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On Tikhonov's Method for III-Posed Problems* 

By Joel N. Franklin 

Abstract. For Tikhonov's regularization of ill-posed linear integral equations, numerical 

accuracy is estimated by a modulus of convergence, for which upper and lower bounds are 

obtained. Applications are made to the backward heat equation, to harmonic continuation, 

and to numerical differentiation. 

1. Introduction. Tikhonov's method applies to the integral equation 

(1.1) f? k(x, y)uo(y)dy = go(x) (O < x < 1). 

The problem is to find uo if k and go are known. 
This problem is ill-posed if k is any measurable kernel. That follows from 

Riemann's lemma: 

(1.2) k(x, y) sin Xy dy -O as N X oo 

which shows that a small change in the data, 6go, may correspond to a large change 
in the answer, 6uo: for some large N, let 6go(x) equal the integral (1.2); this is a 

small data-change corresponding to the large answer-change 6uo(y) = sin Xy. 
Many ill-posed problems can be stated as integral equations. In this paper, we 

will discuss three ill-posed problems: the backward heat equation, harmonic contin- 
uation, and differentiation. All will be stated as integral equations. To each, we will 

apply Tikhonov's method, and we will find the rate of convergence. The rate of con- 

vergence gives an estimate of the accuracy of the computed solution. 

2. Tikhonov's Method. We suppose that uo(y) solves the integral equation (1.1). 

The kernel k(x, y) is known, and a function g(x) is known such that 

(2.1) 1g - go 11 < e 

We will use the notation Ik<II to mean the L2-norm: 

IIPII = (fo 2 (X)dX)/2 

The assumption (2.1) is used instead of g = go because, in practical applications, the 
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data are usually known only apart from certain errors of measurement. Even if go 
is known exactly, it is advisable to assume that there is some small data-error if any 
numerical computations are to be used; for numerical computations produce rounding 
errors, which have the same effect as exact computations based on inexact data. This 
point has been stressed by Wilkinson [4]. 

Tikhonov makes the assumption that uo(y) satisfies an inequality 

(2.2) i2 2(U )<OO 

where E22 (u) is a functional of the form 

(2.3) 2 (u f , a(x) dutx) 2] R 
~~ 3dx 

j0o dx1 
where p > 1 and where the functions a,(x) are positive and continuous. For in- 
stance, if ao a 1 and if p = 1, we assume 

(2.4) &22(U0) = J (u0(x)2 ? uo(x)2)dx < 00. 

Then, a number a > 0 is chosen, and a function u(x) approximating uo(x) is 
computed by minimizing 

(2.5) IIKu - gil2 + a&22 (U) 

where 

(2.6) 
Ku 

=10 k(x, y)u(y)dy. 

It is assumed that 

(2.7) Ku = 0 only if HluII = 0. 

The parameter a is related to the tolerance e in the inequality lLg - go < e. 
It is assumed that 

(2.8) CIe2 o ac2C2 

where cl and c2 are positive numbers that are independent of e. The following 
theorem was proved by Tikhonov: 

THEOREM. Let (2.7) hold. Let 

(2.9) Kuo = go, where 2(u0)<oo. 

Let Jig, - go 11 < e, and let u = us minimize 

(2.10) IIKu - gE 112 + aR2 (U) 

where a satisfies (2.8). Then the functions uE(x) converge uniformly to uo(x) 
as e -0. 

Proof. Since we shall need the details of the proof of this simple theorem, 
we shall reproduce them here. Since ue minimizes (2.10), we have 
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IIKu' 
-g~II2 ? cxfi2(uc) < IIKuo- 

g,112 
+ a22(Uo) 

< 62 + a22 (U0) 

< C2(1 + C222(U0)). 

It follows that 

(2.11) 22(uE)?c-1 +?22(uo) 

and 

IIKu, -go11 < 1Hg, -go11 + J[Ku, -gI 

(2.12) 
?41 ?(l + c2+ 2(u0))1/2]. 

The inequality (2.11) shows that the functions u,(x) lie in the class of functions 
u(x) satisfying 

(2.13) E22(u) < constant = c ? 1 + 2 
(Uo). 

This class is compact because the functions u satisfying (2.13) are equicontinuous 
and uniformly bounded. Therefore, there is a uniformly convergent subsequence of 
the functions uE(X). 

