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A New Factorization Technique Using Quadratic Forms 

By D. H. Lehmer and Emma Lehmer 

Abstract. The paper presents a practical method for factoring an arbitrary N by represent- 
ing N or XN by one of at most three quadratic forms: XN = x- - Dy2, X = 1,-1, 2, D = 
-1, ?2, ?3, ?6. These three forms appropriate to N, together with inequalities for y, are 
given for all N prime to 6. Presently available sieving facilities make the method quite 
effective and economical for numbers N having 20 to 25 digits. Four examples arising 
from aliquot series are discussed in detail. 

It is the purpose of this paper to present and illustrate a new procedure for factor- 
ing numbers N of no special form which in the present state of the art is particularly 
effective for numbers having from 20 to 25 decimal digits. The implementation of 
the method was the result of three circumstances: (a) a decision to assist Richard Guy 
and John Selfridge in their survey of aliquot series, i.e., sequences of iterates of the 
sum of the proper divisors of a number, a source of many numbers N of the above- 
mentioned magnitude; (b) the elimination of idle time at the Computer Center of 
the University of California, Berkeley campus, which made direct search for the 
factors of N prohibitively expensive; and (c) the availability of the Delay Line Sieve, 
DLS-157 at no cost [5]. It is hoped that those readers who have unlimited access to 
the virtuosity of an expensive computer system may also find the method of some 
use although circumstances (a), (b) and (c) may all fail to exist, since the sieving 
part of the procedure can easily be done inside the system [6], even if at a slower 
rate than the million per second rate of the off line DLS-157. 

The present method is a modification of much older ones depending on the 
representation of N, or a chosen multiple of N, by a binary quadratic form. Such 
methods began with Fermat, 1643, [3] who suggested solving 

(1) N = X- - y' = (x-y)(x + y) 

for x and y. One such representation of N with x < (N + 1)/2 suffices to factor N, 
and the nonexistence of a solution is a proof of the primality of N. In recent decades, 
the Fermat method has been extensively used in the case where N is known to have 
all its factors of the form ax + 1. The method is also a good second step following 
a disappointing direct search for factors of N below some fairly high limit. The 
drawback of Fermat's method in the general case is its great average expense, which 
is O(N). This is to be contrasted with that of the present method which is only O(X'N). 

In 1647, Mersenne [3] noted that N is composite if N is the sum of two squares 
in two really different ways. Thus, the use of quadratic forms, other than Fermat's 
degenerate (1), has a long history. Euler, Legendre, Gauss, Chebyshev [3] and a 
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great many others suggested using forms 

(2) XN= x2 _ Dy2 (D $ 1) 

either to factor N or prove N a prime. Again, two really different solutions (xl, y'), 
(x2, Y2) of (2) result in two incongruent solutions z1, Z2 of the congruence 
Z2 = D (mod N) so that N and jz, - z21 have a common factor greater than 1 
which can be exposed by applying Euclid's algorithm to N and Ixly2 - x2y1 j. 

The advantage of (2) over (1) is, as we have mentioned, the cost of O(x/N). In 
fact, the larger jDj, the cheaper the search for y becomes. The big drawback is that, 
for a given D, (2) may not have a solution at all, even though D is carefully chosen 
so that the Jacobi symbol (D/N) = 1. In fact, the larger D is chosen, the more likely 
it is that such a disappointment will ensue. When this happens, we must change the 
D and X in (2) and try again. The potential cost of successive failures to solve (2) 
has led many writers to develop other tactics [see Dickson [3], Brillhart and Morrison 
[1], and Shanks [9] use quadratic forms in different ways]. It is a little surprising 
that no one seems to have asked: How many failures of (2) need we suffer, before 
we finally succeed in factoring N? In this paper, we show that the answer is at most 
two, in the typical case in which N is the product of two primes. The success of the 
method is due to the utilization of the information generated by each failure. 

To search for solutions of (2), we use Gauss' method of exclusion, excluding 
values of y [8]. When a positive y is found for which XN + Dy2 is a perfect square, 
x is taken to be its positive square root. It is essential to know in each case the range 
of possible values of y, so that we can be sure when (2) has no solution or, after one 
solution has appeared, how long we should wait for a second solution. This range 
depends, of course, on X, N and D. There are three cases as follows [2], [8]. 

