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SOR-Methods for the Eigenvalue Problem 
with Large Sparse Matrices 

By Axel Ruhe 

Abstract. The eigenvalue problem Ax = XBx, where A and B are large and sparse 
symmetric matrices, is considered. An iterative algorithm for computing the smallest 
eigenvalue and its corresponding eigenvector, based on the successive overrelaxation 
splitting of the matrices, is developed, and its global convergence is proved. An ex- 
pression for the optimal overrelaxation factor is found in the case where A and B are 
two-cyclic (property A). Further, it is shown that this SOR algorithm is the first order 
approximation to the coordinate relaxation algorithm, which implies that the same 
overrelaxation can be applied to this latter algorithm. Several numerical tests are 
reported. It is found that the SOR method is more effective than coordinate relaxation. 
If the separation of the eigenvalues is not too bad, the SOR algorithm has a fast rate 
of convergence, while, for problems with more severe clustering, the c-g or Lanczos 
algorithms should be preferred. 

1. Introduction. In the present contribution, we set out to find solutions 
of the eigenvalue problem 

(1.1) (A-XB)x = 0O 

where A and B are n X n real symmetric matrices and B is positive definite. 
We will study direct iterative algorithms which are applicable in cases when 
A and B are large and sparse, so that neither inversions nor similarity trans- 
formations are convenient to apply. Usually, we are interested in one or a 
few of the smallest eigenvalues of (1.1) and their corresponding eigenvectors. 

The eigenvalues are the stationary values of the Rayleigh quotient 

(1.2) u(x): = x Ax/x"Bx, 

and several of the algorithms proposed for the solution of (1.1) work by 
applying some optimization method to (1.2). Hestenes and Karush [12] 
studied the application of gradient methods (steepest descent); more 
sophisticated algorithms, such as conjugate gradients, were studied ex- 
tensively subsequently [2], [8], [9], [18]. Applying the Ritz method to 
(1.2) yields the Lanczos algorithm [15], which has also been studied by 
several authors [17], [10], [18]. The conceptually simplest algorithm of all 
is coordinate relaxation where (1.2) is minimized by varying one coordinate 
of x at a time. Its origin is unknown but it has been described and studied 
by Faddeev and Faddeeva [6], Kahan [14], Schwarz [19], and Shavitt et al. 
[24]. 
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The eigenvalue problem (1.1) is closely related to the linear systems problem, 
and most of the algorithms proposed for (1.1) have counterparts in the linear 
systems case. In that case, the theory of iterative methods has been developed 
much further, the results can be found in the recent monograph by Young 
[21]. It is interesting to note that the most successful algorithms for the 
solution of linear systems, such as the SOR method, also have counterparts 
for the eigenvalue problem, but that they have not been studied very much 
earlier in this context, with a few exceptions [3]. In the present contribution, 
we will develop the algorithms of SOR type for the eigenvalue problem up 
to the same level as they have been developed for the linear systems problem. 
We will show that the theory is closely related to that of the linear systems 
case, and the applicability and rates of convergence of the algorithms are 
also comparable. We will also show that the coordinate relaxation algorithm 
is closely related to the SOR method, to use the terminology of Ortega and 
Rheinboldt [16], who consider application of the SOR concept to nonlinear 
problems; the two methods are applications of nonlinear SOR and 1-step 
Newton SOR methods, respectively, to the eigenvalue problem. As far as 
the present author has seen, these generalized linear iterations have not 
been studied in detail, except for the case of a nonlinear operator being the 
sum of a linear and a diagonal one. Here, we extend the theory of such itera- 
tions to another important special case. It is interesting to note that methods 
of this kind are very often used ad hoc by nonspecialists, therefore it is valuable 
to analyze them theoretically in some frequently occurring cases. 

We will start by formulating the algorithms and introducing some notations 
in Section 2. In Section 3, we prove under which conditions the algorithms 
are globally convergent. Though the conditions for convergence are more 
complicated than in the linear systems case, it is a relatively easy matter 
to make sure that they are fulfilled when applying the algorithms in practical 
cases. We continue by studying convergence rates and the choice of relaxation 
parameter w in Section 4. It is possible to develop the theory fully when 
A - XB is 2-cyclic (property A), and we see that the rate of convergence is 
dependent on the separation of the smallest eigenvalue from the rest of the 
spectrum. An optimal choice of w gives at least as great an improvement 
over simple iteration as does optimal Chebyshev semi-iteration, exactly as 
it does in the linear systems case [21]. Finally, in Section 5, we report several 
numerical tests and give a few examples with comparisons to other relevant 
algorithms. We compare the SOR methods to the Lanczos and c-g methods 
which were studied in an earlier report [18] and find that they give comparable 
results. 

