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The Rayleigh Quotient Iteration 
and Some Generalizations for Nonnormal Matrices* 

By B. N. Parlett 

Abstract. The Rayleigh Quotient Iteration (RQI) was developed for real symmetric 
matrices. Its rapid local convergence is due to the stationarity of the Rayleigh 
Quotient at an eigenvector. Its excellent global properties are due to the monotonic 
decrease in the norms of the residuals. These facts are established for normal matrices. 
Both properties fail for nonnormal matrices and no generalization of the iteration has 
recaptured both of them. We examine methods which employ either one or the other 
of them. 

1. History. In the 1870's John William Strutt (third Baron Rayleigh) 
began his mammoth work on the theory of sound. Basic to many of his 
studies were the small oscillations of a vibrating system about a position 
of equilibrium. 

In terms of suitable generalized coordinates, any set of small displacements 
(the state of the system) will be represented by a vector q with time derivative 
q. The potential energy V and the kinetic energy T at each instant t are 
represented by the two quadratic forms 

V = 2 (Mq, q) = 2q*Mq, T =2(q,q) jq*Hq, 

where M and H are suitable symmetric positive definite matrices, constant 
in time, and q* denotes the transpose of q. 

Of principal interest are the smallest natural frequencies w and their 
corresponding natural modes which can be expressed in the generalized 
coordinates in the form exp(iwt)x where x is a constant vector (the mode 
shape) which satisfies 

(M-W2H)x =0. 

Among other things, Lord Rayleigh showed that the frequency can be 
written in terms of the mode shape 

W2= V/T=x*Mx/x*Hx, 

the ratio of the two energies. 
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Now, this ratio is well defined even when x is not a mode shape. Let v 
be any nonzero real vector. The Rayleigh Quotient of v (with respect to M 
and H) is defined by 

p (v) = v*Mv/v*Hv. 

Lord Rayleigh pointed out that, for any v, w2- < p(V) < W2 and suggested 
a technique for improving an approximation to a mode shape. 

With the advent of digital computers in the 1950's, Lord Rayleigh's 
technique for improving a good approximation was turned into a method 
for the automatic computation of eigenvectors from an arbitrary initial guess. 
The question of the convergence of this iterative process was discussed by 
Temple [7] in England and Crandall [2] in the U.S.A. In 1958/59, Ostrowski 
[4] published six articles giving a rigorous and detailed analysis of the local 
asymptotic behavior of the original method and some variants of it. He 
discussed both the symmetric and the nonsymmetric cases. In 1968 came 
Kahan's proof [5] of convergence, for almost all starting vectors, in the 
symmetric case. We continue the investigation. 

In the body of this paper, we will not treat the general case (see [3] for 
that) but take H = I. Our interest is in understanding the behavior of the 
RQI when M is not symmetric. However, we shall begin by consolidating 
what is known, and that mainly concerns symmetric and normal M. 

2. Notation. Matrices will be denoted by capital latin letters, column 
vectors by small latin letters except for i, j, k, 1, m, n which denote indices. 
Small Greek letters are reserved for other scalars. The conjugate transpose 
of a vector u is denoted by us whether or not u be real. Throughout, we 
will use the Euclidean norm, 11 u 11 = 

Let C be an arbitrary n X n complex matrix with spectrum XI, .. . -A,} 
and normalized eigenvectors given by 

CxJ=Xjxi, yJ*C=XjyJ*, xj*xi=y yJ=1, j=1,9,r. 

If XA is multiple, then xj and yj will not be unique. If C is defective, then 
the {x;} do not span the whole space. When C* = C, then yj = xj. 

3. Basic Properties of the Rayleigh Quotient. 
Definition. The Rayleigh Quotient p is the function which assigns to any 

nonzero complex vector u the scalar quantity 

p(u) = U*CU/u*u =SZECikUJ Uk/S U -2. 

When it is necessary to emphasize the role of C, we write p (u) p (u, C). 
We begin by listing, without proof, some basic facts. 
Homogeneity. p (au, AC) = ,p (u, C); a, 1 # 0. 
Translation Invariance. p (u, C - a I) = p (u, C) - a. 
Boundedness. As u ranges over all nonzero column vectors, p(u) fills out 

a region in the complex plane which is called the field of values (also numerical 
range) of C. See Marcus and Minc [10] for more information. 
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For our purposes we need only the fact that this region is closed, bounded, 
and convex. 

