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A Least Squares Procedure for the Wave Equation 

By Alfred Carasso * 

Abstract. We develop and analyze a least squares procedure for approximating the homoge- 
neous Dirichlet problem for the wave equation in a bounded domain Q in RN. This pro- 
cedure is based on the pure implicit scheme for time differencing. Surprisingly, it is the 
normal derivative of u rather than u itself which must be included in the boundary func- 
tional. This normal derivative is an unknown quantity. We show that it may be set equal to 
zero while retaining the 0(k) accuracy of the pure implicit scheme. The penalty is that 
one must use smoother trial functions to obtain this accuracy. 

1. Introduction. In a recent paper [4], Bramble and Thomee describe least 
squares methods for the heat equation in a bounded domain 2 in RN, under 
Dirichlet boundary conditions. The importance of such a procedure, in the context 
of the numerical computation of time dependent problems by variational methods, 
is clear. Unlike the usual Galerkin methods, the trial functions need not satisfy the 
boundary conditions, and hence one can handle problems in a general domain. 
Moreover, the ideas developed in [4] would seem to have application to other 
evolution equations. In the present note, we develop the corresponding -theory for 
the wave equation. We hope to consider other time dependent problems in a later 
report. Since the discussion in [4] is very transparent, we have adhered closely to the 
notation and organization of [4]. For the sake of brevity, we will only consider a 
least squares procedure based on the "pure implicit" scheme. However, the 
discussion is easily extended to the Crank-Nicolson scheme. It would be interesting 
to construct least squares methods based on explicit schemes, since, for hyperbolic 
problems, the requisite stability conditions are tolerable. 

2. The Analytic Problem. Let 2 be a bounded domain in RN with a smooth 
boundary aM. We seek to approximate the solution of the mixed problem 

, =iAu, x E 2, t > 0, 

u(x,O) =f(x), x E 2, 

u1(xO) = g(x), x E Q. 

u= O, x E a2, t > O. 

It is convenient to make use of the spaces Rs, s > 0, introduced in [4]. Let {Xm}?m?=l 

be the (positive) eigenvalues of the negative Laplacian in 2, with zero Dirichlet data 
on aM, and let {q)m})M?= be the corresponding orthonormal sequence of eigenfunc- 
tions. For a given v E L2(Q), let { 1m)}ZM=1 be the sequence of Fourier coefficients of 
v relative to the {q)m}. For s > 0, the Hilbert space Rs is defined to be the subspace 
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of L2(Q) consisting of all v's for which the norm 

00 \1/2 
(2.2) yiViIS = ( Xs |IAmI2) 

is finite. Since 3i is assumed well-behaved, it follows that if s > 1 and v E Hs, then 
v = 0 on a2. HA = p5>o Hs is dense in every Ats, and if s is a nonnegative integer, 
and v E ft', then the s-norm (2.2) is equivalent to the usual Sobolev norm, IIVI|HS. 

Expanding in the eigenfunctions of A, in (2.1), one immediately obtains the 
following results concerning the well-posedness of problem (2.1). 

THEOREM 2.1. Let I > 0. For each f(x) E At+'1, g(x) E H', problem (2.1) has a 
unique solution, and the following holds: 

(2.3) {Iu(., t) 112+ + 1 u,(,t)112}1/2 = {HfIl,2+I + IlgII2)1/2 

As indicated by Theorem 2.1, we may as well consider the first order system 
equivalent to (2.1). Let G be the 2 x 2 matrix 

(2.4) G=[ I] 

and let U(x, t) be the 2 component vector 

(2.5) U(x, t) = [u(x, t), v(x, t)]T. 

Putting v(x, t) = u,(x, t) in (2.1), we obtain the equivalent problem 

(2.6) U. = GU, U(x,O) = [f(x),g(x)]T. 

Defining the norm II U(t)flI by 

(2.7) sU(t)l = {Iu(., t),2+I + Iv(., t)2}1/2 s>O 

(2.3) becomes 

(2.8) II U(t)Ils = II U(O)IIS, s > 0, t > 0. 

