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The Minimum Root Separation of a Polynomial* 

By George E. Collins and Ellis Horowitz 

Abstract. The minimum root separation of a complex polynomial A is defined as the 
minimum of the distances between distinct roots of A. For polynomials with Gaussian 
integer coefficients and no multiple roots, three lower bounds are derived for the root 
separation. In each case, the bound is a function of the degree n of A and the sum d of the 
absolute values of the coefficients of A. The notion of a seminorm for a commutative ring 
is defined, and it is shown how any seminorm can be extended to polynomial rings and 
matrix rings, obtaining a very general analogue of Hadamard's determinant theorem. 

1. Introduction. Let A(x) be a polynomial of degree n > 0 with complex 
coefficients ai and complex roots ai, so that 

n n 

(1) ~~~~~A(x) =Eaixi = an II(x - a ). 
i=O ill 

We define sep(A), the minimum root separation of A, by 

(2) sep(A) = min ai - ak, 
a cjtak 

with the convention that sep(A) = o in case A has only one distinct root. 
The computing times required by known algorithms for isolating the zeros of A 

depend inversely on sep(A). Hence, we are interested in easily computable functions 
f(ao , an) of the coefficients such that 

(3) 0 < f(ao, *., an) < sep(A). 

Heindel [3], in analyzing the computing time of an algorithm based on Sturm's 
theorem for isolating the real zeros of any polynomial with integer coefficients, used 
a weak lower bound for sep(A) due to Collins. Pinkert [9], presents an analogous 
algorithm for isolating all zeros, real and complex, of any polynomial with Gaussian 
integer coefficients. His algorithm is based on Sturm's theorem and the Routh- 
Hurwitz theorem and uses a stronger lower bound for sep(A), obtained more recently 
by Collins. Horowitz, using another simpler approach, has recently obtained a third 
lower bound, intermediate in strength, but just slightly weaker than the stronger 
bound of Collins. In the following, these three bounds are all derived, with the hope 
of stimulating further research on the problem. 
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If A(x) has rational complex coefficients, we can easily compute another poly- 
nomial, having the same roots, with Gaussian integer coefficients. Further, if A(x) 
has Gaussian integer coefficients, we can easily compute another polynomial A*(x) 
with Gaussian integer coefficients, having the same roots as A(x) and having only 
simple roots, namely 

(4) A*(x) = A(x)/gcd(A(x), A'(x)), 

where A'(x) is the derivative of A(x) and "gcd" denotes the greatest common divisor. 
Hence, in the following, A is assumed to have Gaussian integer coefficients and no 
multiple roots. 

Also, the three lower bounds to be obtained will all be of the form 

(5) 0 < g(n, d) < sep(A), 

where n = deg(A), the degree of A, and d = v(A), where v is some "seminorm". 
In the next section, we introduce the notion of a seminorm for a ring and then derive 
some lemmas which will be used in deriving the root separation theorems. 

2. Seminorms and Resultants. If 6R is any commutative ring, a seminorm for 
aR is any function v from 6R into the nonnegative real numbers satisfying the following 
three conditions for all a, b c 6R: 

(6a) v(a) = 0 if and only if a = 0, 

(6b) v(a - b) < v(a) + v(b), 

(6c) Pdab) _!! v(a)P(b). 

These conditions imply also 

(6d) i(- a) = v(a), 

(6e) i(a + b) ? v(a) + v(b). 

A norm for 6R is a seminorm for 6R such that 

(7) i(ab) =(a)P(b) 

For the ring G of the Gaussian integers, a familiar norm is v(a + bi) = la + bil = 
(a2 + b2)1"2. A seminorm for G which is not a norm is i(a + bi) = la + bill = 
al + !bl. 

Any seminorm v on a commutative ring 6R can be extended to a seminorm on the 
polynomial ring 6R[x] by the definition 

n \ n 

(8) v E axi) = E(a,). 
- =0 =0 

By induction on r, repeated application of (8) extends v to a seminorm on 
(R[x, , Xr], which is easily seen to be independent of the order in which the in- 
determinates xi are adjoined. 

As a special case, (8) defines IA l and IAl1 for any Gaussian polynomial A(x,, * * Xr) 
C G[x,, *. , Xr] as extensions of the seminorms for G defined above. For integral 
polynomials A(x, . * * , xr) with rational integer coefficients, the norm JAl1 has been 
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used extensively for the analysis of algebraic algorithms. See, for example, [1], [2], [7] 
and [8]. Its extension to Gaussian polynomials, however, is new. 