If C = C*, then the field of values is the real interval bounded by the 
extreme eigenvalues [AXi, XAlrI] 

Stationarity. Over complex vectors u, the function p(u) is not differentiable 
in the components uj, j- 1, * * *, n. However, p is rational in the Uj and the 
uj and its derivative at u in the direction of the unit vector v is defined by 

P' (U; v)-_lim [P (u + tv) - ( ) ] t 

as t -w 0 through real values. 
A standard calculation yields 

p1(u; v) v*(C -p(u))u +u*(C -p(u))v. 

Note that 

P'(u; iv) -iv*(C-P(u))u + iu*(C- p ) V. 

Consequently, p1(u; v) vanishes for all directions v; that is, p is stationary 
at u, if and only if 

(C-p)u =0, u*(C p) = 0*. 

In other words, u must be an eigenvector of C and C*; u = xj= yj in the 
notation of Section 2. So for normal C (CC* = C*C), the eigenvectors of C 
yield the stationary points of p. 

Example. Let J=(0 ). The function p(u,J) =uiu2(IuiI2+1u2l2)- has 
no complex stationary points although 0 ' I p (u, J) I < i. Over real vectors, 
p(u,J) has a maximum at (1,1)* and a minimum at (1, -1)*. 

For real vectors, p (u, C) is determined by the symmetric part of C. Be- 
cause u* C*u = u* Cu, it follows that 

u*Cu u* (C iC*) i (C-C*)1(+ u C=u au ( +iu# (C i 1U*(C+C*)u. 

Thus p is stationary at real u if and only if u is an eigenvector of C + C*. 
Minimal Residual. Given u # 0, then, for any scalar p 

II (C 
_.4uII2 _ 11 CU2 - jjp(U)Ujj2, 

with equality only when ;t = p = p (u). 
This classic result can be generalized to the case when u is a rectangular 

matrix and also to the infinity norm. See Kahan [5a] and Stewart [11] 
for more details. 

Proof. 
(C -,4ul2 = u*uIMII -,u*Cu -,uu*C*u +u*C*Cu 

= U*U{ G P)(_P) IPIl2 + U*C*Cu/u*u} 
> 11 Cu112 - Ip12I1uI2, 

with equality only when u =p. L 
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COROLLARY 1. IIu*(C-)H12 > IIU*CII2_IPI1211U*112 and equality holds only 

when U = p. 
COROLLARY 2. u is orthogonal to (C-p(u))u. 
Note that this property holds for any C. 
COROLLARY 3. Let Pj denote the set of all monic polynomials of degree j 

(t + ' - ?*). Then 41 (t) = t -p (u) is the minimizing polynomial of degree 1 
for u; 

J1 Al (C) u ? ' I O(C) j, .C P1. 

The minimizing polynomial of degree two is important in practice and is 
discussed in [1], [5a], and [5c]. 

4. The Iteration. Lord Rayleigh observed that Xj = p (xj) and suggested a 
scheme for improving on a given approximation vo to x; when C* = C. The 
technique is a variant of inverse iteration and is well defined for all C. 

Pick a unit vector vo. Then, for k =0,1,2,.-., 

(i) form Pk = p(Vk) =Vk CVk, 
(ii) if C - Pk is singular, then solve (C - pk) Vk+1 =0 for 

(RQI) vk+1 # 0 and halt, otherwise, 
(iii) solve (C -Pk) Wk?1 = Vk, 

(iv) normalize vk?1 =?wk+l?/I?wk+l? 

For purposes of analysis, it is convenient to combine (iii) and (iv) into 

(iii) solve (C-Pk)Vk+1 =VkTk, 

where -Tk is the positive scalar which ensures that 11 vk+=1. Thus, in terms 
of Vk, 

(V) Tk-| (C -Pk) _1Vk ||- 

rhe sequence {Pk. VkI is called the Rayleigh sequence generated by vo on C. 
Of course, if vk ->xi as k-> a), then p(Vk) ->A4 by the continuity of p. Con- 

3equently, the RQI can be regarded as a method to find eigenvalues or 
Digenvectors or both. 

5. Invariance Properties of RQI. Let tPk,vkh be the Rayleigh sequence 
generated from vo by the RQI on the matrix C. 

Scaling. The matrix a C, a # 0, produces the same sequence as C. 
Translation. The matrix C - a produces the sequence Pk - a, vk- 

Unitary Similarity. The matrix QCQ*, Q unitary, produces the sequence 
Pk, QVk I- 

Consequently, the iteration has the same form in a new orthonormal 
,oordinate system. In other words, the process is coordinate free, in contrast 
o the QR algorithm. 

