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Error Analysis for Polynomial Evaluation* 

By A. C. R. Newbery 

Abstract. A floating-point error analysis is given for the evaluation of a real polynomial at a 
real argument by Horner's scheme. A computable error bound is derived. It is observed 
that when a polynomial has coefficients of constant sign or of strictly alternating sign, one 
cannot expect better accuracy by reformulating the problem in terms of Chebyshev poly- 
nomials. 

Given that the real polynomial P(x) = , 
Prx r is to be evaluated at a real 

argument a under conditions of normalized floating-point arithmetic, we wish to 
study the bounds for accumulated round-off effects. Two algorithms for evaluation 
will be compared: (i) the standard Horner scheme and (ii) Clenshaw's algorithm [1] 
applied to the Chebyshev form. 

First, we note that for practical purposes there is no loss of generality in 
assuming that ax _ 1. For instance, on a binary machine one could define H(x) 

P(2kx), and, in the absence of overflow/underflow, the coefficients of H are 
exactly determined in terms of those of P. The problem of evaluating P(a) can be 
replaced by that of evaluating H(x) at x = 2-ka, where 12-k a I 1. The two 
computations give rise to identically the same sequence of significands; only the 
exponents may differ. Bauer [2] made an analogous observation with respect to the 
scaling of linear equation problems. In order to have a fair basis for comparison 
with Clenshaw's algorithm, we shall assume the problem has been normalized so 
that lao _ 1. 

According to the Horner scheme, we have 

(1) P(a) = qo, where q, = Pn, and qr = Pr + aqr+l, r = n - 1, n - 2, ..., 0. 

Computationally, since the result of each arithmetical operation in (1) is subject 
to a relative error in the range ?c, we shall generate a sequence (q,*} given by 

qn =p 5 

(2)~qY P r + aq*~ I+ 8r 5 r = n - 1 , n - 25 ... ., 0, 

where 5r denotes the difference between the floating-point and 
true evaluation of Pr + a?Ir+ 1 

It can be verified that 
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(3) 6, E eIPrl + a Iqr*+ I, where a = e(2 + e). 

Proceeding as in [3], [4], we can write (1), (2) in matrix form: 

Aqi=T , Aq* = ? + E, where 

(4) A 

The evaluation error E is given by 

n n 

(5) E = jqo* - qoj = 2 8ra E 1d. 
0 0 

Combining this with (3) and noting that qn*+1 = 0, we find 

n n 

(6) E ' e z IPr r I + a E Iq,*arI. 
0 1 

In order to find a bound for En 
liqr*carI, we define a vector gr = {a nn-1 ... , xr, 0, 

0, ... , 0}, and we note from (4) that the successive row-vectors of A-1 are g 

g-n-Ila-1, ...go/xa. Hence 

n 

r = I gr (p + 8)l - 2 (Iikl + IakI) !aIk 
k=r 

Applying a double summation, we conclude that 

n 

jqra rl - n(jPn | + pn |)j 
In 

+ (n - l)(IPpn-1I + lan- 1))|.J + + (I PI + 181 1I) a. 

If we define the polynomials P(x) -= lprjX and 1(x) 0 18rX, then the 
foregoing inequality can be written in the form 

n 

(7) E Iq* r 
Ij = jlaJ(P'(jaj) + 1D (jla)) 

Combining (5), (6), (7), we deduce that 

(8) E < J(IaI) ?< cP(lal) + alaI(P'(IaI) + 1'(Ial)). 

From the second inequality above, we find that on evaluation at jal 

(9) D - aaIJ5' ?P + aaIfP'. 

For any nth degree polynomial P, it is clear that aIP'(Ia) ?-< nF(jaj), and equality 
will hold only in the event that the highest-order coefficient is the only nonzero 
coefficient. Since the same is true of D, it follows from (9) that (1 -na)13 
_ (e + naP). Combining this with the first inequality in (8), and assuming that 
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no < 1, we conclude that 

(10) E ' P(la|)(c + no)/(l - no). 

It is clear from the expression that the bound grows quite steeply with lal, 
particularly when n is large, and particularly when the high-order coefficients of P 
are of relatively large magnitude. A simpler but cruder bound derivable from (10) is 

(11) E -' 11Tll1(- + no)/(1 - no). 

Now suppose the polynomial is written in Chebyshev form, so that P(x) 
-oprx r- 0 tr T(x). Since this problem is equivalent to evaluating a cosine 
series, the error analysis can be extracted from [3], [4]. It is assumed that we use 
Clenshaw's algorithm with no phase shift. The algorithm states that 

P(a) = to + ul a-U2, 

(12) where Un+1 = Un+2 = 0, 

Ur = tr+ 2Ur+lj a Ur+2, r = n, n - 1,...,. 

