if (x0, Ho) 
is sufficiently close to (x*, F'(x*)- 1), then the Davidon-Fletcher-Powell method with 
X, = 1 for all k is Q-superlinearly convergent to x*. 
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These two convergence results are really more complementary than comparable 
and their proofs are quite distinct. We will show now that the results of Section 2 
not only give a unified treatment of both rate of convergence proofs, but lead to the 
conclusion that Powell's minimizing I X, I converges to 1. 

It is well known that if Hk+l is defined from Hk, Sk and yk by (3.2) and if Hk1 = Bk 

exists, then, as long as ykTsk is 0, Hk+1, is defined by 

Bk +1 = Bk + 
- 

BkSk)YkT + Yk(Yk - BkSk)T 

(3.5) Y kSk 

S 7k(Yk - Bksk)YkYk 

(AkSk)2 

Note that I Bk} is defined provided the sequences {yk} and { Sk I satisfy YkTSk 5 0. 

We assume that {Yk I and { Sk} are generated by (3.3), but, for the moment, we will 
leave {Xk) unspecified. 

We now plan to investigate the behavior of the sequence { Bk, generated by (3.5). 
For this, first recall that for A E L(R') the Frobenius norm is defined by 

n 
IIAI= 

12 
E aia i2. 

i, j=1 

We also need the following special case of a result of Broyden, Dennis, and More [2]. 
LEMMA 3.1. Let M E L(Rn) be a nonsingular symmetric matrix such that 

(3.6) IIMY - M1SII ?< 3IIM-1sII 

for some d EE [0, '] and vectors y and s in Rn with s 5 0. Then yTs > 0 and thus B E 
L(Rn) can be defined by 

B + (Y Bs)yT+ y(y Bs) sT(y- Bs)yyT 

where B E L(Rn) is symmetric. Moreover, if II~ tM is the matrix norm defined by 

(3.7) IIQIIM = IIMQMIIF, 

then there are positive constants a, a1 and a2 (depending only on M and n) such that, 
for any symmetric A (E L(R), 

IB - AIIm < [(1 _ 02)1/2 + illIMY - M-1sII/IIM1sI]II lB - AIIM 

+ a211Y - AsII/IIM 1sII 

where a E (0, 1], and 

0 = IIM[B - A]sII/(IIB - AIIM IIM 1sII), for B 5 A, 

with 0 = 0 otherwise. 
In [2] a more general result was given, but only for the case when was the 

12 norm and B 5 A. Those restrictions are unnecessary in the present case. Note 
that this lemma needs only a way of choosing M in order to be applicable to I Bk I. 
In the following lemma, we show that if F'(x*) is symmetric and positive definite, 
then M can be taken to be the symmetric, positive definite, square root of F'(x*)- 1, 
i.e., F'(x*)-2. It is interesting to note that we do not assume I Xk } is generated by 
(3.1) or that {HkI exists or even that F(x*) = 0. 
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LEMMA 3.2. Let F: R' -> R' be differentiable in an open, convex neighborhood 
D of a point x* for which F'(x*) is symmetric and positive definite, and suppose that 
F satisfies the Lipschitz condition (3.4) in a neighborhood of x*. If for some sequence 
{Xk} C D which converges to x*, we define {I, k} and {yk} by (3.3), then ykTsk > O for 
k > k0. Moreover, for any symmetric Bk0 E L(R') the sequence { Bk,} is well defined 
by (3.5) for k > k0,, and there are positive constants a, a3, and a4 such that 

(3.8) IIBk+j - F/(x*)IIM ? [(1 - aOk) + a30k1 I IBk - Fl(x*)IIM + a407k, 

where 0k = max IIXk+l - X*IIP, IIXk -x*II'}. Here a EE (0, 1], IIfIIm is defined by 
(3.7) with M = F'(x*)-1/2, and 

Ok = I IM[Bk -'( (*)IskI , for Bk 5 F'(x$ 
IIBk - F'(x*)IIm IIM skII 

and 0k = 0 otherwise. 
Proof. For M = F'(x*)- /2, we have IIMyk-M-skII ? IIMII IIy k-F/(x*)skII, 

and it is not difficult (e.g. Lemma 3.1 in [2]) to verify that if (3.4) holds then 

I IYk - F(x*)Sk I ?< K max{ I JXk+l1 - X* I, II Xk - X I I} I Sk I I . 

Hence, (3.6) is satisfied if kIc is taken so that KIIMiI IIxk - x*1Iv < ' for k _ kI. 
The result now follows from Lemma 3.1. 