6. Local Convergence. It was observed that, when C = C*, convergence 
if the vk to an eigenvector was ultimately very rapid. In 1958 and 1959, 
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Ostrowski [4] produced a sequence of six papers in which various aspects 
of the iteration were analyzed in great detail; he is credited with the first 
rigorous proof that the asymptotic convergence rate, as k-* co, is cubic. 

THEOREM. If C is normal and vk --x1, an eigenvector for A1, as k-* co, then 

either 11 Vk+ -X1 11 / 1- VkX1 3-_3 1 (the usual case) 
or 0 <11 Vk?1 - / Vk - X1 11 3< 1 for all sufficiently large k 

(the exceptional case). 

Proof. Let 4', be the eigenspace for A1. We may assume that the iteration 
does not terminate at a finite k. Thus, Pk is never an eigenvalue and both C 
and (C -Pk)-1 act like scalars on 4A1. Consequently, if the projection of 
vo onto }-kl is proportional to xl, then so is the projection of vk for all k. 
Therefore, given any small e > 0, there is a k such that vk is proportional 
to x1 +Eu, where u is a unit vector orthogonal to Zt; u = u(k). 

By the stationary property for normal C, 

Pk -Ai = 2U*(C A-)u + O(c4). 

By (iii)', vk+1 is proportional to (C - Pk) -1vk and 

(C-Pk)1(Xl +-fU) =(X1 -Pk) [Xi +?E(A1 -pk)(C-Pk)ulU] 

-(X1 -Pk) -1[Xi -,f3 U*(C _1) U ( C-Pk) _U + 0 (d)] 

Of course, (C-Pk)-1 is unbounded, but since uC _47, JJ(C-pk)-1u11 < 

2/6 for large enough k. Here, b =miniA-XAjJ over all Aj distinct from Ai. 
This establishes the cubic nature of the convergence. 

More can be said however. Let uk be the normalized projection of vk onto 
}if. Thus, Vk = (1 - +)12X1 ?EkUk. Then Uk U =akH,- (C-Pi)1uo where 

ak is a normalizing constant. Usually, uk will converge to x2, where A2 is the 
unique eigenvalue closest to A1. In this case, 

u *(C- X) U -Pk) U ` (X2 - 1)(AN-A)-1x2 =X2 

and convergence is cubic. 
However, if there are several distinct eigenvalues closest to A1, let }k2 be 

the invariant subspace generated by their eigenvectors. If, by chance, uk 
converges, then we have the case treated above. Otherwise, as k-* cx, 

k-1 

Uk = ak n ( -Pi) _U - fk ( C- X) k 

i=O 

will approach -2 by the theory of the power method. For each w :J=2> xj1Y 
in 

r 

(C -A1) w = 5 E exp(ij) xj yj, 
j=2 

r 

(C - Ai) -1w =6 1 ?exp(- ioj)xjyzj. 
j=2 
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Since w cannot be parallel to (C-AX)w in this case (Y2Y3 # 0) 

lw*(C -Pk)W I j(C -Pk)-'W > V C -PO)W | (C -Pk)-1W 

--)f|(C-A1)wf fl(C-A1)-1wjj 

= 1 for w in A2- 

Moreover, since w lies in Zkl, w*(C -pk) W = p (w) -Ph # 0. By continuity, 
for large enough k, 

O < u*(C-Xl)ul * l(C-Pk)-1uj < 1. 

For still larger values of k, 

0 < Vk+l -xl / |Vk -x i < 1, too. 

Thus, convergence is even faster in the exceptional case, but the asymptotic 
behavior is less simple than in the normal case. El 

7. Fixed Points (for Normal Matrices). It is easily verified that step (ii) 
of the algorithm ensures that each eigenvector x; of any matrix C is a fixed 
point of the iteration. These are 'attractive' fixed points. For normal C, 
this fact follows from the local convergence theorem. 

For Hermitian matrices, Ostrowski describes a finite neighborhood (unknown 
a priori) around each eigenvector. When the RQI is started in this region, 
convergence will occur to the associated eigenvector. These are the only 
fixed points of the vector iteration. The proof is left to the reader. 