If M is an arbitrary matrix (or vector) over (R, we define 

(9) v(M) E (Mi, 
i i 

where the summation extends over all entries of M. It is easy to verify that the con- 
ditions (6a)-(6c) hold for matrices over a whenever the operations are defined. In 
particular, this extends v to a seminorm for the ring of all n by n square matrices 
over (R. 

By combining the seminorm extensions for polynomials and matrices, we obtain 
the following general analogue of Hadamard's determinant theorem [6, p. 208]. 

THEOREM 1. Let (R be a commutative ring, v a seminorm for (R, M an n by n 
matrix over (R. Then 

n 

(10) v(det(M)) < JI i(Mi) 
i=1 

where Mi is the ith row of M and det(M) is the determinant of M. 
Proof. By induction on n, the case n = 1 being trivial. We denote by Mi i the 

element of M in the ith row and jth column of M, by Mi i' the submatrix of M 
obtained by deletion of the ith row and jth column. By Laplace expansion, 

n+1 

(1 1) det(M) = E (-1'+'Mli det(Mfi). 
i =1 

By (6) and (11), 
n+1 

(12) v(d et( M)) < A v(Mj j)v(d et(Ml i)) . 
j=1 

The ith row of Mj' is a subrow of Mi+,, so 
n+1 

(13) v(det(M'j)) < 1I v(Mi) 
i=2 

by the induction hypothesis. By (12) and (13), 
fn+1 n+l 

(14) v(det(M)) ] {I V(Mi)} E v(M ). 
t=2 i=1 

Since Ad 1 v(M1j) = v(M1), this completes the induction. El 
A corollary of Theorem 1, needed in Section 3, will now be obtained by con- 

sideration of certain submatrices of the Sylvester matrix of two polynomials, A and 
B, over (R. Let m = deg(A), n = deg(B). The Sylvester matrix of A and B is the m + n 
by m + n matrix S whose successive rows are the coefficients of the polynomials 
x8 -A(x), ... , xA(x), A(x), xm -B(x), * * , xB(x), B(x). Diagrammatically, if 

m n 

A(x) = E ax? and B(x) = bix, 
S=o SiO 
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then 
am am.- ... ao 

am am.- ao 

(15) S =am am- ... ao 

by b.1 ... bo 

b. b.- b bo 

bn bn- 
. . . bo. 

in which all missing entries are zero. By definition, the resultant of A and B, res(A, B), 
is the determinant of S. 

THEOREM 2. Let A and B be polynomials over a commutative ring (R with seminorm 
v. Let m = deg(A) > 0, n = deg(B) > 0, c = res(A, B). Then 

(16) v(c) _ v( A)n V(B)m . 

Also, there exist polynomials U and V over (6 such that AU + BV = c, deg(U) < n, 
deg(V) < m, 
(17) v( U) ? nv(A)n-lv(B)m, 

and 

(18) v( V) _< mv(A )n v(B)m l. 

Proof. If Si is the ith row of S then v(Si) = v(A) for 1 ? i < n and v(S1) = v(B) 
for n + 1 < i < m + n, and (16) follows from Theorem 1. Now consider the matrix 
S* which is obtained by adding to the last column of S xmn- times the ith column 
of S, for 1 ? i < m + n. det(S*) = det(S) = c and the last column of S* contains 
the entries x-l A(x), ... , xA(x), A(x), x'- B(x), ... , xB(x), B(x). Applying the 
Laplace determinant expansion theorem to the last column of S*, we obtain AU + 
BV = c with deg(U) < n - 1 and deg(V) < m - 1, where the coefficients of U and 
V are the cofactors of the last column of S*. Each coefficient of U is the determinant 
of a matrix obtained from S by deleting one row of coefficients of A and the last 
column, and so Theorem 1 yields (17), and, similarly, (18) holds. El 

3. Root Separation Bounds. For each of the first two root separation bounds, 
we will use the following well-known upper bound on the roots of a polynomial. 