If s is a nonnegative integer, then by the equivalence of norms, we have 

(2.9) II U(t)IIHs < CS II U(O)IIH-, t > 0, 

for some positive constant Cs depending only on s. 
With Xm, cpm the characteristic pairs of -A as above, the characteristic pairs of 

G are given by 

(2.10) =D -i m, <+m =m] 

and the O'm's constitute an orthogonal basis in the Hilbert space Hs+' X Rts for each 
s > 0. If {am}?-oo is the sequence of Fourier coefficients of the vector V relative to 
the Om's, we note that the s-norm of V defined by (2.7) is also given by 

00 

(2.11) | V1 = 2 1m 12s+2 12. 
m=-oo 



A LEAST SQUARES PROCEDURE FOR THE WAVE EQUATION 759 

3. The Semi-Discrete Problem. Let k > 0 be a small increment in the time 
variable. Leaving the space variables continuous, we discretize the time in (2.6), 
using the pure implicit scheme, to obtain 

(3.1) (I- kG)Wn+I = Wn, n = O ,I 2, * 

(3.2) W = [f, g] T. 

Expanding in the eigenvectors of G, it is easily seen that one can uniquely solve (3.1) 
for each n. For t = nk, let Ek(t) denote the solution operator at time t associated 
with the initial-value problem (3.1), (3.2). We then have 

THEOREM 3.1. Let s > 0 and let W0 E Hs+l x Hs. Then Ek(t)WO E fs+l X As 
and 

(3.3) IIEk(t)WJ0IIs < IIWV01 

Proof. Put W0 = Em am,, '. Then, 

(3.4) Ek(t)W0 = 1 a D 
m (1 - k/tLm 

n m m, 

Hence, 

(3.5) IIEk(t)W YIs = 2 a I/m12s+21am12/Il -ktmJ2n < 2 E I jamS+21am12 .IW0II. 
m m 

We also have 
THEOREM 3.2. Let E(t) be the solution operator at time t associated with the analytic 

problem (2.6). Then, for all 0 < t = nk < T and all 0 < s < 2, 

(3.6) I|Ek(t)W0 - E(t)W'V lbo < Max(2, 2T)ks/2 11 W IIs. 

Proof. To begin with, we note that with a real 

(3.7) 17/(1 - ika) - eik|I < 2k 2a2. 

Since, 

(3.8) 1 -einka - f 1 _eikal 1 
(1 - ikU ~ V(1 i/ca j ( ika)j 

we have 

(3.9) ( n -einka i< 2k2 12 - i a < 2nk2 a2 < 2Tk/a2. 

Putting ia = ttm in (3.9), we see that, for s = 2, 

(3.10) 11/(1 - 
kttm)n 

_ eymhI < 2T(k/IiLmI2)s/2 < Max(2,2T)(kItLm I2)s/2. 

The last inequality is also valid when s = 0. Hence, it is valid for 0 < s < 2. Now, 
with W? = Em am Om, we have E(t)W? = a oeym'(Dm, while Ek(t)W0 is given by 
(3.4). Therefore, 

(3.11) IIE(t)WJ - Ek(t)JWVOI12 = 2 I1/(l - kIm)n _ eymt12lm 12jam 12, 
m 
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and from (3.10), for 0 < s < 2, 

(3.12) IIE(t)WV - Ek(t) W0 lo < max(2,2T)k s/ 2 * JAm 12s+2 am I2} 

This proves the theorem. 

4. A Priori Estimates. Equations (3.1), (3.2) define a convergent "method of 
lines" for the approximate solution of (2.6). To actually implement this method, one 
must be able to approximately solve (3.1) at each time step. We shall construct a 
least squares procedure for this latter problem and eventually obtain a fully-discrete 
scheme for (2.6). As is well known, the stability of the semi-discrete scheme (3.1), 
(3.2) depends entirely on the dissipative character of the operator G when applied 
to smooth functions satisfying the boundary conditions. In fact, backward time 
differencing is a classical device in proving the Hille-Yosida theorem [5, p. 479]. 
With certain finite difference analogs for the Laplacian, and with the usual Galerkin 
methods using trial functions satisfying the boundary conditions, this semibounded- 
ness of G is preserved. Hence, the resulting fully-discrete scheme is automatically 
stable. In the present methods, the trial functions do not satisfy the boundary 
conditions. It turns out to be an intriguing game to decide how to formulate the 
fully-discrete scheme so as to obtain stability. The construction hinges on certain a 
priori estimates which we develop in the present section. 

