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If the invalence of an integer is zero, Alanen calls it “untouchable”. He
conjectures that no odd number other than 5 is untouchable, and refers to
this as a strengthened Goldbach conjecture (or “weakened”, since if n =
P +q+1, where p, ¢ are distinct odd primes, then pq is a value of s7'(n),
but there are in general other than “Goldbach” solutions to the equation
s(x) =n). He gives the value of the invalence of n and a list of all solutions
of s(x) =n for 0 <n <100, the non-Goldbach solutions for 101 < n < 500,
and a list of the 570 untouchable numbers 2,5,52,88, --- less than 5000.

Two sections develop algorithms for determining all untouchable numbers,
and all cycles, below a given bound. Two others give the results of computer
calculations (see next review) and a specification of the algorithms used.
There are 33 references.
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44[9]. —Jack ALANEN, Tables of Aliquot Sequences, 7 volumes, each of ap-
proximately 600 pages of computer output, filed in stiff covers and pre-
sented to the reviewer.

This is the output produced in connection with the author’s thesis (see
previous review). One volume investigates, by various algorithms, (certain
subclasses of) partitions of n, and also carries out other algorithms designed
to find all solutions of s(x) =n, where s(x) is the sum of the divisors of x,
other than x itself. A second volume continues the previous work, lists all
n sequences with n < 48303 for which s*(n) =6 for some k (the largest k in
this range is 33) and lists the members of the aliquot sequence s*(138) for
0 <k <112 (it was earlier shown by D. H. Lehmer that s'"(138) =1, the
maximum term being s'7(138) =179931895322). The other five volumes
give all terms of all n sequences for 1 <n <10000, 10001 <n =< 20000,
20001 < n < 30000, 30001 <n < 40000, 40001 <n <48303 and the rank
of the bounding term, where the bounding term is either 1, or a member of
a cycle, or the first term of the sequence which exceeds 10'. Of the sequences
associated with the first 40,000 integers, 33450 terminate at 1, 5676 exceed
Alanen’s bound of 10", 325 become periodic at a perfect number (6, 496 or
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8128), 495 become periodic with period 2 (amicable pair), and 54 lead into
one of the two Poulet cycles.

For a review of Paxson’s related tables see Math. Comp., v. 26, 1972,
UMT 38, pp. 807-809.
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45[10]. —P. A. Mornis, Characteristic Polynomials of Trees on up to 14 Nodes,
University of the West Indies, St. Augustine, Trinidad, West Indies,
December 1973. Ms of 8 pp. + 57 computer sheets deposited in the UMT file.

Herein are listed the coefficients of the characteristic polynomials of the
adjacency matrices of all trees with 13 or fewer nodes.

The list was generated in two ways to provide a check on the calculations,
which were performed on a 1 CL 1902A and an IBM 1620, respectively.
The first method employs a theorem of Collatz and Singowitz [1], which
asserts that if ¢(7) =) ro(—1)*a\"* is the characteristic polynomial
of a tree T on n nodes, then ay,; =0 and ay equals the number of ways of
finding £ mutually nonadjacent edges in T. The second method uses a known
decomposition theorem [2], which states that if u is a node of valency 1
connected to a node v, T —uv is the tree (together with the isolated node u)
formed by deleting the edge uv, and T —u —v is the forest formed by deleting
nodes u and v and their incident edges, then ¢(T) = ¢(T —uv) —¢(T —u —v).

A further check of the accuracy of the list was made by comparison with
the corresponding data in the table of Mowshowitz [3], which includes all
trees on 10 or fewer nodes.
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46 [12]. —Louis D. Grey, A Course in APL/360 with Applications, Addison-
Wesley Publishing Co., Inc., Reading, Mass., 1973, xviii + 332 pp., 24 cm.
Price $7.50 (paperbound).

If this paper-back book were used merely as a reference manual for APL
programmers, it would serve a useful function since it is well organized,
comprehensive and well documented. But the text is far more than a work of
reference. It is an excellent vehicle for teaching this most elegant and succinct
language, one which is considered by some to be a serious competitor with