THEOREM 3. Let A be any nonzero Gaussian polynomial, and let a be a root of A. 
Then 

(19) Ial < IAI/Ia.I 

where an = ldcf(A). 
Proof. AI > IanI, so (19) holds for JaI < 1. Let A(x) = =o aixt and assume 

jal > 1. Then anCa~= - Oa=Oa so 
n-i 

(20) |anijla = * |a|iIal'. 
i=O 
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Dividing (20) by IaIl no 
n-1 n-1 

(21) lanlhIaCI ? E jai Ila i-n+1 _ ail < I Al 
i=O i=O 

from which (19) is immediate. El 
THEOREM 4 (COLLINS, 1970). Let A be a Gaussian polynomial of degree n _ 2 

with only simple roots, and d = JAI. Then 

(22) sep(A) > (2d)-nnl/ 
Proof. Let a,, - - a, anbe the zeros of A and X = sep(A). We may choose notation 

so that X = la, - a2 . Let D be the discriminant of A, so that 

(23) D = a f 2 I (a - a )2, 
i<k 

and [10, Section 28], D is a Gaussian integer. Since the a3 are distinct, D # 0 and 
hence IDI > 1. Combining this with (23), we have 

(24) 1 Ian |2n2 2][I Jai - ak 12 
i<k 

Dividing by X2, 

(25) X a _ la7I TI |ai - akl. 
i<k;(i,k)0(1,2) 

There are (n2 - n - 2)/2 factors ai - ak2 in (25) and ai - ak! < jail + jak! < 

2d/IanI by Theorem 3. Hence, 
(26) -^~~~~~-2 < (2)n2-n-2/ man2l-3n . 

Now, n2 - 3n + 2 _ 0 and lanj ? 1 SO 

(27) A-2 < (2d)n2 -n-2 
Ian 12 < (2d)n2-n. 

from which (22) is immediate. El 
THEOREM 5 (HOROWITZ, 1973). Let A be a Gaussian polynomial of degree n _ 2 

with only simple roots, and d = IAI. Then 

(28) sep(A) ? (nd) 

Proof. Let a1, *, a7n be the zeros of A and X = sep(A). We may suppose that 
X = 1a - a2!. By Theorem 2, there exist Gaussian polynomials U and V such that 

(29) AU+ A'V = c, 

deg(U) < n - 2 and deg(V) < n - 1, where c = res(A, A'). Since A(x) = 
an Hif=l (x - a) we have 

n 
(30) A'(x) = an E i (x - a). 

Evaluating (30) at x = a1, we obtain 
n 

(31) A'(a1) = an II (a1 - ai). 
i=2 

Hence, evaluating (29) at x = a, and using (31), 
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(32) {an I (a, - ai)} V(1) = cow 

By [10, Section 28], c = anD, where D is the discriminant of A, a nonzero Gaussian 
integer. Hence, V(a,) $ 0 and, by (32), 

(33) sep(A) = D/ V(aj) II (a, - as). 
i=3 

IA'! < nIA! so 

(34) I VI < nd22 

by Theorem 2. Since deg(V) ? n - 1 and Ilail < d, 

(35) I V(a)j <? I VI.dn-1 < nnd3n 3. 

From (33) and (35), using IDI _ 1 and Iai - ail < 2d, 

(36) sep(A) _ 2 2 n-nd-4n,+5 

The proof is completed by observing that n ? 2. Ei 
In order to obtain the third root separation bound, we construct a Gaussian 

polynomial B* whose roots are all the differences at - a; with i 5# j. The idea of 
constructing B* as a resultant was suggested by some current research of R. Loos 
[5]. After obtaining upper bounds for the coefficients of B*, we will apply the following 
well-known theorem to obtain a lower bound for the roots of B*, and hence for 
sep(A). 

THEOREM 6. Let A(x) =o aix' be a complex polynomial of degree n > 0, 
with a, # 0. If a is any root of A, then 

(37) Joe I > 1 min ao/aI | 
19i!n;a;-0 

Proof. Let A*(x) = xA(x-') = j~n=0 anixt. A* is a polynomial of degree n 
whose roots are the reciprocals of the roots of A, for 

n n 

A*(x) = anX II (x - ap) = a. II (1 - aix) 
j=1 i=1 

f n ) ( n n - n 

{ an ofl(-ai)tf (x - = an(ao/an) _ (x -a?) = ao (x- ). i~~l t=1 i~n 
1 

i=1 

Hence, A*(a-1) = 0 and, from [4, Exercise 4.6.2.20], we have 

(38) lIal < 2 max lai/aol"l, 

from which (37) is immediate. L 
THEOREM 7 (COLLINS, 1973). Let A be a Gaussian polynomial of degree n > 2 

with only simple roots and d = Al. Then 

(39) sep(A) > 1 
(e /n 32d) -, 

where e is the base of the natural logarithm. 
Proof. Let B(x) be the resultant of A(y) and A(x + y). If the coefficients and 

roots of A are given by (1), then, 
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n 
(40) A(x + y) = a. (y- (a -x)). 