Our general analysis can easily be extended to cover application of other 
iterative algorithms for linear systems to the eigenvalue problem (1.1), 
provided that they are constructed by means of a convergent splitting [21]. 
Such methods, applicable to finite difference analogues to partial differential 
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equations, are ADI methods (see [21]), symmetric factorizations [22J, and 
direct Poisson solvers (see [23] and [25] for a similar application), as well 
as different semi-iterative methods [1], [21]. It is our purpose to report 
tests of some of these methods in a later report. 

We also postpone the study of algorithms consisting of inverse iteration 
based on an algorithm for direct solution of sparse linear systems, since 
such methods, at least at the present state of the art, have to be specially 
tailored to the problem at hand [11]. 

2. Formulation of the Algorithms. If we count multiplicities, (1.1) has n 
real eigenvalues A1,--, Xn; we order them so that 

XA ?X 2 _ -*- - < n- 

Since B is positive definite, it defines a scalar product 

(XY)B =x"By 

and, correspondingly, a norm 

||X| :=(X, X) 1B 

We denote the B-orthonormalized eigenvectors by u1, ,un 

An iterative eigenvalue algorithm produces a sequence of vectors xo, xl, ** *,-x, 
where 
(2.1) x8+1:= xs-ps, s = 0, 1, *. *, 

and, in case of convergence, the corresponding normalized vectors 1. = 

x./, I1X.B converge towards some ui; in most cases, we are interested in a 
sequence which converges towards ul. The Rayleigh quotients 

(2.2) As: =A(x8) = xIAx8/4x Bx8 = ?8HA?. 

at the same time converge to A1 and the normalized residual vectors 

(2.3) P8 =r(?8) = (A - g8B) ?. 

converge to zero. 
We let the rate of convergence be measured by P. by means of 

(2.4) R = sup [lim sup ills] 
s > co 

where the supremum is taken over all sequences converging to ul. We see 
that 0 < R < 1 and that - ln(R) gives the rate sought. 

Now we are ready to formulate our two applications of the SOR concept 
to the eigenvalue problem. A relaxation method is an iterative method where 
each iteration, or major step, is divided into n minor steps, in each of which 
one of the unknowns is modified in order to satisfy the corresponding equation. 
In case of overrelaxation, the correction is multiplied by an overrelaxation 
factor w. 
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This can be described in matrix form, if we decompose the matrices occurring 
in a diagonal part D, a strictly lower triangular part E, and a strictly upper 
triangular part F 

(2.5) X = D(X) -E(X) -F(X). 

The nonlinear equation (A -u (x) B) x =0 will in each step be replaced by 
the linear equation Csx8+1 =0 with 

(2.6) Cs =A-TsB, 

where T8 = diag(t8p) consists of approximations to u (x), tsp being the approxi- 
mation used in the sth major and pth minor step. 

If we further denote the multiplied corrections by 

(2.7) W = diag(wa8P) 

and current parts by D8 = D(C8) etc., we get the following matrix equation: 

D8(x? -x8) =x - W(D.x8 - E.x? -+FSxj. 

Solving this for x8+1, we obtain: 

(2.8) x.,1 = M( W, T) x., = x. - V. C.;, 

(2.9) Vs=(Ws-'Ds-Es). 

Different choices of the parameters T, and W, now give different algorithms. 
The optimal choice of parameters corresponds to the algorithm of coordinate 
relaxation [6], [14], [24] while there are several simpler choices that will 
be our main interest in this contribution. 

Algorithm 1 (Coordinate Relaxation). Modify t in each minor step: 

tvp =,U(x.,P) 

and choose asp optimally so that 

(2.10) u (xp + w- (x.,p + - x.p)) = m in (xp - tep) . 

In order to find the optimal a, we see that 

(x - ep) = (xHAx Ax p) X | -2(e, X)B + epB) 

which is minimized for t satisfying the equation [14] 

(2.11) at2 _t +n= 0, 

(2.12) = epH(A -,u(x) B) x/(app -,u(x) bpp), 

(2.13) a = [(ep, X)B -I epI| B]/||X||B- 

The first-order approximation t = , corresponds to a8p = 1, as can be seen 
from (2.7), and the optimal choice is a = 2/(1 + (1 - 4a) 112). We have to 
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prescribe that s (x) <;i (ep), otherwise we have to choose a different sign 
in solving (2.11) to get a minimum. For small a, we note that 

(2.14) a = 1 +an +OG ,2) . 