If D < 0, 0 < y < (X/ID1)1/2 \IN. 

(3) If D > 1 and X > 0, O < y < (X(T- 1)/2D)1/2 \/N. 

If D > 1 and X < 0, (IX I/D)'/2/N y < (IX I(T + 1)/2D)1/2 -\IN. 

Here, (T, U) is the fundamental solution of the Pell equation T2 - DU2 = 1. 
We now proceed to disclose our method. To cover all cases of N, prime to 6, 

requires only ten examples of (2). These are labeled (A), (B), ... , (J), as follows: 

(A) N =X2 + y2 (F) -N =X2 - 3y2 

(B) N = x2 + 2y2 (G) N =x2 + 6y2 

(C) N = x2 - 2y2 (H) 2N =x2 + 6y2 

(D) N = X + 3y2 (I) N = x2 - 6y2 

(E) N = X2 - 3y2 (J) -N = x2 - 6y2 

Three of these quadratic forms are chosen according to the following: 
THEOREM. Let N = pq _ n (mod 24) be the product of two primes. From among 

(A), (B), ... , (J), select the three that correspond to n by the following scheme 

n 1 5 7 11 13 17 19 23 

selection BDI AHJ CDG BFH ADE ABC BDI CFJ 
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Then, at least one of the three selected equations has exactly two solutions with y 
satisfying the inequalities (3). These two solutions determine p and q. 

Proof. We separate eight cases according to the value of n. All congruences in 
the proof have modulus 24. Use is made of the "conformal multiplication" identity 
of Brahmagupta 

(4) Q1- D 1)(2 - D q) = ( ?2 i D 1q2 - D ?112 i t2?1) 

as well as the following well-known facts about the Legendre symbol 

(il) =1 forp= 4m+ 1, 

(-) = I for p = 8m + 1, ( I) = 1 for p = 12m + 1, 

from which we can conclude that the 10 quadratic partitions given in Table 1 have 
solutions if and only if p belongs to the corresponding residue classes modulo 24. 

TABLE 1 

residue classes residue classes 
Label partition of p Label partition of p 

(A') p = C2+ n2 1 5 13 17 (Ft) -p = -2_3n2 11 23 

(Bt) p = E2+2n2 1 11 17 19 (GI) p = 2+6T 2 1 7 

(C') p = E2-2n2 1 7 17 23 (Ht) 2p = 2 +6I2 5 11 

(Dt) p = E2+3n2 1 7 13 19 (It) p = E2_6T2 1 19 

(El) p = 2_ 3n2 1 13 W) -p = 2_6n2 5 23 

The details of the proof are given in two cases only; the other six cases are proved 
in the same way. 

Suppose n = 5. If p 1, 5, 13, 17, so that q 5, 1, 17, 13; then, by (A'), 

p= 2 + 2 q= +2 2 

Hence, (4) shows that N = X2 + y2 and so (A) has 2 solutions. Next, let 

p _79 11, so that q- 11, 7. 

Then, by (G') and (H'), 

p or q = + 6 1 2q or 2p =2+ 6722 

Hence, by (4), 2N = X2 + 6y2, so that (H) has 2 solutions. Finally, let p 19, 23 
so that q -23, 19. Then, by (I') and (J'), 

p or q = - 6 21, -q or -p = 
42-6% 

Hence, by (4), - N = X2 - 6y2 so that J has 2 solutions. This disposes of the case 
n = 5. Next, suppose n = 23. If 

n 1, 7, 17, 23, so that q 23, 17, 7, 1, 
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then, by (C'), 

2 (l_22 q = t2 
- 2X2. 

This implies (C) has 2 solutions. Next, if 

p 5, 19, so that q 19, 5, 

then, by (I') and (J'), 

p or q = 6Olt -q or _P = t2 _ 6X2 

Hence, (J) has 2 solutions. Finally, let 

p 11, 13, so that q- 13, 11. 

We can now use (E') and (F') to show that (F) has 2 solutions. This completes the 
case n = 23. 

