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Error Analysis of a Computation of Euler's Constant* 

By W. A. Beyer and M. S. Waterman 

Abstract. A complete error analysis of a computation of y, Euler's constant, is given. The 
results have been used to compute -y to 7114 places and this value has been deposited in the 
UMT file. 

1. Introduction. In a paper on ergodic computations with continued fractions 
[1], we used 3561 decimal places of y, Euler's constant, as given by Sweeney [7] to 
compute 3420 partial quotients of the continued fraction expansion of T. The partial 
quotients were sent to the Unpublished Manuscript Tables file and were there com- 
pared by Dr. Wrench with those given by Choong et al. [3]. Some disagreements 
were found and it was eventually decided to recompute Sweeney's value. This involved 
a careful reading of Sweeney's method and, as his error analysis is not detailed, a 
distinct error analysis resulted. This analysis is presented here. 

2. Error Analysis. We begin with the exponential integral - Ei(- x) [2, p. 
334], and we consider only x > 1: 

(1) -Ei(-x) = dt = --y - lnx + S(x), 

where 
2 3 4 

S(X = -x - x~ . =x 2 32! +33! 4!4! 

The analysis of [6, p. 26] can be adapted to show 

t e_ dt = I (1 _ + 22i _ + (In! + R. (x)I 

where IRn(x)I < (n + 1)!/xn+'. However, we only require n - 0 and it is easy to see 
that 

xeX dt ds = I S/X ds = 1 + Ro(x). 

Since, for x > 0, 
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X 8 1 0_ 

0< t o e- ds < I se- ds=-, 

we infer that 

-z -z X co -X 

(2) 2 dt 

By Eqs. (1) and (2), 

(3) S(x)- - In x _ e < S(x) +-2e- - In x. 

Our problem is to use Eq. (3) to compute Py to a desired number of decimal places. 
After x is taken to be a power of 2, we must approximate e x/x, In 2, and S(x). The 
computation was done on the Maniac II computer which does multiple-precision 
integer arithmetic without special programming. Therefore each function above 
will be multiplied by an appropriate power of 10, say 10a. Of the a places in our 
answer, we will require that each answer be correct to d - 1 places. Equation (3) 
becomes 

1O0S(X) - 10- - 10 In x < 1 o < IO S(x) 

(4) x 

+ - 
2 - 

IO- - O' In x. 
x x 

We first consider the error in the exponential terms of (4). 

|0 (- - 2 < 1 < oa-x/lnn10 

If the exponential terms are neglected in (3) and we desire d - 1 correct places, we 
must have a - x/ln 10 < a - d or d In 10 < x. Thus, we determine d from 

(5) d = [x/lnI 1]. 

The following procedure is used to approximate S(x). Let 

An-1 = 10 a - X n 

Ak = 0a - (k+ 1)2xAk+l 
1 < k < n-1. 

Then define T(x) by 

t0aT(x) = xA1 = x(IV - ) A2 

= X(ba - 22 (b0a - 32 A3)) 

= a( - X22! + 3X3! 44! + *+ ( 1)ff !) 
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The truncation error in using lOaT(x) in place of lOaS(x) is 

I10aS(X) - 1oaT(x)I 
n+1 n+2 n+3 

< 1 + x + x 
(n + l)(n + 1)! (n + 2)(n + 2)! (n + 3)(n + 3)! 

1? / Xn+ Xn+2 Xn+3 

n + \(n + 1)! (n + 2)! (n + 3)! / 

The quantity in parentheses is the remainder term in the Taylor expansion of ex 
and is therefore equal to xn+le0 /(n + 1)!, 0 C (0, 1). Next, we assume n > 2x and 
use a technique of Courant [4, p. 326] to obtain xn+ 1/(n + 1)! < (2x)2x/(2x)!2n-n-l. 
Thus 

11OaS(x) - 1OaT(x)l < eZ ((2f 2-n-i). 

Using the fact that Stirling's formula underestimates (2x)! [5, p. 54], we obtain 

10 a e3-(n+l) 
In 2 

|10-S(x) - 10'-T(x)l < n + I (2ir)1/2(2x)12 < 1a+(3x-(n+l) In2)/ln1O 

Since we require d - 1 correct places, we take 

a + (3x - (n + 1) In 2)/in 10 <a - d 

which yields 

n > d In 10/In 2 + 3x/lIn 2 - 1. 

