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A Search for Elliptic Curves With Large Rank 

By David E. Penney and Carl Pomerance 

Abstract. A search procedure is described for finding elliptic curves with rational coefficients 
for which the group of rational points has large rank. Specific examples are given of elliptic 
curves with rank _ 6. 

We recall Mordell's famous theorem that the set of rational points on a genus 1 
curve with rational coefficients forms a finitely generated abelian group. The rank 
of such a curve is defined to be the number of free generators of this group. Wiman 
[3] gave the curve 

(1) y2 =X3 + 338x2 + 13432x 

as an example of a rank 4 elliptic curve. (Wiman claims the curve (1) has rank 6, 
but this is because his definition of rank is the minimum number of generators of 
the group of rational points, including points of finite order.) 

Neron [1] proved that rank 10 elliptic curves exist, but gave no examples. In fact, 
no specific examples of elliptic curves of rank exceeding 4 have been published. 

In this paper, we describe a procedure which computerizes a search for large 
rank elliptic curves. In particular, we give several examples of curves with rank ' 
6. In a future paper, we hope to give examples with even larger rank. 

We restrict our attention to curves of the form 

(2) y2 = X3 + ax2 + bx 

where a, b E Z and a2 - 4b is not a square. (We note that Wiman's example (1) is 
not in this form, since 3382 - 4 . 13432 = 2462.) Let F be the group of rational 
points on (2), where the identity of F is 0, the point at infinity. 

Since F is a finitely generated abelian group, we write F _ zr E Zpzai E ... E* Zpkak 

where Pi, . P. , Pk are primes and r is the rank of F. Since a2 - 4b in (2) is not a 
square, there is only one rational root to X3 + ax2 + bx; so F has precisely one 
rational point of order 2, namely (0,0). Hence, precisely one of Pi, . P. , Pk is 2. Then 
F/2F - Zr+1 

Now it is easy to show from the definition of doubling a point on F, that if 
(xy) E 2F, then x E Q2; that is, x is the square of a rational number. Denote by 
Q* the group of nonzero rationals, and let a: F -* Q*/Q*2 where a(x,y) = xQ*2 if 
x # 0, a(0, 0) = bQ*2, and a(0) = Q*2. It follows that a is a group homomor- 
phism (for example, see Tate [2]) and that 2F C ker a. 

Summing up, we have 2r+1 = o(Zr+l) = o(F/2F) ' o(F/ker a) = o(im Qi). 
Hence, if we could compute o(im oa),we would have a lower bound for the rank r of 
F. A proof of the following theorem may be found in Tate [2]. 
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THEOREM. im a = {bQ*2} U {nQ*2: n >E Z, nIb, and nu4 + bv4/n + au2v2 = W2 

has a solution (u, v, w) in pairwise prime nonzero integers }. 
The quartic mentioned in the theorem is often difficult to analyze, so we restrict 

our attention to those quartics which allow a solution with u = v = 1. Namely, we 
study 

(3) A = {bQ*2} U {nQ*2: n E Z, nlb, n + b/n + a is a nonzero square}. 

Let B = the subgroup of im a generated by A. Then B is isomorphic to a subgroup 
of Zj'1 and hence B _ Z' for some s _ r + 1. Hence, if we can compute o(B) for 
a given choice of a and b in (2), we will have computed a lower bound for the rank 
r of r. 

For a given choice of a and b in (2), we ask the computer to determine the 
members of 

(4) A' = {n: n E Z, n~b, n + b/n + a is a square}. 

By examining this set, it is not hard to compute A and then proceed to compute 
o(B). 