In this theorem, we have used the quadratic characters modulo p of (-1, 2, 3). 
Two other theorems hold in like manner for (-1, 2, 5) and (-1, 2, 11) but not for 
(-1, 2, 7). The advantages to be expected for these larger values of D are offset 
by the larger values of T in (3), namely 9 and 10 for D = 5 and 11. Also, for 11, we 
need to use X = 4. In either case, the inequalities (3) make the search for y more 
expensive on the average. In practice, the variable y in Eqs. (A) to (J) is often subject 
to further restrictions since N is known modulo 24. For example, in Case 1, N = 

1 (mod 24), Eq. (B) becomes 

1-X2 + 2y2 (mod 24). 

It would be wasteful of machine time not to observe that y 0 0 (mod 6). So we should 
replace (B) by 

N=x2 + 72Z2 or N- 72z2 = x. 

Again, in Case 2, N 5 (mod 24), (H) becomes 
X212 2 

2N = X+ 6(2z+1)2 or 2N-6-24z-24z2 = X. 

In each of these examples, we have stated the problem in the form: Find z for which 
f(z) is a square. This is a standard formulation well suited to machine application 
and for which a corresponding general program has been written. In our case, f(z) = 
a + bz + cz2. The theorem now tells us that, for each of the 8 cases of N (mod 24), 
there are 3 quadratics each with its own "time coefficient" t, namely 

(5) a, + b1z + C1Z2; tl, a2+ b2z + C2Z2; t2, a3 +b3z + C3Z2; t3, 

such that at least one quadratic has two square values, for z in the range 0 < z < tx/N. 
Table 2 gives these coefficients. 

T is a measure of the maximum possible cost in each of the eight cases of N 
modulo 24. Since T < 1, we can assert that the number of values of y to be excluded 
is less than \IN, even in the worst possible case and with the worst possible luck. 
In each column, the three labels have been arranged in order of increasing cost, i.e., 
length of run. This does not imply that one should necessarily begin with the top 
of the column and work down. We have found it expedient to choose that run, long 
or short, which best fits in with the operator's schedule, and to trust to luck. 
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TABLE 2 
N modulo 214 

1 5 7 11 13 17 19 23 

Label B J G F D A B F 

a1 N a N- 6 y N-12 N N-18 Y 

bl o0 -214 4 -48 0 -72 6 

Cl -72 24 -24 3 -48 -16 -72 3 

tl .1179 .1495 .2041 .1298 .1443 .2500 .1179 .1298 

Label D A D H A B D J 

a2 N N-4 N-3 2N-6 N-4 N N-3 Ott 

2 b 2 ? -16 -12 -24 -16 0 -12 at' 

C 2 -48 -16 -12 -24 --16 -8 -12 24 

t 2 .1443 .2500 .2887 .2887 .2500 .3536 .2887 .1495 

Label I, H C B E C I C 

a 3 N 2N-6 N+2 N-2 N N N+6 N+2 

b3 0 -214 8 -8 0 0 214 8 

C3 24 -214 8 -8 3 8 214 8 

tR .2887 .2887 .3536 .3536 .4082 .3536 .5773 .3536 

T .5509 .6882 .8464 .7721 .8025 .9572 .9839 .6329 

a = 24g2 + 24g -N + 6, a' = 24g2 - N, fl = 48g + 24, ,B' = 48g, where g = 
1 + [(N/24)"/2], y = 3h2 - N, 8 = 6h, where h = 1 + [(N/3)1/2], T = 
11 + t2 + t3. 

We conclude with three typical examples. 
Example 1. N = 1112 94469 43096 92244 41331. This is a factor of the 196th 

term of the aliquot series 564, 780, 1572, * . . In this case, N 11 (mod 24). Hence, 
we use (B), (F) and (H). Choosing (H), the corresponding entry in Table 2 gives 

2N - 6 - 24z - 24z2 = X2, z < .2887 \N= 9.631.10'1. 

The DLS-157 gave the two solutions 

zi = 10660233669, Z2 = 21061989605. 
Thus, 

2N = 4688939804442 + 6.213204673392 = 4 + 6yl 

and 
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2N = 4603719812442 + 6.421239792112 = X + 6yV2 

Finally, 

GCD(N, X1Y2 - X2Y1) = 42492353748443, 

so that 

N = 2619164617* 42492353748443. 