i-i 

Expressing the resultant B(x) as a symmetric function of the roots of A(y) and A(x + y) 
by the theorem of van der Waerden [10, Section 28], 

(41) B(x) = an II (x - (ai - a,)). 
1M;i, j5n 

Since ai = a, if and only if i = j, B(x) = xnB(x), where 

(42) A(x) = a II (X - (a, - a,)), 
i-i 

is a polynomial of degree n(n- 1) with B(O) $ 0. Also, (42) can be written in the 
form 

(43) (X) = an I (x2 - (a. - a.)2) 
i< i 

so that, if A(x) = EnIn-1) bix , then bi = O for i odd. 
Expanding A(x + y) in a Taylor series, 

n 

(44) A(x + y) = E {A ")(y)/i!}xt, 
i -o 

where A i is the ith derivative of A. Let 
n 

(45) A*(x, y) = { A(x + y) - A(y)}/x = I { A (y)/i!}x I . 
i-1 

Let M be the Sylvester matrix of A(y) and A(x + y). If we subtract the ith row of M 
from the (n + i)th row and then divide the latter by x, for 1 < i _ n, we obtain a 
matrix M such that det(M) = xn det(M). The first column of M contains an in the 
first row and zeros elsewhere. Hence, det(M) = an det(M*), where M* results from 
M upon deletion of its first row and column. But M* is the Sylvester matrix of A(y) 
and A*(x, y), so 

(46) A(x) = anB*(x) 

where B*(x) is the resultant of A(y) and A*(x, y). 
We now proceed to obtain bounds for the coefficients of B*. Let 

k+1 

(47) A *(x, y) = I { At(y)/i!}x' 1, 
i-1 

so that Ak* is the result of deleting from A* all terms of degree k + 1 or greater 
in x. Since A* and A k* are both of degree n - 1 in y, B*(x) -Bk*(X) (modulo Xk 1) 

for k > 0. Hence, the coefficients of xk in B*(x) and Bk*(x) are identical, and, if 
B*(x) = ~n(n-1) b *xi, then 

(4 8) | bk| < | B* | 

Now, IA i)(Qy)/i !I _ (in)d, so, by (47), 
k+1 \ 

(49) |Ak*(x, y) I-< E )d < en 
1 
d. 



596 GEORGE E. COLLINS AND ELLIS HOROWITZ 

By Theorem 2 and (49), 

|k+l)n 2n-1 (50) jB* I? e'nn d- 

By (48) and (50), together with Ibo*J _ 1, 

(51l) | b*lb*k 11/2k > e-nf/2n-3nf/2d-n+ 1/2 

for k > 1. Since b,* = 0 for i odd, by Theorem 6, 

(52) ai_ -ailI > 4(el/2"n""d) 

completing the proof. El 
The computing time of Pinkert's algorithm in [9] for isolating the zeros of a 

Gaussian polynomial A is dominated (in the sense of [2]) by a polynomial function 
of n = deg(A), log d where d = IAI, and log X-1 where X = sep(A). Specifically, 
n7(log dX-1)(log nd- 1)2 is derived by Pinkert as a dominating function. If " 
denotes codominance of functions as in [2] and if C,(n, d), H(n, d) and C2(n, d) are 
the bounds on sep(A) given by Theorems 4, 5 and 7, then we have 

(53) log Cl(n, d)-' -- n2 log d, 

whereas 

(54) log H(n, d)' ' log C2(n, d) ' - n log nd. 

Thus, although CQ(n, d) is generally a much sharper bound than H(n, d), the use of 
either yields n'0 (log nd)' as a dominating function for the computing time of Pinkert's 
algorithm. 

When n = 2, sep(A) can be given explicitly. If A(x) = ax2 + bx + c has two 
distinct roots, then 

(55) sep(A) = lb2 - 4acI1'2/jai. 

Also, by Theorem 4, sep(A) > 1/2d. Let a = k, b = 2k - I and c = k - I with 
k _ 1. Then d = JAI = 4k - 2 and sep(A) = I/k < 4/(4k - 2) = 4/d. 

Define 

(56) L(n, d) = min{sep(A): deg(A) = n & IAI _ d}. 

Then, we have just shown, 

(57) L(2, d) - d l. 

It does not seem unreasonable to ask for an explicit relation such as (57) for L(3, d), 
but we have thus far not succeeded with this apparently simple problem. We know 
only, by Theorem 7 and some obvious examples, that 

(58) d3 < L(3, d) < d', 

where " < " is the dominance relation. 
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