Even in the Hermitian case, the Xi are not the only fixed points of the 
scalar sequences IPk1. If Cxj =jxj, j1 = 1,2, then, since x1*Cx2 =0, 

P(X1 +X2) =P(X1 -x2) = (X1 +X2)/2. 

If v0 =x+ = (x1 + x2) /V2, then it is easily verified that 

Pk = (Xl +X2)/2, v2k = x+, v2k+1 = (xi -x2) /V x. 

These mean values are called repulsive fixed points by Ostrowski because any 
perturbation of vo from u+ in the (x1, x2) plane causes IPk to diverge away 
from the mean value. Note that x+, x_ are, respectively, the interior and 
exterior bisectors of the angle between x1 and x2. 

We state without proof that these facts about the fixed points, which 
were proved for the Hermitian case, continue to hold when C is normal. 

It is difficult to describe, in terms of C's eigenvalues and eigenvectors, 
those nontrivial v0 whose Rayleigh sequences {Vk) fail to converge. 

8. Global Convergence (Normal Matrices). Although convergence of the 
RQI had been established rigorously (by Ostrowski) only for starting vectors 
in definite small neighborhoods of eigenvectors, users found that it was 
impossible to make the method fail in practice. 

In 1966, Kahan had a proof that for Hermitian matrices the RQI converges 
for almost all starting vectors. This result was not published until 1968, in 
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[sb]. Wilkinson [9] also has a proof of this result but couched in terms of the 
QR tridiagonal algorithm. 

Kahan's proof makes use of the observation that the residuals rk = (C - Pk) Vk 

are monotonic decreasing in norm. If the limit of these norms is 0, then vk 

converges (cubically) to an eigenvector. If the limit is positive, then the 
vk do not converge although Pk converges (linearly) to the mean of a pair 
of eigenvalues. 

Kahan's proof does not make explicit use of the minimal residual property. 
In fact, the proof exploited symmetry so artfully that it was difficult to see 
how the result could be extended to non-Hermitian matrices. However, 
the results of H. J. Buurema on the QR algorithm [1] suggested to us that 
it is the minimal residual property of the Rayleigh Quotient which secures 
the good global convergence properties of RQI. 

THEOREM. Let rk = (C -Pk)Vk be the residual at the kth step of RQI. If C is 
normal, then the sequence { rlrki, k =0,1, * * * I is monotone decreasing for all 
starting vectors vo. 

Proof. 

||rk+1|| = (C -Pk+1) Vk+1I 

=<I (Cc-Pk)Vk+ 1j, by the minimal residual property, 

= j Vk*(C Pk) Vk+1 |, since (C -pk)Vk+1 is parallel to vk 

(by the defining relation for vk+?), 

f< Vk*(C -Pk) Vk+l 11, by the Cauchy-Schwarz inequality, 

= Q V,*(C -Pk) j, since vk+l is a unit vector, 

=(C k-p) vkII, since C is normal, 

= 1rk 11. 

Equality can occur only if Pk+i = Pk and vk`+1 is parallel to vk` (C - Pk). l 
Various generalizations suggest themselves and we will turn to them in 

Section 10. 
The rest of the proof that Kahan's result holds for normal matrices follows 

the original line of thinking but is more complicated. 
THEOREM. Let the RQI be applied to a normal matrix C with starting vector 

vo. As k -> o, 

(i) Pk =P(Vk) converges, and either 
(ii) (Pk, Vk) converges to an eigenpair (A, x) (and the asymptotic rate is cubic), or 

(iii) Pk converges (linearly) to a point equidistant from s (? 2) eigenvalues 

of C, and the sequence V vk I cannot converge. It may or may not have a limit cycle. 

Proof. By the above theorem, the monotone sequence {I 1rk } is bounded 

below by 0. Let its limit be T ? 0 and let ok be the acute angle between Vk+1 

and (C-pk)*vk. Note that 

I|rk+l 1I=I (C-Pk) Vk+1 II + 2 Real [(Pk -Pk+1) Vk+1 (C-Pk) Vk+1 ] + I Pk -Pk+1I 

= |v,*(C -Pk)Vk+ I - IPk -Pk+ 1I 

= || r2 COS2Ok - IPk -Pk+ 12. 
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Since -+rk T, we must have Pk - Pk+1 -*0 as k -A co. Moreover, the Pk are 
confined to the numerical range of C, a closed, bounded region in the complex 
plane. Therefore, the sequence Pkh has limit points** and, since Pk - Pk+i - 0, 
there can only be one of them. Thus, 

Pk- P as k-o. 