It now suffices to prove that every uniformly convergent subsequence of the func- 
tions u,(x) has the same limit, uo(x); then the whole sequence u,(x) must converge 
to uo(x). Now, if so(x) is the uniform limit of a subsequence of the functions 

u,(x), the inequality (2.12) implies IIKso -go 11 0 O which says IIK(so - uo)II 0 O 
which implies ,o = uo, by (2.7). LI 

In this proof, it is assumed that ue minimizes the functional (2.10) over the 

entire class of functions for which Q(u) < oo. This assumption is not necessary. In 
some applications, one knows that the unknown lies in some subset, S, of the functions 
for which Q(u) < oo. If uE minimizes the functional only over the subset, S, the 
proof shows that the conclusion still holds: u,(x) tends uniformly to uo(x) as 

O0. 

The existence of a minimizing solution, u, depends on the prescribed subset, S, 
according to the calculus of variations; we will assume that u exists. 

The uniqueness of the minimizing solution is established as follows: Assume the 
subset S is convex. Let ul and u2 be minimizing functions. Then u 
/2(u1 + u2) is also minimizing, as we will prove by the parallelogram-laws: 

11x + Y112 + I[X - y112 2(xII2 1 
12Y112) 

and 
22 (p + q) + Q22(p - q) = 2(E22(p) + E22(q)). 
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Let 
x = ?2(Ku 1 - g), y = ?2(Ku2 - g), 

p = ?2U1, q = 2U2. 

Then, if u=?Y2(u1 +u2), 

liKu -gil2 + Ill2K(u1 - U2)l2 2(lKU -gil2 + llKu2 -gil2) 

and 
??2(u) ? Q /2(?(u1 - u2)) = 2(E22(u1) + ? 2(U2)) 

Adding the first equation to a times the second, we see that u is minimizing, and 
that 

ll?2(Kul - u2)12 ? o2Q2(Ul - U2)) = 0. 

Therefore, u I= U2. 

3. Regularization and Convergence. The proof of Tikhonov's theorem relies on 
the principle of regularization: If 

(3.1) lju. 
- 

Kuol > as e O 

and if the functions u,(x) and uo(x) satisfy some inequality 

(3.2) Wu) < Ci 1 
where cu1 is independent of c, then u- > u0. The inequality (3.2) may be called 
the regularization-inequality. Without it, the convergence uE u0 would fail if the 

problem Ku0 =go is ill-posed. 

In order to determine the rate of convergence, it is useful to define a modulus of 
regularization, p(e). Let ,(u) be some norm defined for all functions u(x) in a 
linear space S of functions for which Q2(u) < oo. For instance, we could let 

(3.3) ,u(u)= max lu(x)l 
0ox? 1 

or 

(3.4) p(u) l=ul 

or 

(3.5) ,(u) = (llu112 + ?.. + ?IUfq)112)1/2 

where q is some integer less than the order p, which appears in the definition (2.3) 
of Q2. 

If the maximum-norm (3.3) is used, the uniform convergence of uE(x) to uo(x) 
is expressed by the statement: 

(3.6) p(u,-uo)-0 as e 0. 

If the L2-norm (3.4) is used, then mean-square convergence is expressed by (3.6). 
If the norm (3.5) is used, then mean-square convergence of u and its derivatives up 
to order q is expressed by (3.6). 
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We shall say that the functional E2 regularizes the operator K with respect to 

the norm ,u if ii(un) - 0 for every sequence of functions un(x) such that 

(3-7) IIKun II - 0 while 2(un) < 1. 

Under this condition we can define the modulus of regularization 

(3.8) p() - sup ,u(u). 
IIKuI 61 e; $ (u)6 1 

We note that p(e) tends monotonely to zero as e > 0; if this were not true, 

there would be some 6 > 0 and a sequence of positive en tending to zero and a 

sequence of functions un(x) such that 

JJKun 11 < n, Q(un) < , A(un)> 

But this is impossible, since there is a subsequence of the un whose si-norms tend 

to zero. 
Since the functionals lIKu II and E2(u) are both homogeneous of degree 1, we 

have for every positive cX 

(3.9) sup AM(u) sup cop(u/c) 
IlKu 116 e; 2 (u) < w IIK(u/) II 6 E/W; $ (u/w) 1 

Next we define a modulus of convergence, a(e, a), for Tikhonov's method. Let 

a be a positive number. We first suppose 2(uo) < 1. And we suppose that u 

minimizes the functional 

(3.10) IlKu - gl2 + ?a2 (u) 

where Jig - Kuo 11 < e. Thus, u depends on g, which is related by an inequality to 

u0. (Since the functional (3.10) is quadratic in u, it is easy to show that u is a 

linear transform of g; but we do not require this information here.) Let us write 

(3.11) U = To o 

We now define the modulus of convergence 

(3.12) a(e, a) = sup P(Tag - uO). 
IIg-Ku0II<e; Q2(uo) 1 

This definition takes account of the dependence of u on the parameter a. 