Our next task is to deduce properties of I Bk} from (3.8). The following result is 
applicable if we assume that 

(3.9) E IIXk - X II, < + CX. 
k=1 

LEMMA 3.3. Let {I 0k} and I ak} be sequences of nonnegative numbers such that 

(3.10) 40k+1 -< (1 + 3k)4'k + Sk 

and 
a) 

(3.11) E A~~~~~k < + X . 
k=1 

Then {I k } converges. 
Proof. We first show that I OkI is bounded (above). Let 

k-1 

Ak= (1 + S,). 
j =1 

Then /Ak > 1, and (3.11) implies that AJk ? M for some constant pt. But (3.10) yields 

4k+1l/lk+1l -< 4k/l/.k + ek/l.k+1l < 4z'k/l 1k + aSk, 

and therefore 
m 

4m+i/itm+i1 < 1/411 + E Zk, 
k=1 

which in view of (3.11) and the boundedness of I A/k } implies that {(k} is bounded. 
Since { o, is bounded, it certainly has at least one limit point. Suppose there are 

subsequences { 4o }, { 4)k } which converge respectively to limit points 4' and '". 
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We will show that 4' < 4" and by symmetry 4)" ?< 4'. Thus 4" = 4' and consequently 
14) k } converges. 

Let 4 bound {4)k} It follows from (3.10) that if kn > km then 4)k,- 4)km < 

(1 + 0) E =k . Thus, by the choice of {kn}, 

) Ok. < (1+ 4) E S 
i =km 

and by the choice of { km}, 4)' 0-4" < 0. This completes the proof. 
THEOREM 3.4. Assume that F: R' -> R' satisfies the hypotheses of Lemma 3.2 

on the set D and let { Xk } be a sequence in D which satisfies (3.9). Then there is a positive 
integer k0 such that for any symmetric Bk, E L(R') the sequences { Sk} {k and 
IBk} are well definedfor k > k0 by (3.3) and (3.5). Furthermore, 

(i) limk- I I |F(X*)- 1/2BkF'(x*)- 1/2 - II F exists, and 
(ii) limk-- (I I[Bk - F (x *)]SkII1/ISkII) = 0. 

Proof. Statement (i) follows directly from Lemmas 3.2 and 3.3. To prove state- 
ment (ii), note that since (1 - aCk2)112 1 - (a/2)6k2, Eq. (3.8) can be written as 

(aOk/2) I IBk - F (x*)IIM < IIBk - F (x*)IIM - IIBk+l - F (x*)I|M 

+ 0k[?a3 I I Bk - F(x*)IIM + 04], 

and therefore summing both sides, 
a) 

(a/2) E O2 | I Bk - F (x*)IIM < +o. 
k=1 

If some subsequence of {IIBk - F/(x*)II M} converges to zero, then (i) implies that 
the whole sequence converges to zero and thus (ii) is trivially satisfied. Otherwise, 
jIIBk - F'(x*)Ilml} is bounded away from zero, and the last equation implies that 
IO, I converges to zero. Statement (ii) follows. 

Note that Theorem 3.4 holds regardless of how the sequence {xj is generated 
provided (3.9) is satisfied. For example, suppose the sequence is generated by xk+1 = 

Xk - XkB1-Fxk where { XyaI is any sequence with Ilk- ik ? X < 1 for k > 0 and 
jBk} is generated by (3.5). Then, using the techniques of [2] and inequality (3.8), 
it is not difficult to show that if Fx* = 0 then there is a constant r E (0, 1) with 

I IXk+1 - X*li < rl Xk - x* l I 

provided (x0, B0) is close enough to (x*, F'(x*)). Hence, (3.9) is satisfied and if 
Xk I converges to unity, (ii) above implies that 

lim (II[oXkBk - F'(x*)]SkII/1lSkII) = 0. 
keg4+ co 

Thus, Lemma 2.2 implies that { XkI is Q-superlinearly convergent. For yk 1, this 
reduces to a result of Broyden, Dennis, and More [2]. 

We now would like to show that Theorem 3.4 also yields the superlinear con- 
vergence of the version of the Davidon-Fletcher-Powell algorithm considered by 
Powell [8]. As mentioned at the beginning of this section, Powell chooses Xk via 
exact line minimization so that 

Vf(xk+)T Sk = 0. 
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THEOREM 3.5. Let F: R -* RO be differentiable in the open, convex set D in R , 
and assume that for some x* in D, F'(x*) is nonsingular, and F' is continuous at x*. 
Let the sequence { X, I be defined by 

Xk + 1 = Xk - Xk BX Fxk, 

where the nonsingular matrix Bk and scalar Xk are such that Fxk+lTsk = 0, and suppose 
that { xk } lies in D and converges to x*. If 

lim |I[Bk F(x*)]SkIl/lIskII = 0, 
kit + co 

then { X*} converges to unity, Fx* = 0 and { Xk) converges Q-superlinearly to x*. 
Proof. Define, for v, w E R, 