We give the following numerical example to illustrate the above process. Let F 
be the group of rational points ony2 = X3 + 17X2 - 105x. It is a simple matter to 
compute A', the set defined in (4). Namely, A' = {-21,-15,-7,-3,-1, 5,7, 15, 35, 
105). Then the subgroup B of im a is {nQ*2: n E Z, nI 105) and o(B) = 16. Hence, 

y2 = X3 + 17X2 - 105x has rank _ 3. 
In practice, we make a choice for b in (2) and let the computer search for a 

"good" choice for a. Indeed, for a given b, the computer has the set {n + b/n: nlb} 
stored as an increasing sequence. For each choice of a, the computer forms the set 
{n + b/n + a: nlb, n + b/n + a > 0). This last set is searched for squares. If we 
have hit upon a good choice for a, i.e., there are many (say ' 4) squares in the set, 
then the computer prints out n, b/n, n + b/n + a whenever n + b/n + a is a square. 
The computer identifies an integer x _ 0 as a square by first verifying that x is a 
square for various small moduli, and if x passes these tests, [x1/2 ] is found by 
Newton's method written in integer programming for speed. Then x is a square if 
and only if [xl/2]2 = x. 

In (2), we specify that a2 - 4b is not a square. However, for a given b, the 
computer might well choose an a such that a2 - 4b is a square. It is not necessary 
to patch up this "flaw" since a2 - 4b is a square if and only if X2 + ax + b = 0 has 
an integral root if and only if for some divisor n of b, n + b/n + a = 0. Hence, the 
square 0 appears on our printout if and only if a2 - 4b is a square. Thus, we merely 
ignore those choices for a and b where the square 0 appears. 

There are infinitely many ways of choosing a and b in (2). We need, therefore, 
a method of deciding which choices should be tried. Experience and a few 
elementary considerations, most of which we omit here, have led us to make the 
following restrictions on the choices for a and b. 

First, we assume b is odd and square-free. 
For a given b, we choose a so that 0 < a < f(b) < JbI where f(b) is an 

arbitrarily chosen bound that increases with Ibl. Furthermore, we take a 
2 (mod 3) and a-0, 2, or 3 (mod 5). If b-3 (mod 8), we choose a 

5 (mod 8). If b 7 (mod 8), we choose a 1 (mod 8). If b 1 (mod 4), we 
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choose a in a few (possibly 1) congruence classes mod 64. The following lemmas 
provide some explanation. 

LEMMA 1. If b 3 (mod 4), then x + bx-' 1 + b (mod 8) for every odd x. 
Proof. If x is odd, then x-x- (mod 8), so x + bx1 x + bx x(l + b) 
1 + b (mod 8) (since 1 + b 0 (mod 4)). 
LEMMA 2. If b 1 (mod 4), then x + bx-' has precisely 4 values as x ranges over 

the 32 odd congruence classes mod 64. 
Proof. This lemma is easily verified by proving that for each odd x mod 64, there 

are precisely 8 oddy's mod 64 such that x + bx- y + by-' (mod 64). In fact, this 
last congruence holds if and only if (x - y) (b - xy) 0 (mod 64) if and only if 

(1) if b 1 (mod 8), theny x (mod 8), 
(2) if b 5 (mod 8), then y x (mod 16) ory x2 + bx - 1 (mod 16). 
The following table sums up the highlights of what we found: 

TABLE 

b a rank 

3-5-13-17-29 1217 >5 
3-5-7-11-13-17 5513 >5 
3*5*7*11*13X17 7265 >5 

-3 - 5 - 7- 11 - 13 - 17 29162 >5 

35--7-11-13-17-19-23 53213 >6 
3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 80885 > 6 

3 * 5 * 7 - 11 13 - 17 * 19 - 23 100757 > 6 
- 3 5 7 11 * 13 * 17 - 19 * 23 5858 >6 

- 3 * 5 * 7 * 11 - 13 - 17 - 19 * 23 47138 > 6 
- 3 * 5 *7 * 11 * 13 * 17 * 19 * 23 68258 > 6 

-3-57*11- 13- 17-19-23 74882 >6 

- 3 - 5 -7 - 11 13 - 17 * 19 - 23 82658 > 6 
- 3 * 5 *7 * 11* 13 * 17 * 19 * 23 93122 > 6 
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