Since the vk are confined to the unit sphere in complex n-space, the sequence 
v*} has limit points too. The problem is, how many and what are they? 
Case 1. r =0. Take a subsequence of Vk I converging to a limit point v. 

Taking limits in this subsequence yields 

||(C-p)V/j =lirnl (C-Pk)Vkhl =0- 

Thus, p is an eigenvalue and each limit point v is one of p's eigenvectors. 
The local convergence theorem shows that the only limit point is the spectral 
projection of vo onto p's eigenspace. Thus, (Pk, Vk) converges to some eigenpair 
(A, x) of C. We have already seen that, when C is normal, the asymptotic 
rate is cubic. 

Case 2. r> 0. As k-*, 

COS'Ok ( || rk+1 112 + |Pk -Pk+1 
1 
2) / || rk || 

1. 

SO Tkh =vk* (C -Pk) Vk+?l = II rkh|cosOk- r. Now 

Tkh Vkh+l ( -Pk) (h -Pk) Vk+1 

jVk+l jj (C -P) *(C -Pk) Vk+1 ||, by Cauchy-Schvarz, 
=II(C-Pk) *VhTk |, since (C-Pk) Vk+?1 VkTk, 

Tk 11 rk 11, by normality. 

Consequently, equality in the Cauchy-Schwarz inequality must hold in the 
limit, as k -* c. Let K be a subsequence of {0, 1, 2, ... I such that limheK Vk =v, 

a limit point. Taking this limit shows that (C - p) * (C - p) v is proportional 
to v. Since 
(X) /I(C-p)v// -=r, 

we have 

(Y) (C -p) *(C-p)vv = T 

for each limit point. Using the same subsequence again, we find 

(Z) p =limp(Vh) =p(v). 
hGK 

These last three relations (X), (Y), (Z) characterize the limit points v of 
vhk . Each is a singular vector of C - p with associated singular value r. Note 

that r =(C-p)v/I. 
When C is normal, we can describe the v in terms of C's spectral decomposi- 

tion because the singular values of C-p are simply I Ix -PI, i = 1, * * .,nI. 

**Since these limit points are means of subsets of C's eigenvalues (see Case 2) they are 
finite in number. 
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Let F be the subset of eigenvalues Ai satisfying I - I = r and let m be 
the number of distinct eigenvalues in F. 

We now show that m must be greater than one. Suppose to the contrary 
that m = 1 and Xj =p +rTe", then T2 is a simple eigenvalue of (C -p) *(C -p) 
and, since (C-p)*(C-p)Xj=T2Xj, we would have v=e"xj and v*Cv 
p +eeiT which contradicts p(V) =p. Thus 2 ? m ? n. 

Consequently, T is a multiple singular value of C - p and 

v =ajxj, je F, 

1 S 1ajJ2 

Moreover, since Xj - p = Te iei j E F, 

0 = v*(C -p)v = r: Ia Ij2e8,. 

Thus, p is a weighted mean of the equidistant eigenvalues and the vectors 

E aje -ik9j, j E r 

are limit vectors for each k = 0,1,2,*--. This set will be finite if the 0j are 
rational multiples of v. El 

Definition. Let A be the subspace spanned by Ixj, j & r }. 

COROLLARY. If C* = C, then, in case (iii), p = (XA + Aq) /2 and the only 
limit vectors are (xp ? xq) /V--. 

Proof. If C* = C, then the Aj must be real. So m =2, 01 =0, 02 =7. Con- 
sequently, I a1 2 = 1a2 2 = -. Thus, Vk tends to oscillate between the internal 
and external bisectors of xp and xq. Of course, Ap and Aq could be multiple 
but xp, xq are the unique eigendirections in the plane defined by the projection 
of v0 and v, onto A. El 

9. Instability of Case (iii). Let z be any unit vector in the invariant subspace 
z defined above. Thus, with the notation of Section 8, 

z =LXj, jEFr, 
with 

1 = /tj/2 and p(z) = [pE jI2 +reiekl2]/Z kI12 
Differentiating, with respect to 2, we find 

dp(z) /dO//j 1 2=P +rTe1i- p(z). 