The modulus u(e, a) measures, in terms of the norm p, the worst error obtainable 

when Tikhonov's method is used to approximate a solution uo in the class 2(uo) < 

1, where the given g equals Kuo apart from an error whose L2-norm is at most e. 

Suppose we know that 2(uo) < c instead of 2(uo) < 1. Suppose that 

Jig - Kuo 11 < e. Under these conditions, we have 

(3.13) P(u - uO) < wa(eco, a) 

since the function v = u/co minimizes 

(3.14) IIKv - g/C 11i2 + ? a 2 (v) 
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and since 
lg/w - K(uo/co)ll < e/& and E2(uol/) < 1. 

Hence, ,(u/cu - u0/1) < a(e/c, a) and (3.13) follows. 
We have just proved, for all X > 0, 

(3.15) coa(e/co, a) = sup -(Tg - UO). 
g-Ku0o li < e; &n (uo) < ( 

This gives the rate of convergence for solutions in the class E2(uo) < W. If we know 
that 92(uo) < co, and if we know that Jig - Kuo 11 < e, the error in Tikhonov's 
method is at most equal to wa(e/co, ar). The following theorem shows how to 
estimate this quantity in terms of the modulus of regularization. 

THEOREM. The modulus of convergence, a(e, ax), is related to the modulus of 
regularization, p(e), by the inequality 

(3.16) cop(e/&,) < coa(e/w,, a) < C oP(e'/a)) 

where, if X = ac2/e2, 

(3.17) 6'=(1 +/I+ X)e, cW'=(1+ 1 +1/X)c. 

Remark. Since the lower bound cop(e/co) in (3.16) is independent of ax, 
this theorem suggests how to choose ax well if all that is known about uo is that 
JIg - Kuo 11 < e and E2(uo) < w: choose aX = e2/X2. This choice reduces (3.16) 
to the form 

(3.18) cop(e/w) < Wa(e/co, ax) < (1 + )cop(e/w). 

The two sides of this inequality are equal, apart from the numerical factor 1 + I"21. 
Proof of the theorem. First we will prove 

(3.19) cp(e/c) < c(el/c, cx). 

Given any number 0 < 1, and given any e > 0, we can find a function p for 
which 

1K<11 < C, E260) < 1, M6f) > OP(e). 

Consider the problem of minimizing 

IKU - gl2 + a?22(U) 

where 
0 = g = Kp - Kp. 

Note that, if we set uo = p, we have 

Ig - Kuo 11 < e and 2(uo) < 1. 

Therefore a solution u of the miningam problem must satisfy 

A(u - uO) < a(e, a). 

But u = 0 satisfies the minimum problem, since g = 0. The last inequality now 
becomes p(p) < a(e, cx). But ,u(p) > Op(e). Therefore, Op(e) < a(e, cx). Since this 
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holds for every 0 < 1, the inequality (3.19) follows. 

Now we will prove the right-hand side of (3.16). Let 0 < 1. If e and X are 

any positive numbers, Eq. (3.15) implies that there are functions u0 and g 

satisfying 

(3.20) 0coa(e/c), a) ? p(Toeg - uo) 

where 

N(uo)?<&. and lLg-Kuo 11<e. 

If u = Tag, then 

jlKu - gil2 + aE22(U) < c2 + aco2 

since the right-hand side is obtained by substituting uo for the minimizing function 

u. Now IIKu-gil2 and aE22(u) are each ? e2 + aW2. Therefore, 

jjKu -gil <(62 + aCi2)1/2 
and 

2(u) < (C,2 + e2/a)1/2 

Using the triangle inequality, we find 

IIK(u - u0)ll < liKu - gll + jig - Kuo 11 
(3.21) o)/ ce' 

< (C2 + a? 2)1/2 + e = C, 

Since the functional 2 also satisfies a triangle inequality, we have 

(u - UO) < (u) + ?uo) 
(3.22) <(X2 ?e2/a)1/2 + c = o'. 

Equation (3.9) now implies 

(3.23) ,u(u - uO) < cop(c'/co). 

Equation (3.20) now yields 

(3.24) Ocoa(e/co, ar) < i(u - uo) < O'P(6'/C4'). 