We use this observation to formulate our second algorithm. 
Algorithm 2 (SOR Aethod). Modify t in each major step 

tsp = t8 = g (X.), T8 = t8I, 

and choose a. =l so that W8=wI. 
Now the matrix formulation (2.8) simplifies to 

(2.15) X8.1 = M(w, t X8 = x. -P = X. -V8-1r 

where 

(2.16) V8 = (W-1D8 -E8), 

(2.17) M(w't8) = M(wI, tI) 
= (I-V V'Cs) =(sD8-Es)1(( )-1)Ds +EsT). 

We note that it is possible to develop eigenvalue algorithms on the basis 
of many other splittings 

(2.18) A -tsB = Vs -H8, 

where V8 is readily invertible and H8 has small norm-we just use the 
formulation (2.15). A closely related algorithm in which only A is split 

(2.19) V8 = W-1D(A) -E(A) 

has been described by Buffoni [3]. Now and then we will cite results for 
that algorithm and discuss its relation to Algorithm 2. 

3. Global Convergence. Proofs of the global convergence of coordinate 
relaxation have been given [6], [14]; they also apply to overrelaxation with 
e < w < 2 -, 0 < e < 1. We therefore confine our attention to Algorithm 2. 
First, we will demonstrate under which conditions the Rayleigh quotients 
(2.2) II 2, IA2, L, A,, -- form a decreasing sequence, since this gives a guarantee 
that Is converges to some value u. Secondly, we study whether this u is an 
eigenvalue of (1.1) or, hopefully, the smallest eigenvalue. 

First, we state an important identity that relates V8 defined by (2.16) 
to C8 = A - t8B and its main diagonal. We note that 

V8 + V' = C8 + (2 -w)w-1D8, 

which implies that for any x 

(3.1) xH V x = i [(2 - w)w lxHD8x + xCSX]. 

This identity is used in proving the following two lemmas which give the 
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conditions for convergence of Algorithm 2. 
LEMMA 3.1. Let x. and u1 be computed by Algorithm 2 (2.15). Then 

(3.2) 1-U = -(2- -w)wp D1p8/ 11 

where D, and p8 are defined by (2.7) and (2.1). 
Proof. We calculate 

(6s8+ -,us) x.+, Bx+ = xs+l Axs+l - s+s4 Bxs,+ 
- -2p8s r8+pH (A -.sB)ps 
- -2p1 Vs.ps +p(A -usB)ps 

and apply (3.1) to get (3.2). Q.E.D. 
Lemma 3.1 gives the condition for the sequence us to decrease. Evidently, 

this takes place whenever the matrix ((2 - w) /c) D(A - tsB) is positive 
definite. Thus we have 

LEMMA 3.2. A sufficient condition for A, to form a nonstationary decreasing 
sequence is 

(3.3) (a) 0<w<2, 

(3.4) (b) # < minajj/bjj = minA(ej). 
i i 

Note the relationship between condition (b) and the Rayleigh quotients of 
the coordinate vectors. By reversing (b) appropriately, we get an increasing 
sequence instead. When we use the algorithm given by (2.19), we have to 
add -.us lips 8/ 11 xI+I 11 B to the right-hand side of (3.2) [3] and so we need that 
(2 - w) D(A) + wuB has to be positive definite. This gives us 

LEMMA 3.3. If V. is given by (2.19) and X, > 0, the us form a decreasing 
sequence whenever 

(3.5) (a) 0 < w < 2/(1 - *1 Amin(B)/max(aii)) 

regardless of the starting vector. 
We note that (3.5) gives a larger interval for w than (3.3), and contains 

no assumptions on the starting vector. These lemmas can now be combined 
into: 

THEOREM 1. If (3.3) and (3.4) are satisfied, then Algorithm 2 converges in 
the following sense 

;Is )s =-. Am 0. 

Proof. Then Lemma 3.2 implies that gS+1_ <us, As, > 1; it is true that 

'us and As -s+,- 0. But since (3.2) implies that 

Ms -Us+ = (2 -w)(ap1Dsp8/ (I 
- 
xpsII B 

? (2 -0)-1 . min(aii -lzobjp)pslp/ || 1 2B 

>? constQ Bi~ 
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it follows that iP AlJB ->0. But by (2.15), Ps = V.P. and, since 11 V, 11 is bounded, 
it follows that P8--*0. Q.E.D. 