The special values aj of tj belonging to the limit points satisfy 0 = /aj2 e/ 
and p(v) =p. So 

dp/dOaj 12 = ei5jr X o 

for each j. 
So an increase in an I aj 12 pushes the Rayleigh Quotient from p towards 

Aj = p + re5j. Almost all perturbations in A of a limit point v generate 
Rayleigh sequences which converge to an eigenvector. 
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10. The RQI for Nonnormal Matrices. The stationary property of the 
Rayleigh Quotient fails for nonnormal matrices and, consequently, the 
asymptotic convergence rate can be, at best, quadratic. Secondly, although 
the minimal residual property persists, the norms of the residuals of a Rayleigh 
sequence are not always monotonic decreasing. This bars us from extending 
the approach of the previous sections to obtain global convergence properties. 

Nevertheless, except for the unstable configurations noted in the theorems, 
the RQI still seems to converge for nonnormal matrices, albeit less rapidly 
than in the normal case. 

An ideal would be a generalization of RQI which, for all matrices, 
(i) was simple to execute, 

(ii) enjoyed the stationarity property at eigenvectors, 
(iii) generated monotonically decreasing residuals. 
This has not been done. Ostrowski proposes a two-sided process satisfying 

(i) and (ii) and having local superquadratic convergence for nondefective 
matrices. However, unfortunate choices of initial vectors can provoke a 
breakdown of the process. In contrast, we investigate here a generalization 
of RQI possessing properties (i) and (iii). It converges, though slowly, for 
almost all starting vectors, even for nondefective matrices. 

Theoretically, then, a judicious application of both methods can produce 
convergence at a satisfactory rate in almost all cases. 

Even better would be a new idea which yielded a convergence proof for 
the standard RQI for almost all starting vectors. 

11. Ostrowski's Two-Sided Iteration. Examination of the proof of stationarity 
in the normal case shows that it depends on the fact that, for eigenvectors 
V, V*C = Xv* as well as Cv = Xv. To preserve this property in general, Ostrowski 
makes the row vector different from the column vector. 

Definition. p(v*, u) _p(v*, u, C) _v*Cu/v*u provided that v*u $0. 
Homogeneity and translation invariance persist, but the boundedness 

property fails. 
Stationarity. p is stationary at (v*, u) if and only if v* and u are, respectively, 

row and column eigenvectors of C with eigenvalue p and v*u # 0. 
Proof. Let p =p(v*,u) and A =(v+Ew)*(lu +nz) $0. 

p (v* +Ew*, u + pz)-P = {Ew*(C C-p) u + nv*(C-p)z + Enw*(C-p)z I/A. 

This is O(En) for all w* and z if and only if (C -p)u =0, v*(C -p) =0*. El 
The Iteration. Pick initial vectors vo* and u0 satisfying vo*u X0 0, fl vo0= 

uo 11 = 1. For k = 0, 1, 2, * * *, 
(i) compute Pk = P (vk, Uk), 

(ii) if C-Pk is singular solve y*(C-Pk) = 0 and (C-pk)X =0 for y*, 
x $ 0 and stop, otherwise 

(iii) solve both V*+1(C -Pk) = Vk kv, (C -Pk)Uk+1 = Ukk, where Pk and Tk 

are normalizing factors. 
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(iv) if V1u*+lk?1 =0, then stop and admit failure. 
Local Convergence. If V** Myth Uk-4X as ke- o where y*(C -A) =0*, 

(C-A)x=0, y*x0, lxii =IIy*II =1, then Pk -X and the asymptotic con- 
vergence rate is cubic. 

Proof. Since y*x # 0, the eigenvalue A must correspond to linear elementary 
divisors. Even if A is multiple, the spectral projection of us, and all Uk, on 
A's column eigenspace N, is in the direction of x. Likewise, the spectral 
projection of vo*, and all vk*, onto A's row space MA is in the direction of y*. 
Moreover, N, and MA each have unique invariant complements Nc and 
MC, respectively. The point of this is that we can write Uk = a (x + EZ), V** = 

f(y* +Lw*) uniquely where a, {, z, fl, l, w* all depend on k; a, : are nor- 
malizing factors, and z and w* are unit vectors in NA and MA respectively. 
By hypothesis, e-> 0, n - 0, as k -*o . 