Letting 0 1, we obtain the upper bound in (3.16). L 

4. Harmonic Continuation. According to Poisson's formula, if a harmonic func- 

tion equals u0(0) on the unit circle, then it equals 

(4.1) Kuo(0) =2iro 1 - 2r cos (0 - 01) + r2 
0 

orn an interior circle of radius r < 1. Let r be fixed. Then consider the problem 

of inverting Poisson's formula numerically. 

We are given a function g(0) such that 

(4.2) liKu0 g-l < e. 

The function uo is unknown. It is supposed to be a periodic function satisfying 

some inequality 
(4.3) ??(uo) < Co. 

For simplicity, suppose that &22(u) has the form 
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(4.4) g22 (U) = 
7r 

t2 u'(0)2 ] dO. 

Applying Tikhonov's method, we choose a number a > 0 and state the problem 
of minimizing IlKu - gil2 + ag22 (U) over the class, S, of periodic functions for which 
g22(u) < 00. By periodic, we mean that u(O) = u(2ir) and u'(0) = u'(2ir). With 

these boundary conditions, the calculus of variations shows that u must be the solu- 
tion of the integro-differential equation 

\d02 / ? ~ ? K(Ku - g) = 0. 

This equation can be solved numerically by finite-difference methods, although there 
is some difficulty if the parameter a is very small. 

Here we will only consider the dependence of the minimizing function u 
on the parameter a: we will study the L2-norm, 

P(u - uo) = IHU - uO11 

as a function of a. 
By the discussion in the preceding section, we know that Iju - uIo is at 

most equal to ua(e/c, oa) if the solution uo satisfies the inequalities (4.2) and 

(4.3). Moreover, we have 

(4.5) &,p(C/co) < coa(c/c, ct) ? &Yp(e'/co) 

according to (3.16), where 

(4.6) p(e) = sup 11(p11 if IIKepjj < e and 92(p) < 1. 

The inequality (4.5) holds for every a, with A' and c' defined in (3.17). If 

P= 62/CO2, we may use the inequality (3.18). Because of the inequalities (3.16) 
and especially (3.18), we find it sufficient to estimate p(e) in order to estimate 
the error IHu - u011- 

Let #p() have the Fourier series 

iP(6) = 2 (An cos no + Bn sin no). 
n=o 

Then the inequality 92(p) < 1 implies 
00 00 

(4.7) 2IrA2 + ir E (A B2) +? E n2(A2 + B2) <1. 
n= 1 n=1 

For Kep we have the Fourier series 
00 

nn Kip(0) r (An cos no + Bn sin no). 
n=O 

Therefore, the inequality IIKepjj < e implies 

(4.8) 2irA 0 ?fE r2 n (A + B) 62. 
n1 

Let e be very small. Let s = s(e) be the positive number (not necessarily 

an integer) for which 
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(4.9) 1 + S2 = r2se-2. 

If 62 < 1, this equation uniquely determines s(e) as a function of e that increases 
to infinity as e decreases to zero. 

In terms of s(e), we bound Iju 11 as follows. 
00 

llull2 = 2A (A2 + B 

(4.10) n= 1 

=2irA20 ?r Z (An+B~2)+r Z (A2 +Bn). 
n?S n>S 

For n < s, we have r2n > r2s. Therefore, 

2TrA 2 + f n (A2 + B2) ? [27TAO r +(A ? Bn)]r 

S E2r-2s 

by (4.8). Similarly, for n > s we have 1 + n2 > 1 + s2. Therefore, 

7T1 (A2 + B2) < 1T 2: (I + n2) (A2 + B 2) * 1+ s2) ) 

(4.12) n >S n >S 

(1 + S2)1 

by (4.7). Formulas (4.10)-(4.12) now yield 

llull2 < 62r- 2s (1 + S2)- 1 

By (4.9), this becomes 

(4.13) Ilull2 < 2(1 + s2)- 1. 

It is now necessary to have the asymptotic behavior of s(e) as e - 0. From 
(4.8) we find 

2s log(1/r)+ log(1 + s2) = 2 log (1/e). 

Therefore, as e > 0, since log(1 + s2) = o(s), 

(4.14) s(e) log - log -I 
c r 

From (4.13) we now find, for sufficiently small e > 0, lull < 2 1/2s- 1(e) and 
hence / 1\ 

(4.15) Ull 11 < C1 (og -) 

if C1 is any constant such that 

(4.1 6) C1 > 21/2 log (1/r). 