(v, w) = [F'(x*)yv]Tw 

so that by the mean value theorem 

0 = (FXk +1, Sk) = (FXk, Sk) + (F'(Xk + tkS)Skk, Sk) 

where I tkI < 1. Hence, 

(F'(Xk + tksk)Sk, Sk) = -(Fxk, Sk) = Xk (Bksk, Sk)- 

Therefore, 

(Xk - 1) (FI(x*)Sk, Sk) = Xk([F (x*) - F'(Xk + tkSk)]Sk, Sk) 

+ ([Bk - F (x*)]Sk, Sk). 

Using the definition of (I, .), the above equation can be written as 

(3.12) Xk 1 = Xkak + Pk 

where 

akI <_ | |IF(x*) - F'(Xk + tkSk)II tIF'(x*)yiI|, 

and 

113 k < II[Bk- F (x )]skI I F(x*)-1 | I I~ I I 
It follows that { ak } and {I*k } converge to zero, and thus (3.12) implies that {X, I 
converges to unity as desired. The Q-superlinear convergence of I Xk } to x* where 
Fx* = 0 follows from Corollary 2.3. 

Theorems 3.4 and 3.5 guarantee the Q-superlinear convergence of the Davidon- 
Fletcher-Powell method to a local minimum if Xk is chosen by an exact line search, 
and the sequence {IX } converges to x* in such a way that (3.9) is satisfied. For ex- 
ample, under the conditions on F mentioned at the beginning of this section, Powell 
[8, Theorem 2] proved that there is a , < 1 such that IXk _- X*I < wk for some 
constant q > 0 and all k. Hence, (3.9) holds, and we obtain an independent proof 
of Powell's result of Q-superlinear convergence. 

Note, however, that Q-superlinear convergence to a zero of F is also assured if 
IXk} is any sequence which converges to unity and makes (3.9) hold. Therefore, 
a good choice of { X<k would give us (3.9) while minimizing function evaluations; 
exact line minimization is an expensive way to do this. 
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4. Extensions. The results of the previous section do not hold only for the 
Davidon-Fletcher-Powell method. In particular, the all-important (ii) of Theorem 
3.4 holds for the following updates: 

(Yk - BkSk)Sk7 
Bk+1 = Bk + kSk 

S akk 

(Yk - Bksk )y T 
Bk+ 1 = Bk + (Yk BkSk k+ 

T~~~~~~~ 
Y ksk 

Sk(Yk - BkSk )k +SkY 

Bk+l =Bk + (YT kks k' kk 

T ~~~~T 
S k(Yk - BkSk)SkSk 

(s s)2 (S ak k 

Only in the third update is it necessary to take Bo symmetric. To verify that these 
updates satisfy (ii) of Theorem 3.4, we only need to show that they satisfy a relation- 
ship like (3.8), and this is done in Lemmas 4.2 and 5.2 of [2]. The assumptions are 
as in Theorem 3.4, but for the first and third updates M is the identity matrix, so 
that F'(x*) need only be symmetric in the third update, while existence is all that is 
required in the first update. Conclusion (i) of Theorem 3.4 also holds but for the 
first and third updates it should be modified to read 

lim IIBk - F (x*)I IF exists. 
kin + co 

For more information on these methods and their properties see [2]. 
As we mentioned in the introduction, results on Q-superlinearity are usually 

proved by assuming { Bk} converges to F'(x*). Nothing, so far, in our results says 
that this approach cannot be applied to the quasi-Newton methods, but consider 
the following class of examples. Define F: R' -> R' such that f 2, * , f,, are inde- 
pendent of xi and f1(x) = xl. Let x0 have a zero in its first coordinate and Bo zeros 
in its first row and column except for possibly the (1, 1) element. If { Xk } and { BkI 
are generated by the Davidon-Fletcher-Powell or any of the above three methods, 
then the first row and column of Bk will remain unchanged while the rest of Bk will 
be the matrix generated by the corresponding method when applied to f2, ..* , fi. as 
a function of the n - 1 variables (x2, * * * , xn). In particular, the sequence { Bk} does 
not converge to F'(x) for any x in R'. Of course, it is always possible for the iteration 
to terminate or to break down because of a division by zero, but by choosingf2 * * * i f1n 
appropriately, convergence will be assured. Also note that the above example applies 
to the "damped" method 

Xk + 1 = Xk - Xk Bk FXk, Xk F? 0, 

and in fact to any quasi-Newton method such that Bk+l is obtained from Bk by 
adding a linear combination of matricesp kqkT wherepk and qk can be any of the vectors 
Sk, BkSk, Bk TSk, Yk, Bkyk, or BkTyk. In particular, this holds for the Huang class [5]. 