We will be dealing with arbitrary elements of the Sobolev spaces Hs(Q), s a 
nonnegative integer. Such functions will not usually belong to Ls. Accordingly, we 
use the notation (U, V)H, I IU I IH, for scalar products and norms in Hs. For two 
component vectors U = [u, vIT, we define 

(4.1) ||IUIIH = tIIuIIS+ + l|VII2ii1/2. 

We will need the following trace theorem. See [1, p. 38] for the proof. 
LEMMA 4.1. Let u E H1(2) and let e > 0. Then there exists a constant y, 

independent of u and e and depending only on 2, such that 

(4.2) jQu ds H y { e HU|p + ei|IIO}. 

Let D(v, w) denote the Dirichlet integral 

(4.3) D(v,w) = E i dx. 

If v is the exterior normal to Ma and if v and w are smooth functions, we have by 
Green's formula 

(4.4) ?vl~wdx = j a 
v ads - D(v,w). 

Let Lk denote the operator I - kG of Section 3. The following lemma is the basis 
of our procedure. 

LEMMA 4.2. Let U = [u, V]T be an arbitrary element in H2(Q) X H1(Q). Then, 

(4.5) (1 - k)IIUIIH0 J ILkUIIH0 + v2ds + k4 ds. 
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Proof. We have 

(4.6) Lk U- U-kGU = [u-kv,v-kZruT, 

so that 

(4.7) ILkUIIo = (u - kv,u - kv)HI + (v - kAu,v - k/u)Ho 

= I|U|I21 - 2k(u, v)HI - 2k (v, Au)Ho + IIVII2O + k2 IIVII21 + k2 IzAUIIO. 

Hence, 

(4.8) || U112 - _ILk U112o = 2k(u, V)HI - k2 |IVII2i + 2k(v, Au)Ho - k2 II AUIIO 

< 2k(u, V)H1 + 2k(v, Au)Ho. 

Now, by (4.4), 

(4.9) 2k(v, AU)HO = 2k V au ds - 2kD(u, v) 

while 

(4.10) 2k(u,v)HI = 2k(uv)Ho + 2kD(u,v) < k II U112 + kIlv II2 + 2kD(uv). 

Hence, from (4.8), (4.9), (4.10), 

(4.11) || U||HO-ILk U112o < kIlu112i +kJ|V|2 + )kIII+d+ a 2 ds. 

Remembering (4.1), the lemma follows from (4.11). 

5. The Fully-Discrete PWoblem. For the approximate solution of (3.1) at each 
time step, we shall employ a finite-dimensional subspace Shf of H2(2) x H' (2). This 
subspace will have the property that given any two-component vector V E H2+s 
x HP+s C H2 x H, there is a vector T in Shf such that 

(5.1) liV - TIIH1 < Chs+1-llIVIIS+I, / = 0, 1, 

for all 0 < s < q. Here, C is a constant independent of V and h. The construction 
of such spaces is discussed in [2], [3], [4], [8] and their references. Computational 
investigations of least squares procedures for elliptic boundary-value problems are 
reported in [7]. From (5.1), we deduce that 

(5.2) Inf {II(D - VIIHO + hI11 - VIHII} < Chs+1 11 VIS+I, s < q. 

At each time step in (3.1), one must approximate the solution of 

(5.3) LkW= V inQ, 

(5.4) wI = 0 on a, 

where wI is the first component of W, and V is obtained from the preceding time 
step. We now introduce the bilinear form 
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(5.5) (,', I)A = (Lk 4, Lk I)HO + k4fa 1I a 1 ds + Ykh 4A 2 2 ds av av E 

where ' = [1P, p2]T and Ykh > 1/k2 is a weight which will be chosen later. The 
above form is defined for all ', I in H2 x HI, and ( , )? defines an additional inner- 
product on H2 x H', i.e., 

(5.6) AIIII2 = (is 4) 

is a proper norm on H2 X HI. To see this, we note that II01IA = 0 implies 

(5.7) w1-kT2=0 ins, 

(5.8) q2-k Aqp = O in Q, 

(5.9) aqp/ap = 0 on M. 

Eliminating 2 from (5.8), we get 

(5.10) - k2 ApI = 0 in U. 