Now we can imitate the proof for the normal case: 

P =Pk =p(y* +lW*,X +,Z) =A +Ew*(C -A)z/A, 

A = Ak =y*X +flW*Z, y*X # 0, 

Vk,+l =v(yY +nW*)(C -p)1 = [y* +n(X -p)W*(C -P)']/3k+1, 

Uk+l = (C-P) (X + EZ) T = [X +( (X -p) (C-p) z]ak+l- 

As p -* A, the operator (C - p)1 becomes unbounded. However, we are only 
interested in applying (C - p)1 to vectors in NA and MA. Since these are 
invariant subspaces, we may let R(p) be the resolvent of C restricted to NA 
(on the right) and MA (on the left). Because the spectrum of C is finite, 
R(X) is a bounded operator independent of k. When C is normal, 1I R(X) II = 

(min,, XIAj -Al)-1 but, in general, it may be much larger than that. 
By the continuity of the operator (or lub) norm 1 Cu 1max Cull/Il u 

we have, for all large enough k, 

|| Wk*(C-Pk) ||J < 2J||wk*(C-X)-1J <l_21||R(X) ||, 

11 (C-Pk)1l1lJ <211 (C-A)-1z1 <?211R(A) 1. 

Thus, from the expressions for uk =ak(x +fkVk), we have 

fk+1 Vk+1 = Ek(A -Pk) (C -Pk) 4Zk, 

Ek+? 1Ek IAPkl 
- P R(x)ll 

?< kkr||R(A) |, by stationarity. 

Similarly, fk+1_1k4kr 1I R(A) II and this is cubic convergence. a 
Remark 1. In his third paper on RQI, Ostrowski proved that convergence 

was superquadratic and established its cubic nature under special hypotheses, 
such as A real and C nondefective. His approach was more analytic and less 
geometric than ours. 

Remark 2. If, in the above theorem, y*x =0 (defective case), convergence 
is still possible but the asymptotic rate is linear. 

Remark 3. In his fifth paper on the RQI, Ostrowski does an injustice to 
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his own algorithm. In assessing efficiency, he uses the solution of a system 
of linear equations as the unit of work. With this measure, his two-sided 
algorithm is twice as costly as the standard RQI. However, if a triangular 
factorization is used as the unit, then Ostrowski's algorithm costs no more 
than RQI. 

Remark 4. The danger in this algorithm is that vo and u0 could be very 
nearly eigenvectors but belong to different eigenvalues. Hence the poor 
global qualities for independent uo and vo. 

12. The Alternating Rayleigh Quotient Iteration. Here is a different generali- 
zation designed to converge globally. 

The Iteration. Pick a unit starting vector zo and then, for k =0,2,4,..., 
(a) form Pk = P (Zk), 

(b) solve Zk+ (C - Pk) = TkZk* such that |z | = 1, 
(c) form Pk+1 =P (Zk+), 

(d) solve (C- Pk+1) Zk+2 = Zk+1 Tk+1 such that Zk+2 = 1. 
If by chance C-Pk or C-Pk+1 is singular, solve the homogeneous system 
'or the associated eigenvector. This scheme is designed to obviate the need 
'or normality in the original proof of monotonicity of residuals. When Ca = C, 
he original RQI is recovered. 

Our aim is to have z2k converge to a column eigenvector and 4+1 to its 
associated row eigenvector as k -* a. 
Mrnotonic Residuals. 

I( C-Pk+2) Zk+2 ? 
- Pk) Zk 

I|Zk+l( C-Pk+l)) ? II||Zl(C-pk-1) ||, 

4ith equality (for k even) only if 
(i) Pk+2 =Pk+1 =Pk, and 
GOi Zk*+2 IlZk*+l ( C-Pk+1 ), Zk+1 // ( C-Pk) Zk- 

Here, u//v means that u is proportional to v. 
Proof. 

(C -Pk+2)Zk+2 11 (C -Pk+1)Zk+2 ||, equality only if Pk+2 Pk+i, 

= Zk+(C -Pk+1) Zk+21, by (d), 

_14Zk*+1(C-Pk+1i) , by the Cauchy-Schwarz inequality 
(equality only if zk4+ (C - Pk+i) //Zk+2 ), 

< Z*+1?(C -Pk) ||, equality only if Pk+1 =Pk, 

=Z*+1z4(C-pk)zl, by (b), 
< (C-Pk) Zk j, by the Cauchy-Schwarz inequality 

(equality only if (C- Pk)Zk//Zk+1). 