Accordingly, 

(4.17) P(e) < Ci :og - 

Next we obtain a lower bound for p(e). Let n(e) be the least integer such that 

1+n2 > r2nc 2. 
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Now define A(e) in terms of n(e) by 

A = [r(1 + n2)]- 1/2 

and define ep(0) = A cos nO. Then 

g2(2(p) ? 7rA2(1 + n2) = 1. 
Moreover, 

IIKpII2 = rA2r2n = (1 n2)- r2n <?e 

Since 92(p) < 1 and IIKipjI < e, we have 

(4.18) P(e) > I1p1I = 7r1/2A 
As e O, we have 

7r1/2A = (1 + n2)-1/2 n- 
l 

(e). 

But n(e) lies between t and t + 1 if t is the solution of 

1 + t2 = 2 tc 2 

The number t(e) has the asymptotic form 

t(e) log Jlog 
I 

as e 0. 

Since t(e) ? n(e) < t(e) + 1, we have n(e) t(e). Now (4.18) implies, for all 
sufficiently small e > 0, 

(4.19) p(e)> Co (og I) 

if CO is any constant such that 

(4.20) CO < log -. 

Summarizing (4.17) and (4.19), we have, as e 0, 

(4.21) CO(log) < p(e) < Ci(og V) 

A numerical example will show how this inequality determines the rate of con- 

vergence. Let r = 1/2. Assume that the unknown solution, uo, satisfies 

92(uo) < 10, I!Kuo - gil < e. 

In this class of solutions, the worst error obtainable by Tikhonov's method is 

(4.22) sup Ilu - u011 = Cua(C/c, a) = 1OU(c/10, a). 

Now (4.5) yields 

(4.23) 1Op(c/10) < 1OU(e/10O a) < co'p(C'/c'), 

where 

' = (1 /I + ?1/X)10 and ' =(1 + 1 ?X)c, 

where X = ao 2/62 = 100a/62. 

By the assumption r= ?2, we may use (4.20) to define 

CO = 0.692 < log (1/r) = log 2. 
Now (4.19) yields 
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p(e) > 0.692 (og'-) 

Now (4.22) and (4.23) imply, as e - 0, 

(4.24) sup Hlu - Uo0l > 6.92 log ) 

This is the lower bound for the rate of convergence; it holds for every value of the 
parameter a. 

The right-hand side of (4.23) gives an upper bound. If we choose a = 2 _w2 
10-2e2, then (4.23) implies 

(4.25) 1Oa(e/l0, a) < (1 + ,/2)lOp(e/1 0). 
According to (4.16), if we choose 

C1 > 2 1/2 log (1/r) = 2 1/2 log 
then as e . 0, 

(4.26) p(C) <C1 (1o8 ). 

It suffices to take C1 = 1; then (4.25) and (4.26) imply the upper bound 

(4.27) sup lu - uo 11 < 24.2 log (10/e). 

5. The Backward Heat Equation. Let L(x, t) satisfy the heat equation 

(5.1) al/at= a2=/aX2 

for 0 <x < 7r and for 0 < t < T. Let t satisfy some boundary conditions, for 
instance: 
(5.2) a'/ax = 0 at x = 0 and x = r. 
Let the initial and final temperature be denoted: 
(5.3) uo(x) = 4(x, 0), go(x) 4(x, T). 

We will apply Tikhonov's method to the ill-posed problem of determining uo(x) 
from a function g(x) that is very near to go(x): 

(5.4) jLgHx) - g0(X)ji < C- 

We suppose M2(uo) < oo, where &2 is some functional of the form (2.3). 
In this example, we are allowing E? to have the general form (2.3), whereas in 

the preceding example we assumed p = 1 for simplicity. Here we will see how the 
order p may affect the rate of convergence in Tikhonov's method. 

If uo(x) has the Fourier series 

(5.5) ~~~~~U0(x) >,~cos nx 
0 

then go(x) has the Fourier series 
0 

(5.6) go(x) yE An ie nT cos nix 

Thus, uo(x) is related to go(x) by an integral equation 
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(5.7) Kuo(x) -fl k(x, y)uo(y)dy = go(x) 

where 

k(x, y) = 1+ 2 ? e- n cos nx cos ny. 
7f n=1 

In Tikhonov's method, one chooses some positive value for the parameter a, and 
one chooses u to minimize 

(5.8) IlKu -gl2 + ag22(u). 