(5.9), (5.10) imply 1, = 0. Hence, from (5.7), (P2 = 0. Thus, 1111A = 0 implies 
0 = 0. 

LEMMA 5.1. Let V E ft2+s x IIl+s and let W be the corresponding solution of (5.3), 
(5.4). Then there is a unique element U in Shr. minimizing ||L - WIIA over all 0 in Sh. 
It is given by 

(5.11) (U, F)A = (V, Lk F)Ho + k4 a7' af, ds 

for all F in Shq, where wl, f, are the first components of W and F respectively. 
Proof. By Pythagoras' theorem, the unique U minimizing II - Wh12 satisfies 

(5.12) (U, F)A = (W, F)A for all F in Shq . 

Now, if V EE f2+s x fl+s, so is W, by Theorem 3.1. Hence, both components 
of W vanish on A. Therefore, 

(5.13) (W,F)A= (VLkF)Ho + k4jt awl af1ds 

which proves the lemma. 
We will now describe a family of fully-discrete schemes for solving (2.6). The 

schemes differ from one another only in the choice of the weight Ykh . Let p be a real 
number greater than or equal to 2 and let Ykh in (5.5) satisfy 

(5.14) l/k2 < Ykh < Ck2h-P, 

where C is a constant as k, h -O 0. Note that (5.14) implies that 

(5.15) h < Ck41P as k, h -*> 0. 

For each choice of p, the algorithm is as follows. Given any initial data WI in 
Itl+s X IS, s > 0, we define a sequence of approximate solutions {Wn} of (3.1) by 
means of 
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(5.16) (Wn+lf ,F)A = (WnV,LkF)Ho, for all F in Sh, 

(5.17) W?= W? 

Wn+1 being sought in Sh. Thus, given a basis for Sh, finding Wn+1 from Wn 
necessitates solving a system of linear equations. This system always has a unique 
solution because Sh/ is finite dimensional and 1l lIA is a norm on Shf. It should be 
noted that the scheme is defined for any initial data in H0'(Q) X L2(2). The above 
scheme is conceptually different from that described in [4] for the heat equation. For 
instance, finding WI from WO by means of (5.16), is not the same as minimizing 
II H - WI over Sh/ where W is the exact solution of Lk W = W'. Indeed, according 
to (5.11) in Lemma 5.1, the unique element U1 in S which minimizes id>- WII2, 
satisfies a different linear system, the right-hand side of which involves 3w1l3v. In 
(5.16), we have effectively replaced this unknown normal derivative by zero. The scheme 
(5.16), (5.17) is a combination of least squares and penalty methods. At this point, we 
wish to make the following observation. Given V in H2 + s x H' ++ , let U be defined 
by (5.1 1), and let W be defined by 

(5.18) (W,F)A = (V, LkF)Ho for all F in Sh . 

Then, 

(5.19) (U- W, F)A= k4 J8 a 
1 

ap ds for all F in Sh/. 

Hence, 

(5.20) 110- WC _ k4{1 | awl 7 ds}{f0 aa(Ul - 2} 

From (5.5), we see that 

(5.21) k2(j | (z71 - 1, ) ds} I lU- WPI IA 

Hence, 

(5.22) 10- WIIA < k2 | aW1 

2 

dsA 1a~ av 
Next, by Theorem 3.1, if V is in f2+s X ftl+s, so is W, the solution of (5.3), (5.4), and 

(5.23) 11 Waill < 11 Vaill. 

Since 

(5.24) Cc aw,12 
a ds ? CIlwiIIH2, 

we get, from (5.22), (5.23), 

(5.25) 11| - WIIA < Ck2 1 VII. 

The idea behind the scheme (5.16), (5.17) lies in this last inequality, which shows 
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that using the wrong value for the normal derivative in (5.16) leads to an error of 
order k2. As will be seen below in Lemma 5.4, this means that the scheme (5.16), 
(5.17) is still consistent with the analytic problem (2.6). 

With W/ as in (5.16), put W' = Ekh W?, Wn = Ekh Wnl1 = Ekh W?. The family 
of discrete solution operators {Eknh} is bounded uniformly in the H' x IHo norm as 
k, h -O 0, n -x oo, nk < T. Thus, the fully-discrete scheme (5.16) is unconditionally 
stable. This is the content of 

LEMMA 5.2.For all W? in Ho' x Ho and all 0 < nk < T, we have, independently of 
h, 

(5.26) nE hW|H? ? CeT/2|WHO. 