But we have x > d In 10, so it is sufficient to take 

(6) n = [4x/lIn 2]. 

We note that n = [4x/ln 2] > 2x as required above. 
There is also round-off error in computing lOaT(x). Assume that an error of ek 

is made in the kth iteration: 

Ak = 10- 1 2 Ak+1 + 'Ek. 
(k + 1 

Then 

10aT(x) = xA1 

= lOaT(x) + (XEl - 2*2! E2 + 3E3! E3 + n.+ ! n) 

If we assume Ekjl < E = 1 for all k, then 

lOaT(X) - lOaT(x)I < ex. 

Now e = l0x/mn 1o < l0a-d if 

(7) a = 2d + 1. 
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If one has in 2 for sufficiently many decimal places, one can use (3) to compute 
or to the desired number of decimals. The computation of the decimals of In 2 is 
discussed in the next section. 

3. Computation of In 2. Choose ,3 to be some positive integer to be deter- 
mined. The following series is used (it can be obtained from Taylor's series): 

10 In 2 = 2( +33 + 53+ 737+***) 

This series wgs approximated by 

A 
(=[2 3 + 3.33 ] [5.3 + + _(2(k - 1) + 1)32(k-1)+1 

where k is determined automatically for fixed by the condition that 

(8) 100 < (2k + 1)32k+1. 

Then 

0 < 10 In 2- A 

( 2 ( [3] + [ - l]) 

+ \ * + ((2(k - 1) + 1)32(k1 L(2(k - 1) + 1)32(kl)+l]jJ 

+ 2.10((2k + )32k+1 + (2k + 2k+ + 

The term outside the curly brackets in (9) is dominated by 

2.10 c 1 2.10' 1 9 9 
(2k + 1)3 g _ 9 (2k + 1)32k+1 8 = 4' 

making use of (8). The curly brackets in (9) are dominated by k - 1. Hence 

(10) 0 < I? O In 2-. A < 2(k- 1) + 9/4, 

where k is determined as the least k which satisfies (8). An upper bound to k as given 
by (8) is 

(11) f3 In 10 
2 In 3 

Hence 

(12) 0 < 10 In 2- A < in 10/In 3 + 4. 

In our computation, we choose j3 = 7140. One sees from (12) that the error in In 2 
as given by A is in the last 5 places in the 7140 places. We actually have only reported 
and used 7121 places. 
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TABLE 1 

Theoretical Frequency 
of n: 

Sample Frequency 1 n (n + 1)2 

n of n In 2 n(n + 2) 

1 0.4225 0.4150 
2 0.1646 0.1699 
3 0.0896 0.0931 
4 0.0527 0.0589 
5 0.0438 0.0406 
6 0.0308 0.0297 
7 0.0228 0.0227 
8 0.0216 0.0179 
9 0.0121 0.0144 

10 0.0124 0.0119 

TABLE 2 

Guaranteed Number 
of Actual Number 

Correct Digits of 
x d- 1 Correct Digits 

8 2 4 
16 5 7 
32 12 14 
64 26 29 

128 54 57 
256 110 113 
512 221 224 

1024 443 446 
2048 888 889 
4096 1777 1795 
8192 3556 3561 

16384 7114 

4. Computation of y. For our calculation, we used x = 2'4. From this x, 
we obtained d [x/ln 10] 7115, a = 2d + 1 = 14231, n = [4x/ln 2] = 94548, 
and k = [a In 10/(2 In 3)] + 1 = 14914. The above analysis shows that our com- 
putation of y is accurate to 7114 places. The errors from e& 2/x and S(x) might each 
affect the 7115th place. 

From this computation, we obtained 7114 correct decimal places of -y. These 
values were used to calculate 6920 partial quotients in the continued fraction expan- 
sion of -y. The 7121 places of In 2 yielded 6890 partial quotients of In 2. Note that 
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the number of partial quotients of - is more than that of in 2. These have been sent 
to the Unpublished Manuscript Tables (UMT) file of this journal. 

In Choong et al. [3], Table 1 gives sample frequency of n and theoretical frequency 
of n for 3470 partial quotients of -y. Our Table 1 corrects their Table 1. Our Table 2 
gives our results for x = 2' (t = 3, 4, * * *, 14) and is thus a check of our analysis. 
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