Inspection of the actual factors modulo 24 shows any one of (B), (F) or (H) would 
have produced the factors of N. The use of (F) would have cost only one half as 
much as (H). 

Example 2. N = 141 50795 00009 74835 27291. This is a factor of the 116th 
term of the aliquot series 840, 2040, 4440, * * . Since N -11 (mod 24), we have the 
same choice (B), (F) or (H) as in Example 1. This time, we choose (F) and find 

h 1 + [(N3 1)1] = 68679921861, 

3h 2_ N = 401713482672, 

= 6h = 412079531166. 

The sieve set up is then 

fy + bz + 3z2 = x2 with 0 < z < .1298/N = 1.544* 1010. 

The sieve gave the two solutions 

z, = 2126046669, xi = 29827177847, 

Z2= 7295140817, x2 = 56265757319. 

Setting 

Yj = h + z1 = 70805968530, 

Y2 = h + Z2 = 75975062678, 

we have 

N= 3y2 - 4 = 3y2 
2 4. 

Finally, 

GCD(N, x1y2 - X2y1) = 16490417759. 
Hence, 

N = 16490417759* 858122286949. 

Example 3. N = 472 42657 53388 82684 96419. This is a factor of the 146th 
term of the aliquot series 966, 1338, 1350, . . Since N _ 19 (mod 24), we have to 
consider (B), (D) and (I). Failing to obtain solutions for (B) and (D), we finally 
attempted (I). This gave four solutions of the equation 

N + 6 + 24z + 24z2 = X2, z < .5773V\/N = 1.2548 10"; 

namely, 
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z, = 8318338075, x1 = 221140976515, 

Z2= 8685150349, x2 = 221479167445, 

Z3= 12687057797, X3 = 226065769163, 

Z4= 13062176867, X4 = 226577908637. 

With yi = 2zi + 1, we have 

N = X - 6y2 (i - 1, 2, 3, 4). 

The GCD(N, x1yi - xiy,), i = 2, 3, 4, give the following factorizations of N: 

N = 1638023 28841266291064453, 

N = 13401284539 3525233524921, 

N = 2152127- 21951612304426397. 

This redundant information gives 

N = 1638023-2152127 13401284539, 

a product of three primes. 
This illustrates that, although our Theorem applies to products of only two 

primes, the method may well work in other cases. In general, the number of solutions, 
if any, of Eq. (2), satisfying the inequalities (3), is 2k 1, where k is the number of 
distinct prime factors of N. The success of run (I) is due to the fact that two of the 
prime factors of N are congruent to 23 and the other to 19 modulo 24, so that all 
three are covered by (I') and (J'). Had all three runs failed to give solutions, we 
would have concluded that N is a product of three or more primes. Were our project 
adequately supported, we would normally search directly for prime factors less than 
the cube root of N before applying the Theorem. 

An alternative to this expensive search is the use of additional forms. By splitting 
the four cases of N modulo 5, it can be shown that the factorization of N = pqr can 
be achieved by using at most four additional forms. This prospect will be more 
pleasant with the advent of our new model sieve, the SRS-181, which is faster than 
the DLS-157 by a factor of 20. 

It will be observed that, for N 0 1 (mod 24), the three forms specified in our 
Theorem are not only sufficient but are forced on us. The same fact holds for the 
4 additional forms mentioned above in case N 0 1 or 49 (mod 120). [See Appendix.] 

Economic considerations of this kind also enter into the problem of testing N 
for primality. It is very cheap to test whether N is a pseudoprime (i.e., aN ' a (mod N)); 
in fact, the cost is only O(log N). To complete the proof of the primality of a pseudo- 
prime, one must at least partially factor N - 1 or N + 1 [7]. This could be expensive 
by direct search. One could alternatively apply the above method to the result of 
removing the small factors, say < 10000, from N i 1. A cheaper and more direct 
alternative is to obtain a unique representation of XN by a quadratic form. Any of 
those specified in Table 2, preferably the one with least t, will suffice. For this applica- 
tion, there may be a still cheaper quadratic form available, such as 

(6) 4N = x2 + 163y2 if (N/163) = 1, y < .15665VN. 
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TABLE 3 

n 5 7 11 13 17 19 2 3 

D 
-1 1 1 1 

-2 1 1 1 

2 1 1 1 

-3 1. 1 l. 