Proof. By (5.16) and Schwarz's inequality, 

(5.27) 11yn+1 112 < II Wn n+1 | < 11 W||| W A 

Hence, ||Ekh+ W? |IA < |IEkh W? |IHO 
By Lemma 4.2, the definition of the A norm, and the fact that Ykh > 1/k2, 

(5.28) |Eh W ||H? 1 - k 
kEh 

W? 
112 < - k EkA I W? 

1IO2 

The lemma follows from (5.28). 
LEMMA 5.3. Let 0 < s < q, and let W E H2+s X> l+s. Fixp > 2 in (5.14). Then 

there is a constant C independent of W and h such that 

(5.29) Infq 1 - WIA < Ckh(2s+l)-p/21WI1+s. 

Proof. For any U = [u1, u2 ]T E H2 x H', we have 

A= Hu11 - 2k(ul,U2)HI - 2k(u2, AU1)HO + IIu2o + k2Hu22O + k u + uiHO 

(5.30) +YkhjQ au2p2ds+k4Ji u 2 

? C(|ui || + |u2|H) + CkH(Hui |2 + 11u2 ) + Ykh JQ U2ds 

where we have used (5.24). Hence, 

(5.31) [11A { k-2 I U1 iH1 + + I1 2 I+ Y u22ds + |U|12 + 12H1} 

< Ck2{k2h-P|UH + 1 H + h-P U212ds} 

where we have used (5.14), (5.15). To estimate the boundary integral in the last 
inequality, we use Lemma 4.1 with e = h. We obtain 

(5.32) U112 < Ck2{k2h-P 11 U112 + h-(P+I) 11 U11 O + || U121 + h-(P-1) || UI } 

< Ck2h-(P+1){|| U112 + h2 11 U112 } 

so that 

(5.33) II U||A < Ckh-(P1)/2{11 UIIHO + hjI UIIHI} 
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Consequently, using (5.33) and (5.2), 

(5.34) Inf 1|I0 - WIIA < Ckh(2s+l-P)/2 |I W||l+s 
Oe Shq 

as required. 
Recall that E(t) is the solution operator for the analytic problem (2.6), Ek(t) that 

for the semi-discrete problem (3.1), (3.2), and Ekh(t) = Ekh is the fully-discrete 
solution operator. In Lemma 5.2, the stability of the fully-discrete scheme was 
proved. The next lemma shows that the scheme is consistent with (2.6) whenever q 
in (5.1) is chosen greater than (p - 1)/2. 

LEMMA 5.4. Fix ap > 2, in (5.14) and let V E jjq+2 X tq+l. Then 

(5.35) I|EkhV -Ek(k)VIIHo < Ck(h(2q+l-p)/21| VI|q+1 + kll V||,). 

Proof. By Lemma 4.2 and Ykh > 1/k2, 

(5.36) I|Ekh V - Ek(k)VlHo < 1 I|Ekh V - Ek(k)VIIA. 

Since V E f2+s x f+s, s > 0, C defined by (5.11) minimizes jII1 - Ek(k) VItA over 
Shq - Hence, using Lemma 5.3 and Theorem 3.1, 

(5.37) 11 C - Ek(k)VI1A < Ckh (2q+l-p)12 |Ek(k)Vllq+l < Ckh(2q+l-p)121| V||q+. 

Next, W = Ekh V defined by (5.18) satisfies (5.25). Hence, by the triangle inequality 
and (5.36), 

(5.38) IlEkh V - Ek(k)VIIHo < Ck(h(2q+l-p)121Ijql + kI VtI1), 
as required. 

Using the Lax Equivalence Theorem, it follows from Lemmas 5.2 and 5.4 that 
the scheme (5.16), (5.17) converges to the exact solution of the analytic problem 
(2.6) as k, h -* 0, nk < T, for all initial data W? in Ho'(Q) x L2(Q). For such data, 
the theory does not provide any information on the rate of convergence. On the 
other hand, for smooth W?, we have the following 

THEOREM 5.1. Let a = Max(q + 1,2) and let W? E HP+1 x Ha; then there is a 
constant, CT, depending only on T, such that, for 0 < t = nk < T. 