The proof for the other relationship is similar. El 
Global Convergence. For all z0, as k-- a, 
(i) Pk - P, Z2k --U, Z4?+1i v*, either 
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(ii) (C-p) u = 0, v*(C-p) = 0, or 
(iii) (C-p)*(C-p)U=T 2U. (C-p)(C-p)*V=T 2v, where 

|| C-pOa|| =T = |V*(C-P) || 

Proof. The sequence tI (C-p2k)z2kll, k=0,1,2,...} is monotone and 
bounded below by 0. Let its limit be r+. From the theorem on monotonic 
residuals, 

Pk+2 -Pk 0, Pk+1 -Pk ?, 

0k+1 ?, k 0, 

where 0k+1, kk are respectively the acute angles between Zk+2 and k+1 (C - Pk+1), 

Zk+1 and ( C-Pk) Zk - 

Since Pk is bounded, the sequence {Pk I has a finite number of limit points 
and, since Pk+i -Pk-- 0, it must converge to some p as k - a . 

Case 1. T+ =0. By continuity of the norm, fl (C -p)zj =0 for all limit 
points z of {z2k }. So each such z is an eigenvector for p and each limit point 
of {Z+1 must be a row eigenvector for p. However, the only possible limit 
point is the spectral projection of zD (or z,) onto p's eigenspace. This establishes 
(ii). 

In fact, Pk converges at least as quickly as Tk since 

Pk+1 -Pk U *V 1/cond(p), nondefective, 
Tk t0, defective. 

Here, cond(p) is the secant of the acute angle between the eigenvectorE 
u and v*. 

Case 2. r+ > 0. We find 

Zk*Zk+2 = Zk+1 ( C -Pk) Zk+2 / Tk 

= rk Zk+l [ (C -Pk+1) + (Pk+1 -Pk) ]Z+2 

Tk [Tk+l - (Pk+1 -Pk) (Pk+2 Pk+1)/Tk+1] 

since Zk*+1 = Zk+2 (C - Pk+1) /Tk+ 

-,1. 

Hence, the unit vectors Zk satisfy 11 Zk+2-Zk f 0 for k = 0, 2, 4. In this case 
too, z2k converges as k -, o. 

Let Tr be the limit of the norms of the odd residuals. By reasoning sym 
metrical to Case 1, we see that T = 0 implies T+ =0. Thus, T > 0 and 
consequently, zA+1 converges too. Let 

Z2;k -- U. Zk1 V* 
Moreover, 

T+ =limZk*+l(C-Pk)Zk =V*(C-p)U =T, say, 

T- = lim Zk,+l (C-Pk+l) Zk+2 = V* (C-p) U = T,. 

Furthermore, 
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U*V = liM Zkkl = lim(pk,1 -Pk)/Tk = 0, 

and, as k co, 

Zk+? = (C -Pk+1) Zk+2/Tk+1 ' (C -p)U/T = 

Zk =Zk+l(C-Pk)/Tk )V*(C-p)/T =U*. 

This yields (iii); T is a multiple singular value of C - p and u and v are 
singular vectors. El 

Global convergence has been bought at a heavy price. The right-hand 
sides in (b) and (d) force the monotonicity but prolong the process. Asymptotic 
convergence of Pk is linear, at best, for nonnormals, with convergence factor 
1 - 1/cond(p)2. 

These results suggest that one should begin with this alternating scheme 
and then (fairly soon) switch to Ostrowski's two-sided algorithm. 

13. Summary. 

TABLE 1 

S: Is p stationary at an eigenvector? 
M: Are the residuals monotonic decreasing? 
G: Does the Rayleigh sequence converge for almost all starting vectors? 
L: What is the asymptotic convergence rate to an eigenvector? 

Matrix 

RQI \ | Symmetric Normal Nondefective Defective 

S: Yes S: Yes S: No S: No 

M: Yes M: Yes M: No M: No 
Standard G: Yes G: Yes G: ? G: ? 

L: Cubic L: Cubic L: Quadratic L: Linear 

S: Yes S: Yes S: No 

Iteration reduces M: No M: ? M: ? 
Two-Sided to the one above G: ? G: ? G: ? 

if uO = v0 L: Cubic L: Cubic L: Linear 

S: Yes S: No S: No 

Iteration reduces M: Yes M: Yes M: Yes 
Alternating to the one above G: Yes G: Yes G: Yes 

L: Cubic L: Linear L: Harmonic 
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