The first person to produce an example of this type was Powell [9]. He pointed 
out that if the Davidon-Fletcher-Powell method with exact line minimization is 
used to minimize the function f(x1, * *, xn) = x12 + g(x2, * *, XA), then the above 
behavior occurs from initial points of the type specified above. 
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The previous results also apply to the so-called complementary or Fletcher-dual 
methods [3]. For example, the complementary Davidon-Fletcher-Powell method 
is given by 

Xk+1 = Xk -HkFxk 

where 

Hk+ = Hk + 
(Sk -Hkyk)SkT + Sk(Sk -Hkyk)T 

T 
Y kSk 

Y k (Sk -Hkyk)SkSkT 

(Y kSk)2 

The Fletcher-dual is therefore obtained by replacing B's by H's and interchanging 
yk and Sk. For this method, (i) and (ii) of Theorem 3.4 now read 

(i) liMk_+| IIF'(x*)12 HkF (x*)1/2 - II F exists, 
(ii) limk_+c (II[Hk -F(x*)l|YkII/IIykkII) = 0, 

where we are now assuming that Yk 5 0 for k > 0. Similar observations apply to 
the dual of the three methods defined in this section. 

Q-superlinear convergence to a zero of F also follows from (ii) above if we assume 
that II IHk-ll } is uniformly bounded. In this case, 

[Hk - F (x*)Yk = HkEXk+l - F (x*) [yk - F (x*)Sk], 

and, if F satisfies the assumption of Theorem 2.2, then there is a y > 0 such that 

||YkJ| = IIFXk+l - FXkI ? 7|IIXk?+ - Xk||X 

All together, 

IiM (I IFXk+l|I/|lXk+l XkJJ) = 0. 
k-+co 

This is just (2.5), so from (2.4) we see that { Xk must converge Q-superlinearly to 
x* and Fx* = 0. 

For the complementary Davidon-Fletcher-Powell method the matrices Bk = Hk1- 
are generated by 

(4.1) Bk+1 = Bk + YkY k/Y kSk -BkSkS TkBk/s TkBksk 

In this case it is possible to prove, with the technique that Powell used in Theorem 3 
of [8], that under the assumptions of Theorem 3.4 there is a positive integer k0 
such that, for any symmetric Bk. E L(R'), the sequences { Sk}, {Yk } and I Bk) are 
well defined for k > k0 by (3.3) and (4.1), and, moreover, I IIBkI I} is uniformly 
bounded. Hence, the results of Section 3 apply to the complementary Davidon- 
Fletcher-Powell method without explicitly assuming that II H1-} is uniformly 
bounded. 

5. Concluding Remarks. It is interesting to compare our results with those 
of McCormick and Ritter [6], and Ritter [10]. These authors prove, under more 
restrictive hypotheses than those of Theorem 2.2, that 1Xk} is Q-superlinearly con- 
vergent if 
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urn II[Bk - 
F((x*)1(Xk+l 

- Xk)II - 

k--o,+ w I IFXkI I 
They fail to note that this condition is also sufficient (and hence, equivalent to 

(2.3)), and moreover, they do not prove that any of the single- or double-rank methods 
satisfy their hypotheses. They do make the interesting point that if 

(5.1) II[Bk - F (x*)](Xk+l - Xk)II/IIFXkI| = O(IIFxk-.jI) 

for some v, 0 _ v _ n, then 

IIXk+1 - X |I/I|Xk - X*II = O(I|Xk-, - X*II). 

In this case, it follows that the R-order of (2.2) is at least r where r is the unique 
positive root of tV+ - t' - 1 = 0. See, for example, [7, p. 291]. It would be very 
interesting to prove that some quasi-Newton method satisfies (5.1) or some similar 
relationship that would guarantee an order greater than one. 

We note that the techniques of this paper can also be used to establish Q-super- 
linear convergence of algorithms that use the quasi-Newton philosophy. For example, 
K. Brown and J. E. Dennis, in an unpublished work, have proven Q-superlinearity 
of the nonlinear least squares method given in [1]. 

Finally, readers familiar with the majorant approach to the convergence theory 
of nonlinear iterative methods will perhaps agree with us that (2.3) is a sort of direc- 
tional-norm analogue of consistency, i.e., norm convergence of {BJ} to F'(x*). 
It would be interesting to find a reasonable sufficient condition for local convergence 
of (1.1) based on such a directional norm approach. 
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