(5.39) ttEkh(t)W0 - E(t)Wt IIHO CT{h(2q+l P)/2jj WO Iq+l + k|| Wt112}. 

Proof. We use the identity 

Ekh(t)W0 - Ek(t)Wo = Ekh W? - Ek(nk)WO 
(5.40) 

- E EkI(Ekh - Ek(k))Ek(jk)WV 
j=o 

and Lemma 5.2 to obtain 

(5.41) |lEkh(t)W0 - Ek(t)W|IIHo < C 
T 

T/2 Max T|(Ekh-Ek(k)) Ek(jk)W? |I|O CeT1 M~xIEk-EkkEkkWIH. 
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Using Lemma 5.4 and Theorem 3.1, 

II(Ekh - Ek(k))Ek(jk) WV I IHo 

(5.42) < Ck {kllEk(jk) W III + h(2q+l-p)/2 IIEk(jk)W0 fq+l+ } 

6 Ck {h(2q+l-p)/2 11 WO jVq+j + kIl W1O 11'} 

Hence, 

(5.43) IIEkh(t)Wo - Ek(t)WOlHo < CTeT/2{h(2f+l-p)/2j14/W0Iq+j + kIWV0 III}. 
Next, by Theorem 3.2, 

(5.44) IjE(t)WO - Ek(t)W0IIHO < CTkIIW0112. 

The result follows from (5.43) and (5.44). 
Remarks. As a consequence of (5.15), the error bound (5.39) has the form 

(5.45) IlEkh(t)W0 - E(t)WO IIHO < CT{kII WJ 112 + k(4q+2-2P)/p 1w WO Iq } 

Hence, the smallest possible error is 0(k) and it occurs when q and p are such that 

(5.46) p = (4q + 2)/3. 

Let the initial data W? be sufficiently smooth. Then, given any positive integer value 
of q in (5.1), we obtain 0(k) accuracy by choosing p to satisfy (5.46). If we choose 
q = 1 and take for Shq, for example, the space of two component vectors where the 
first component is a quadratic spline and the second component is piecewise linear, 
we obtain 0(k) accuracy in the Ho' x L2 norm, by choosing p = 2 in (5.14). 
However, this requires 

(5.47) h < Ck2 as k, h -0. 

Such a constraint on h is not practical. By using higher values of q, i.e., smoother 
trial functions, we can obtain 0(k) accuracy with a more favorable mesh inequality. 
For example, using quintic and quartic splines, i.e., q = 4, we have 0(k) accuracy, 
with h < Ck2/3. Other choices of p and q yielding 0(k) accuracy are summarized 
in Table I below. 

The above remarks concerning 0(k) accuracy assume that W? GE ft' x H 
with a = Max(q + 1, 2). More generally, we have 

THEOREM 5.2. Let WO fE js+` X VS, s > 0. Choose a positive integer q in (5.1) 
and let p in (5.14) satisfy (5.46). Then, for 0 < t = nk < T, 

(5.48) IIEkh(t)W - E(t)VO IIHO < CTk Min(ls/(l+q)) 1I WO HS. 

Proof. For arbitrary Wo E Ho x L2, we have from Theorem 2.1, Lemma 5.2 and 
the triangle inequality, 

(5.49) ||E(t)WO - Ekh(t)W?IIHO < CTIIWIHO. 

If W? E IP+2 X jlq, we have, from (5.45) and (5.46), 

(5.50) IIE(t)W? - Ekh(t)W0IIHO H< CTkII W?11+q. 
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TABLE I 

Degree of 
Splines in Sq q p Mesh Inequality 

2 x 1 1 2 h Ck2 
3 x2 2 10/3 h Ck615 

4 x 3 3 14/3 h Ck617 
5 x 4 4 6 h < Ck213 
6 x 5 5 22/3 h < Ck6111 
7x6 6 26/3 h Ck6113 
8 x 7 7 10 h Ck215 
9 x8 8 34/3 h Ck6117 

10x 9 9 38/3 h < 

11x 10 10 14 h Ck217 

Next, the spaces Hs+l X As with the norm (2.7) have the interpolation property 
discussed in [4,Lemma 2.2]. Hence, the result follows from (5.49), (5.50). 
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