According to Section 3, if a(e, a) is the modulus of convergence, and if uo and 
g satisfy 

92(uo) < co and I[Kuo - gel < e, 

then 

(5.9) sup liu - uo 11 = COU(e/co, a). 

As usual, the modulus of convergence, a(e, a), is bounded in terms of the modulus 
of regularization, p(e). 

Let the functions ai(x), which are used to define Q2, satisfy the inequalities 

(5.10) 0 < mi < ai(X) < Mi (i = 1, .., p). 

To obtain an upper bound for p(e), we will use the minima, min. Let ep(x) have the 

Fourier series 

p(x)= 2 Cn cos nx (O x < Tr) 
n= 0 

and let 2(ep) < 1. Then 

(5.11) f [m so2 + ? 

Let us now define the polynomial 

(5.12) F(z)=mO +m1z +-- +mpz p 

Then (5.1 1) gives 
00 

(5.13) 0 ? 
2 nF ) ? 1. 

If we suppose also that IIKepjj < e, then 
00 

(5.14) irco ?- e- 2n2Tc2 <62 
2 n= n = i 

Let s = s(e) be the positive number satisfying 

(5.15) F(S2) = e-2s2T&-2 

The number s(e) is uniquely defined if m C2 < 1. As e decreases to zero, the 
function s(e) increases to infinity. We now write 
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11112 = IrC2 + _r c2 + ?E ZC2 

0 n 2n 

M(arco +-1 ?Ze-2n2TC2). e2s2T 

+(2 F(n2 C2 _ (F(S2 ))-,. 
2n>s/ 

The inequalities (5.13)-(5.15) now imply 

(5.16) 11p112 < 62e2s2T + (F(s2))-1 = 2(F(S2)) 1- 

We now need the asymptotic behavior of s(e). From Eq. (5.15), we find 

(5.17) log F(s2) + 2s2 T= 2 log - . 
Therefore, as e > 0, 

2 ~~~~~~~~1 
s2T(1 +o(l))=log- 

which gives the asymptotic form 

(5.18) 12 
( log - as e >0. 

Therefore, as e > 0, 

(5.19) F(s2) m ps inm0 log P P\T C 

The inequality (5.16) now implies / 
(5 .20) 11p11 j (1 + o(l))2 1/2m-1/2TP/2 (1og I) 

where o(1) generically denotes a function of e tending to zero as e > 0. Since 
this inequality holds for all up satisfying Q2(p) < 1 and IIKepII < e, the right-hand 
side of (5.20) is an upper bound for the modulus of regularization, p(e). 

To obtain a lower bound for p(e), let 

G(z) = MO + M1z + + MpzP. 

Let t be the real number solving G(t2) = e-2t2 TC 2. The function t = t(e) in- 
creases to infinity as e - 0. Let n = n(e) be the integer satisfying t(e) < n(e) < 
1 + t(e). Now define the function 

ep(x) = A cos nx = A(e) cos n(e)x, 
where 

A(C) = G(n 2(c)) 

Then 

2(p) < AA 2 G(n2) = 1 
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Moreover, since n(e) > t(e), 

IIKsoII2 = 77A2e-2n2T = (G(n2))- &e-2n2T 

2 

< (G(t2))- l e -2,2 T = c2 

Now, since 92(?p) < 1 and IIKoIll < 1, we have 

p(e) > II(PII =~ A2) 
(2) 

Therefore, if n = n(e), 

(5.21) p(e) > (G(n2))-1/2. 

To obtain the asymptotic form of t(e), we proceed just as we did for s(e), only 

replacing F by G. We then find, as e 0, 

t T log e e G(t2) Mn( loge- T e 
Since n(e) t(e), we have G(n2) G(t2). Now the inequality (5.21) yields 

(5.22) p(e) >(1 + o(l))A-1/2TP/2 (log )P/2 

This lower bound is of the same asymptotic order as the upper bound implied by 
(5.20): 

(5.23) p(e) < (1 + o(1))21/2m- 1/2TP/21(o1g-p/2 

To estimate the rate of convergence, we again use the inequality 

(5.24) Xp(c/@) < <(c/@, a) ? cop(c'/, a) 
where, if X = aco2/C2 

' /(1? + )e and o' = (1 + 1+1X). 

The last few formulas show that the error tends to zero like (log (1/c))YP/2, 

where p is the order of the highest derivative appearing in the functional Q22(u). 

6. Arbitrarily Slow Convergence. In view of the slow convergence of Tikhonov's 
method for harmonic continuation and for the backward heat equation, one may in- 
quire just how slow the convergence may be in other applications. The answer is- 
arbitrarily slow. 