The error bound for ul turns out to be 

(13) lU* -U I _< alli|l n[I + (1 + 21al)n(n + 1)/2] 
I I~~ - G(1 + 21al~n(n + 1)/2 

A bound for lu* - u21 is given by the same expression with n - 1 replacing n. These 
bounds are generally very conservative except when lal 1. If lal ' 1//2, then 
the quantity n(n + 1)/2 occurring twice in (13) can be replaced by n/L. Since the 
bound (13) is (for large la I) of order n3, compared with ( 1) which is at most of order 
n, it might appear that the Chebyshev method was inferior to the Horner scheme. 
This can indeed be the case, but, more commonly, the advantage is reversed in 
consequence of Ilil| <? IIpIIl 

The vectors i, p are related by p = Ui, where the matrices U, U-1 are given in 
[5]. It is evident that 11 U-1 Ai = 1 and hence that lifll-< lpII; moreover, since U-1 
is column-stochastic, we shall have Ilill| = flpll whenever the elements of p are of 
uniform sign. Furthermore, if p has alternating signs, we can say that evaluating 
P(x) is indistinguishable from evaluating a constant-sign polynomial at - x. Since the 
two special cases of constant signs and alternating signs figure prominently in 
Taylor expansions of elementary functions and elsewhere, it is worth noting that in 
these cases the conversion to Chebyshev form is disadvantageous from the error- 
bound point of view. The fact that the error bound is worsened does not permit any 
firm conclusion about the actual errors, since the errors and their bounds are rather 
loosely correlated. For example, by examining the structure of U-1 it becomes clear 
that when p is positive, so that I I- 11 = II II1, the t-sequence of coefficients is much 
more strongly damped than the p-sequence. It was shown in [4] that damping has a 
beneficial effect on computational stability, but no allowance is made for this in 
determining the error bound. The damping may indeed be sufficient to make the 
high-order terms of the Chebyshev series negligible, but, in this article, we are 
assuming that the polynomial is mathematically determined, and it is only the 
evaluation schemes that are under discussion. The empirical results given below 
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seem to justify the view that when a polynomial has coefficients of constant sign or 
of strictly alternating sign, there is no substantial difference in accuracy between 
Horner's scheme and Clenshaw's. The upper triangular matrix U contains in its 
(k + 1)st column the coefficients of Tk(x) with the constant term written in the first 
row. Corresponding to an nth degree polynomial, the order of U will be n + 1 and 
|| U|11 will be the absolute sum of the coefficients of TW+1. Equivalently, 

(14) HuH1 =I Tn+(i)l = (1/2) [(1 + -,/2)n+l + (1 - F)n+l 

Since we have IfIpII I UII l i1i, with equality attained when P(x) T--(x), it can 
clearly happen that JIPJi1 ?> ||t||i, and this explains the observation in [6] that the 
Horner scheme performs particularly badly on the evaluation of Chebyshev 
polynomials. In fact, although a comparison of (11) and (13) appears to favor the 
Horner method by a factor O(n2), the countervailing term (1 + \)n+l in (14) may 
put the advantage overwhelmingly in favor of the Chebyshev-Clenshaw algorithm. 

Some experiments were performed in order to test the two main hypotheses that 
seem to emerge from the above arguments, namely: 

(A) The accuracy of the Horner scheme is highly sensitive to the magnitude of 
a. (The same is also true of the Clenshaw scheme, as was proved in [3].) 

(B) When a polynomial has coefficients of constant sign or of strictly alternating 
sign, a translation into Chebyshev form will not bring any systematic improvement 
in accuracy of evaluation. 

A polynomial P(x) = xrl(10 - r) was defined, with coefficients correct to 
six hexadecimal figures. Two ranges for the arguments a were defined, namely 
I = [-.9, .9] and I' = [-1, -.9] U [.9, 1]. Within each range, 100 uniformly distrib- 
uted values of a were chosen, and the mean and maximum of the evaluation errors 
were computed. The 'errors' were taken to be the difference between the results of 
single- and double-precision evaluation, where the double-precision coefficients of P(x) 
were made identical to the single-precision coefficients. The polynomial was then trans- 
lated into Chebyshev form and the experiments were repeated, using Clenshaw's algo- 
rithm on the same set of arguments. The fact that the translation cannot be performed 
with perfect accuracy should not be considered significant, because we never directly ex- 
amine the discrepancies between the Clenshaw and Horner evaluations; these discrepan- 
cies would, of course, be partly attributable to translation errors, and they would not 
yield information on the merits of the two algorithms. 

TABLE 

II (Ol < .9) I' (.9 < ?i< 1.) 

Horner 27 286 
497 745 

Clenshaw 47 326 
263 556 



ERROR ANALYSIS FOR POLYNOMIAL EVALUATION 793 

The table above gives the results of four experiments corresponding to all 
combinations of the two methods and the two argument ranges. The two figures 
given at each grid point denote the mean and maximum errors measured in units of 
10-8 for 100 argument values. 

It seems that hypothesis (A) is well evidenced by these results. As tor (B), the 
reader will have to form his own judgment, but it seems that neither method has a 
clear empirical advantage over the other. Our conclusion, therefore, is that although 
the Clenshaw algorithm is generally superior to Horner's, this superiority will 
generally not apply in a situation where the polynomial coefficients have uniform 
sign or strictly alternating sign. 
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