3 -1 1 -1 

-6 2 1 2 

6 -1 1 -1 

Example 4. N = 6 17887 90759 27253 99713. This is a factor of the 187th term 
of the aliquot series 564, 780, 1572, * @ . Here (N/163) = 1. We find by [11] that 
N = x2 + 144 163y2. The sieve gives 

x = 16270722841, y = 122660709 

as the only solution with y < 1.6225. 108. Hence, N must be a prime. 

Appendix. The same methods involving determinants D dividing 24 can be 
applied to the 15 square free divisors of 120. This gives an improved set of binary 
quadratic forms. 

The information in our Theorem can be presented in tabular form by means of 
Table 3 which is a 7 X 7 matrix whose nonzero elements are the multipliers X in (2) 
that go with the corresponding D and n. We have omitted the column for n = 1. 

We note that, in each line (i.e., row or column), there are three nonzero elements 
and that every pair of parallel lines has just one nonzero element in common. This 
feature is characteristic of the so-called Steiner triple system (7, 3, 1) [10]. 

TABLE 4 

)103 59 37 113 91 47 101 79 89 67 77 109 119 97 107 

7 11 13 17 19 23 29 31 41 43 53 61 71 73 83 
D 1 11 

-i 1 1 1 1 1 1 1 
-2 1 1 1 1 1 11 

2 1 1 1 1 1 1 
3 1 1 1 1 1 1 1 
3 -1 1 -1 1 -1 1- 

-5 2 2 1 1 2 1 2 
5 1 1 1 1 1 1 1 

-6 1 2 2 1 2 1 2 
6 1 -1 -1 1 -1 -1 1 

-10 2 1 2 1 2 1 2 
10 2 1 1 2 2 1 2 

-15 3 1 3 1 3 1 3 
15 3 -1 -3 3 -3 1 -1 

-30 5 3 2 2 5 1 3 
30 -2 -2 2 1 -1 -1 2 
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As we have noted, in order to treat the case in which N may be the product of 
up to three primes, we can introduce the prime 5 and consider the appropriate deter- 
minants D which divide 120. In this case, seven forms are required for each n 
N (mod 120) and these are forced when n 9 1, 49. 

Table 4, the counterpart of Table 3, gives the multipliers X by means of a 15 X 15 
matrix. 

Again, we note that in each line of this matrix there are seven nonzero elements 
and each pair of parallel lines has just three elements in common. This gives us one 
of the (15, 7, 3) Steiner systems [10], with the additional feature that, out of the seven 
elements in each column, three can be chosen in just seven different ways so that the 
product of the three chosen determinants is a square. Any one of these sets of three 
determinants with their multipliers X constitute a triple of forms (2) that could be 
substituted for the triple suggested by our Theorem for a given n. Table 5 gives for 
each n (mod 120) the most efficient triple of polynomials F1, F2, F3. Instead of using 
the total T of maximum time factors, 

T = tl + t2 + t3 

(representing the worst possible luck), as a measure of goodness, we have adopted 
the more sophisticated "expected time factor" 

'r = t, + 12t2 + 14t3 (t1 _< t2 -< t3) 

as a measure of efficiency of a triple of forms, resulting in a considerable improvement. 
In fact, of the 32 values, all but n = 71, 73, 97 and 119 are improved by the con- 
sideration of determinants modulo 120. 

In the general case, in which N may be the product of t distinct primes, one chooses 
2 - I determinants D $ 1 dividing M = -2p2p * * * Pt where the p's are distinct 
odd primes. N must be considered modulo 4M,. The 2 + 1 - 1 by 2t + 1 - 1 matrix of 
X's corresponding to Tables 3 and 4 will have 2' - 1 nonzero elements in each line, and 
every pair of parallel lines will have 2`t1 - 1 elements in common. This gives a 
Steiner system (2 t+ 1 - 1, 2 t - 1 2 -- 1). 

Although the structure of this general system is independent of the choice of the 
p's, it behooves us, for practical reasons, to limit not only t, but also the size of pt, 
in order that all the determinants dividing M, have small class numbers. 

Our best thanks are due to Richard Guy, John Selfridge, and Daniel Shanks for 
valuable suggestions and corrections in the manuscript. 
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