Given any function po(e) tending monotonely to zero as e 0, and given 
the functional Q?2(u) of the form (2.3), we will show how to construct an integral- 
operator K such that 

(6 .1) 11KPn 11 < en W Q~Pn) <1 
and yet 

(6.2) IoIIn 11 P0(n) 

for a sequence of functions sPn(x) and for a sequence of numbers en tending to zero. 
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We define 
(6.3) sno(x) = An sin nx (O < x < ir) 

where An will be chosen to make 

(6.4) 2(son) < 1 and NIon 11 >-- PO(n) 
If ao(x) >mmo > 0, then 

&2 (U) > MO 11u 112. 

Therefore, E22(An sin nx) > mOA2rr/2 while I1A 1oII2 = A2ir/2. To achieve (6.4), we 
require that An satisfy 

(6.5) (moI) An 1 and (2) A > P(en) 

This can be achieved if and only if PO(cn) satisfies 

(6.6) p (e) <m;1/2. 

Let {en } be any sequence of positive numbers tending monotonely to zero such that 
(6.6) is satisfied for n = 1 (and hence for n > 1). Now choose 

=1 ?1 (no ir)1/2] An = 2 (2 Po(en) + (MO '2)I 

Then (6.5) and hence (6.4) are satisfied. 
We now define the kernel 

2 
0 

(6.7) k(x, y)= - E Xt sin nx sin ny 
n = 1 

where Xn > 0 and 2;Xn < ??. We will now choose the numbers Xn to make 

11Kfon 1l = |Jok(x, Aon WyY '|<en 

We have 

Kepn = K(An sin nx) = XnAn sin nx, 

IIKson II = Xn O/2)1 
/2 

An. 

Therefore, IIKson II en cif the Xn are chosen to satisfy An < (rr/2)- 1/2A- 'en. This 
completes the construction. 

If Tikhonov's method, using the functional Q, is applied to the integral equation 

Kuo = go, we know from Section 3 that, for every choice of the parameter a, the 
modulus of convergence is bounded below by the modulus of regularization: 

U(C, a) > P(6). 
Now the inequalities (6.1) and (6.2) imply 

(6.8) u(en, Q) p(n) > PO(Cn) (n = 1, 2, ..). 

Thus, convergence in Tikhonov's method can be arbitrarily slow. In the next 
section we will consider an application in which the convergence is fairly fast. 
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7. Numerical Differentiation. Jane Cullum [3] has considered the application of 
Tikhonov's method to numerical differentiation. She supposes that 

(7.1) Kuo(x) fUo()dy =go(x) (O ax < 1). 

She also supposes that g(1) = 0. She then states the problem of minimizing 

(7.2) IlKu1 -gil2 + (f ldx) +?a22(ul) 

where 

(7.3) Q2(n) = fo (<2 + <'2)dX = 11fI12 + 110112. 

Assuming that the unknown function uo(x) has a bounded derivative, she proves that 
there exists a constant Q such that 

(7.4) Hlu - uo1< Qa'1/4. 

Because of the inclusion of the term (ful dx)2 in (7.2), this minimization problem 
is different from that of finding u minimizing 

(7.5) IlKu - gil2 + a&72 (U). 

Let us here consider the problem of minimizing (7.5), where we will require 

(7.6) fu dx = 0 and &(u) < oo 

and let us here suppose 

(7.7) jig - Kuo 11 = Ig - go 11 < e. 

We wish to estimate the modulus of convergence 

(7.8) o(e, a) = sup HU - U e II. 9 ?uo 1; IIg -go0I11 

If, instead of &(uo) < 1, we assume &(uo) < A, then (7.8) implies 

(7.9) coa(e/c, a) = sup Ilu - Uo 11. 

Here the modulus of regularization is easy to find. Assuming 

2(so) < 1, J[KpIIe < , and f x = O, 

we find d 

(7.10) 

since K<(x)= 0 at x = l. Therefore, 

(7.11) 11soII2 < 114p'II IlKsII < 2(eP) IlKpII < E. 

Therefore, the modulus of regularization satisfies 

(7.12) p2(e)<E. 