Obviously, we have to prescribe that Ai should be simple in order to be 
sure that t8 converge, otherwise the limit points of the sequence ?8 may 
form a continuum in the subspace spanned by the eigenvectors corresponding 
to Ai. Moreover, we cannot be sure of getting convergence towards A1 unless 
we choose such a starting vector that s1o < A2. 

4. Asymptotical Convergence Rates. First we show that, provided our general 
algorithm converges, it will approach a linear iteration in the limit, and 
then we study this linear iteration in order to see how we shall choose the 
parameter w. 

As can be seen, e.g. in [20], the eigenvalue approximations ys converge 
much faster than the residuals PE or the vectors is. Further, the parameters 
asp in Algorithm 1 soon approach their limiting value 1, as we see from (2.14). 
The limiting linear iteration will be (2.8) 

(4.1) X8+1 = Mx8, M = M(w, AX). 

We now compare the computed x8+1 with what the linear iteration (4.1) 
would have produced. (V and C denote the limiting values of V, and C8 
(2.6), (2.9).) 

xs,8 -M(w, Ai) xs = ( I V.-' C.) X. - I -V`C) X. 

(4.2) = (V-1C- V, 1CJX. 
= V-1(C-C )X8 + (V-1 - V8-1) CJXJ. 

Now we can bound 

(4.3) | C -Csw 12 = I diag(k -psp) B 12 -K1*(2A)Ir Bs, 

1V-1 _ -112-=I V-1(V - V) Vs-112 (4.4) IV -Vs121'VVW1 
_ K21 W8 -WI12 +K3(A2 -AiV'I rf11B 

The proof of (4.3) is a simple application of the results in [20] while, for 
(4.4), we additionally use (2.9) to get the identity: 

V-1 _ Vs-1 = V-1 (8 V-V) V8- 

= V-1{ -w-'(W -wI) W-'D8 +o-'(D8 -D) -(E8 -E) I Vs-'. 

If we now prescribe that convergence has occurred so far that 2 < asp < 2 
in (2.7), constants Ki, K2, and K3 can be found that are independent of s. 
Since (2.12) implies Xl - K4 11 r, 11 B. we see that 

|| Ws -""I12 -? |5|~ rsIIB. 

so we have bounded both terms of (4.2) by second order quantities in 
11r, 11B. Consequently, we will get full information on the asymptotical 
behavior of the iterates by studying the limiting linear iteration (4.1). 
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We note that for any choice of Vs, u1 is a fixed point of the iteration and, 
consequently, the matrix of the linear iteration (4.1) has u1 as eigenvector 
to the eigenvalue 1, M(w, A1) u1 = u1 and so the iteration (4.1) converges to 
a vector in the subspace of ul, provided that the remaining eigenvalues are 
less than 1 in magnitude, and the rate of convergence (2.4) is determined by 

R =maxIAi(M(wAi))I- 
Ail1 

The fastest asymptotical rate of convergence will be obtained if w is chosen 
so that R is minimized. The considerations we have to make are quite similar 
to those in the linear systems case: we have to determine w so that all the 
eigenvalues of M(w,A1), except the dominant one A, = 1, will get the same 
absolute value. This is possible in the case that A - A1B is a 2-cyclic matrix 
(property A) [21]. 

THEOREM 2. Suppose that limnt = Ai and that C = A -Ak1B satisfies property A. 
Then the eigenvalues r, of M(w, Ai) and g of the Jacobi iteration matrix 

(4.5) I - ID(C) -1/2 CD(C) -1/2 

ordered as 

1=A11 > A2 A f>13 _ A*n =- 

satisfy the relation 

(4.6) +W)2 = 7.Z2 

If we choose w = wc where 

(4-7) wc =2/ (1 + (1- 2) 

we get the best asymptotic rate of convergence 

R =wc-1 =i -(1- 2)1/2 ]/ [1(1 2)1/2] 
(4.8) = 1-2E1/2? (e. 

Proof. In this case, 

M(WXi) (!D(C) -E(C)) (-D(C) +E(C)T) 

the ordinary SOR iteration matrix for C, and we can apply the theory from 
the linear systems case [21]. Since C is singular, the Jacobi iteration matrix 
-q will have g = ?1 as a pair of eigenvalues and they will correspond to 

= 1 and v = (w - 1)2. For w > wc (4.7), all the other eigenvalues of B will 
correspond to complex eigenvalues n with I n I = w -1, while if W <wc, A2 

will correspond to a real X with mql > wC -1. In the case w =wc, when all 
the eigenvalues of M(w, A1) except two are situated at the circle w Xl =C- 1, 
R is thus minimized and gets the value (4.8). Q.E.D. 

The eigenvalues of the Jacobi matrix c are closely related to those of 
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the original problem (1.1). Consider the following special case 
COROLLARY 1. Suppose B =I and D(A) = dI. Then 

(4.9c 
I( -XI)/(d -Xi), 

Ak = 1 - (Xk- i) /(d - i) = 1 - 2(X (A-l) / (n - i) - 

The last equality is a consequence of the fact that a matrix with property 
A and zero diagonal elements has pairs of eigenvalues Ak = - Ank. When B is 
not diagonal the situation is somewhat more complicated, but we believe 
that (4.9) will also give a decent approximation to 4k in other cases where 
it is possible to apply the SOR theory. 

When (4.9) holds, we get (4.8), R =1 - 4K-112 + O(K-1) where 

(4.10) K = (An -A) / (A2 -A) 

the condition number of C = A - A1B. (Compare [18].) 
If we use the V8 chosen in [3] (2.19) and make the same assumptions as 

in Corollary 1, we get the limiting iteration matrix 

M = (I -wE) -1((1 -w) I +wET + AXwd-I), 

E = d-1E(A) 

and a simple analysis shows that the eigenvalue relation (4.6) is replaced by 

(v-1+ i, (1Aldl) 2 2 
(^2X 

and we get 
THEOREM 3. Let V, be chosen by (2.19) and A satisfy property A and D(A) = 

dI and B = I. Then the best rate of convergence occurs for 

(4.11) (20=2/ (1 + (1 _22) / 

where 

a = dl(d - i) = (An + Xi) I(Xn - i), 

A2 = 1 -A2/d = 1 -2A2 / (An + A) . 

The best rate is given by 

R = wf-1 - 1 = 1 - 4K-1/2 + O(K-1) 

where K is defined by (4.10). 
We note that Theorem 3 is proved under stronger assumptions than Theorem 

2. Also, here it is possible that the optimal w > 2 (cf. (3.5)) and it is no longer 
independent of how we shift the problem (A' =A -a B giving A' =Ak -a). 
On the other hand, the best rate R is independent of such shifts and is the 
same as (4.8). 

5. Numerical Examples. Several numerical tests of the algorithms described 
here have been performed. The programs have been run on a CD 3300 
computer at the Umea University Computing Center. It has 48 bits word 
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length, 36 bits of which are the mantissa. The purpose of the tests has been 
to see how well the theory developed for special cases (property A etc.) holds 
in a more general situation, and to compare the SOR algorithms to other 
relevant algorithms, mainly the Lanczos and c-g algorithms. Tests of these 
algorithms have been reported earlier [18]. 

As a first very simple example, we consider the tridiagonal matrix 

2 -1 0~ 
-1 2 

(5.1) A-1 =i1 

0 2 

It has property A, and its eigenvalues are known to be 

(5.2) Xk = 4 sin2(kw/2(n + 1)), k = 1,2, * * *,n. 

We performed Algorithm 2 for n =20 and 100 with w = 1(0.05)2. The 
observed values of R = lim 11 P. 11 

"' are plotted in Fig. 1 and we see that they 
are well in agreement with the theoretical value suggested by the SOR theory. 
In the same figure, we also plotted the corresponding R obtained by the 
SSOR method, and we note that this latter method converged much more 
slowly. We also did several tests with (2.19) [3]; the results confirmed the 
the theory in Theorems 2 and 3 above. Theorem 2 gives w, = 1.59 for n =20 
and wc = 1.90 for n = 100. 

Fig1 A:T n 20 
Rate of convergence for different w 

o SOR algorithm 

R \ + SSOR it- 

107 

067 

0.5 6c- 
10 1.5 20 

We also tried more nontrivial examples with property A, such as the 
eigenvalues of the "standard" L shaped membrane (see e.g. [7, p. 334]). In 
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Table 1, we list theoretical and observed convergence quotients together 
with the total number of iterations for some values of w. 