It would be easy to obtain a lower bound for p(e) using test-functions of the 

form <o = A cos nrrx. But we do not need a lower bound for p if we only wish to 

obtain an upper bound for a. We now use (3.16) and (7.12) to obtain 



TIKHONOV'S METHOD FOR ILL-POSED PROBLEMS 905 

coa(eko, a) ?< X'p(e'/W') < (co 'e6)1/2 

where, if X = aow2/e2 

A'= coVF A and e' = eVF/ 

Therefore, 

(7.13) <,u(e/&, a) ? [(1 + 1/X) (1 + X)wej 1/2 

If X = 1, i.e. if a = (e/X)2, the right-hand side of (7.13) takes its least value. 

Then (7.13) and (7.9) imply 

(7. 14) I ( Su Hu - uo 11 < 2(we)1/2 = 2wa" /4 

Here we obtain an upper bound of the order al/4, as does Cullum. 

Under stronger assumptions, we can obtain a stronger inequality by the elementary 

method of centered differences. Let us suppose again uo(x) = g'0(x) and suppose that 

we are given data g(x) such that 

(7.15) Ig(x) - go(x)I < e (a < x < b). 

Moreover, suppose we have a bound for the second derivative: 

lull (x)I < M (a < x < b). 

(This makes the comparison to Cullum's result unfair, since she makes no assumption 

that uo(x) has a second derivative.) We then use the estimate 

(7.16) u(x) = (2h)- 1 (g(x + h) - g(x - h)) 

with the increment 

(7.17) h = (3e/)'1/3 

We now assert 

(7.18) lu(x) - u0(x)I < 1h32/3Ml/3e2/3 

This is better than the order e1/2 = a1/4 appearing in (7.14). 

To prove the assertion (7.18), let g(x) = g0(x) + f(x). Then 

u(x) - uo(x) = (2h)- 1 [go(x + h) - g0(x - h)] - uo(x) 

+ (2h) 1 f(x + h) - f(x - h)] . 

By (7.15), we have If I = Ig -goI < e. And since u0 =g'o, Taylor's theorem implies 

(2h)-' [go(x + h) - go(x - h)] = u6(x) ? 6 h2u'o(x ? Oh) 

where - 1 < 0 < 1. Therefore, since lu'ol AM, 

lu(x) - uo(x)l < - h2M + h- le. 6 

As a function of h, this is minimized by the value given in (7.17); and the minimum 

value given in (7.18) results. 
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8. Summary and Remarks. We have shown that convergence in Tikhonov's 
method is determined by the modulus of regularization, which measures the degree to 
which boundedness of the functional Q(2p) permits the inversion of the operator K 
applied to ,p. For harmonic continuation and for the backward heat equation, we have 
found that the error of approximation tends to zero like a power of 1/(log (1/e)) if e 
is the norm of the data-error (or equivalent rounding error). For numerical differentiation, 
we have obtained a comparison of Tikhonov's method with the elementary method of 
centered differences. 

Tikhonov's method states the problem of minimizing 

(8.1) IIKU - g12 + a&22 (U) 

The discussion in Section 3 shows that there is not necessarily any advantage in mini- 
mizing this functional if, by any easier means, one can obtain a function ul satisfying 
inequalities 

(8.2) IIu - g11 ? 

(8.3) (u ) < (A 

where e1 is small and where c is not too large. For then, if 

(8.4) II&uO - gil < e and &2(uo) < co 
we can deduce IIK(ul - u0)lj ? ce + e and 2(ul - uo) < w + X and consequently 

(u1 - Uo) < (co + co1)P((e + I1)/( + co1)) 

where ,u(ul - uo) is some norm of the error, and where p is the related modulus of 
regularization. 

The Tikhonov functional (8.1) is, of course, the Lagrange functional for the 
minimization of Q22(u) if a value is prescribed for IIKu -gil2. Indeed, if u = u1 

minimizes the functional (8.1), and if 

IIKu1 - gIl =e1 and &2(u1) = co 

then the only function u2 satisfying both inequalities 

(8.5) IIKu2 - gil < el and &(u2) < Wl 
is u2 = U1 because the inequalities (8.5) imply that u2 also minimizes the functional 
(8.1), and now the uniqueness of the minimizing solution (proved in Section 2) implies 
U2 =U1 

The applications in Sections 4 and 5 show that one must not necessarily expect 
rapid convergence from Tikhonov's method. In Section 6 it is proved that arbitrarily 
slow convergence is possible. 

If one knows only that the unknown solution, U0, satisfies (8.4), a good choice 
for the parameter of is 

of = (e/X)2. 



TIKHONOV'S METHOD FOR ILL-POSED PROBLEMS 907 

Then the upper and lower bounds (3.17) for the modulus of convergence are nearly 
equal; the lower bound is independent of ar. 
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