TABLE 1. L Shaped Membrane 

(a) h=1/8 n=84 w,=1.65 
(b) h = 1/16 n = 360 wc = 1.812 

Convergence quotient R Iterations until 
w Theoretical Observed f8 < 10-5 

(a) 1.00 0.956 0.922 111 
1.50 0.862 0.734 38 
1.55 0.836 0.696 33 
1.60 0.797 0.643 28 
1.65 0.703 0.665 29 
1.70 0.700 0.695 32 
1.80 0.800 0.770 45 
1.90 0.900 0.841 67 

(b) 1.60 0.956 0.917 99 
1.70 0.934 0.870 72 
1.80 0.867 0.862 52 
1.81 0.836 0.842 54 
1.82 0.820 0.824 56 
1.83 0.830 0.824 58 
1.90 0.900 0.906 84 

In order to show the behavior of the algorithms for matrices without property 
A, we list results for two such matrices, one with quite clustered eigenvalues 
and the other a Stieltjes matrix. We used the matrix A = T2 (5.1), where we see 
that the eigenvalues are clustered in the lower end of the spectrum (5.2). Even 
if we content ourselves with choosing n = 20, we get K =2100 (4.10) which 
gives wc = 1.92 (4.9) and a theoretical quotient of R = 0.92. However, the 
best convergence we could get was obtained for w = 1.80 and was R = 0.977. 

In Fig. 2, we list a diagram of the convergence for Algorithms 1 and 2. 
We also plotted results for the c-g algorithm [18], in order to get a comparison. 
Here, we note a definite advantage for the c-g algorithm and quite bad 
applicability of the SOR theory of Section 4 in this paper. The results agree 
quite well with those reported by Engeli et al. [5] for the linear equation 
problem. It might be of interest to study Fig. 3, where the eigenvalues of 
M(w, A1) are plotted for some values of w along with the circle I zI = W -1. 
M(w, A1) has the circle stretched in the positive real direction, M(W, AX) in 
the negative direction. 
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Fig.2 A=T2 smallest eigenvalue n220 

(1 Coordinate relaxation Wo= 1 

K2 eW =1.80 

3 Conjugate gradients 

x 

10 

10 i 

lo- 

10-5 

100 200 300 400 500 S 

The two real eigenvalues of M(w, X1) are not at 1 and (w - 1)2, as Theorem 
2 would have implied; on the other hand, they are both outside the circle, 
and their quotient, which is very close to unity, will determine the rate of 
convergence which is about 10 times slower than w - 1 would suggest. 

The last example is a sparse matrix with a more irregular pattern of filled- 
in elements; we have taken (the upper triangle of) the 54 X 54 matrix given 
by Curtis in [4] with the filled nondiagonal elements equal to - 1 and the 
diagonal elements larger than the corresponding row sums. Here, the agree- 
ment with the SOR theory is much better, as can be seen from Fig. 4. Here, 
(4.9) gives w, = 1.61 and the best convergence is observed for w = 1.55. 

Our theory for Algorithm 2 does not guarantee convergence towards the 
smallest (or largest) eigenvalue, unless the starting vector is chosen quite 
carefully as indicated by Theorem 1. The tests performed indicate that, in 
practice, we get convergence either to the largest or the smallest eigenvalue, 
depending on N(xo). We tried the matrix A = T2 with starting vectors con- 
sisting of ? 1 with different numbers of sign changes and got the smallest 
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2 
Figure 3 a: A =T, n = 20, lower end of spectrum 

Eigenvalues of SOR-iteration matrix for w=1.80 

x~~~~~~~~~~~~~~ 

eigenvalue for 0-10 and the largest for 11 -19 (n =20) changes, respec- 
tively. The convergence was only dependent on the starting vector, not on 
the choice of w. In some cases, convergence to eigenvalues other than those 
in the ends of the spectrum was observed, that took place for the Curtis 
matrix with starting vector x0 = (1, - 1,1 *1. - 1)T, where the second 
largest eigenvalue was obtained. 

When we come to compare coordinate relaxation, Algorithm 1, to the 
simplerAlgorithm 2, the former gives a marginally faster convergence in the 
earlier iterations. However, it needs more work in each iteration, namely 
[19], 27n +z multiplications or divisions, where z is the total number of 
nonzero elements in A and BA while Algorithm 2 needs only 6n +z, quite a 
substantial saving for the sparse matrices which we are considering (z < iOn). 
The c-g algorithm is of a comparable speed, since it needs [18], 11n +z 
operations and we note that it most often converges in fewer iterations than 
the algorithms considered here. Thus, our tests indicate that SOR methods 
are the fastest only for very sparse matrices z around 5n. 
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