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Estimates Near Plane Portions of the Boundary 
for Discrete Elliptic Boundary Problems 

By C. G. L. Johnson 

Abstract. We consider an elliptic difference operator together with certain boundary 
difference operators near a plane portion of the boundary parallel to some coordinate 
direction. We prove discrete analogues of known estimates in Lp and Schauder norms 
for elliptic boundary problems. The discrete estimates are then used to prove results 
about convergence near plane portions of the boundary of difference quotients of so- 
lutions uh of a discrete elliptic problem to the derivatives of the solution u of the 
corresponding continuous problem, when it is known that uh converges to u in the 
maximum norm or in a discrete L norm as h tends to zero. 

0. Introduction. Denote the coordinates in Ed+l by x = (x0, x')= 

(x0, X1, , ), let a = (a0, ) = -(a1 * *, ad) be multi-indices (a1 non- 
negative integers), lal - 2;a, Ia'I= Ed a1, and set D' = (a/axo)a0 ld 

and D' = (a/ax)1 . .*- (a/axd)?d. 

Let Q be a bounded domain in the half space Had+ = {x: X0 > 0} such that 
ai2_ n {xo- o} contains an open set F in the plane x0 = 0. Consider the boundary 
problem 

Au=f in Q2, 
(0.1) 

Bku=g9 on r for k= 1, ,m, 

where A = Zloel2m acuD? and Bk = z loll m bk f, D' are differential operators 
with constant coefficients and no lower order terms. If (0.1) is elliptic, i.e., if A is 
properly elliptic and the Bk satisfy a certain complementary condition, then one can 
prove the so-called "Schauder estimates up to the boundary" (see Agmon-Douglis- 
Nirenberg [ 1] ): 

PROPOSITION 0.1. For any domain Q' CC Q and any noninteger s > 
max(2m, ml, . .. , mm), one has 
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(0.2) llulllsIQ A C(s, 52) IIIAUII?s-2mS +E IIIBkU(O, )I'sI-mkP + ?IU112 ( ~~~k= 1k 

Here, we write &2' CC &2 to denote E?' C 2 and n' C &2 U F. Furthermore, 

11 II6 denotes the maximum norm over Q2, and III - Illsn and III - ls,-F, for s 

a positive noninteger, are Holder norms as usual given by 

ID'u(x) - Dclu(y)f 
IIIu IIIS} = Ilull, ? + max sup S, 92 [],E2 

1U=[sl x,YC-9;x=/y Ix y Y I- Is] 

where IlullI s1X maximi C.1<51 IIDctuIIE, and analogously for III-Illsr 
Now let h be a positive parameter and introduce the set of mesh points Ed+ 1 

={x = (zoh, * - *, Zdh): z1 integers}. We denote by &2h the mesh points in Q2. 

Consider a consistent difference approximation of (0.1) in 2' CC Q, 

Ahu=f on {x > mh}f l2h' 

B*,hU gk on {X = o}l n 2 for k = 1, ,m, 

where Ah and Bk,h are difference operators of the form 

Ahu(x) = h-2m C U(X + Ph), 

Bk hu(x) -h h kdk u(x ?+ ah), 

with constant coefficients and a finite number of terms. 

The purpose of this paper is to prove discrete analogues of the Schauder esti- 

mates (0.2) and similar estimates in discrete LP norms (1 < p < 00) for the problem 

(0.3) under the assumption that Ah and the Bk h satisfy conditions which are 

analogous to the conditions in the continuous case. Such estimates can then be used 

to prove results about convergence up to the plane boundary F of difference quo- 

tients of solutions uh of (0.3) to derivatives of solutions u of (0.1) when it is known 

that uh converges to u in the maximum norm or in a discrete LP norm as h 

tends to 0. 
Note that we assume that the number of boundary conditions in the difference 

approximation (0.3) is exactly m. This means that we do not consider very accurate 

difference operators Ah involving many mesh points and requiring extra boundary 

conditions. Discrete Schauder and LP estimates for such more general problems can 

be found in [8] from which the material of this paper is taken. 
The basic work is concerned with the discrete problem 

(0.4) Ah u =f on {x0 > mh}, 

Bksh U =k on {x0 = 0} for k = 1 - - - m, 
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in the half space Hh - {X a Ed+ I: X > 0} in the case h = 1. In Section 1, we 
give a definition of an elliptic discrete boundary problem in a half space which is 

modelled after the corresponding definition in the continuous case. If (0.4) is elliptic 

in this sense and u is a solution of (0.4) such that u(x) is sufficiently small for IxI 

large, then, as shown in Section 3 one can construct a representation formula expres- 

sing difference quotients a&u of u for lal > 2m in terms of Ahu and 

Bkhu(O, ) = gk, k = 1, * , m. Let us describe this construction in some detail 

and, for simplicity, let us then assume that Ah u 0. The general case is handled by 
using a discrete fundamental solution corresponding to Ah. We introduce a discrete 
Fourier transform defined by 

Fv(t ) = V(t')= E v(x')e i(Ex) #' eEd 

X'E-Edl x 

where 2'C-Ed Iv(x')I <oo. For w E L1(Qd), where Qd - { E d: Iyj < a}, we 
x=1 

also introduce an inverse Fourier transform, 

F 1w = w'(x') = (21T)-d fd w(Q')ei'('x) dt', x E Er. 

We recall that, if w E L1(Qd), then (wvG)' can be written as a convolution 

(w ) x)=w * V(X ) = E wx - y )v(y ). 

y'Ed 

Taking discrete Fourier transforms in (0.4) (with h = 1 and f 0) with respect to 

x' we obtain, for fixed $', a boundary problem for certain ordinary difference oper- 

ators. Under our ellipticity assumptions, this problem has a unique bounded solution 

given by 

m 
2(x0, t) )= i Mk(xo, t')gk(0'), 

k=1 

where the Mk are certain functions given in Section 2. In principle, we then obtain 

the desired representation by inverse Fourier transformation. For technical reasons, we 

shall use a representation of the form 

(0.5) acu= E E F-1[M~jgI = m * 
k=1i k=1 j 

where the M' are certain functions constructed starting with the Mk and the 
are certain difference quotients of the gk. We note that the M,'1 act as Fourier 
multipliers. 

In Section 4, we prove some basic estimates for convolution transforms of the 
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form (0.5) taking functions defined on Eld into functions defined on H1. We then 
use some discrete Besov spaces equipped with seminorms analogous to the seminorms 
for the homogeneous Besov spaces given in Peetre [11 ] . In Section 2, we prove estimates 
for the Mk which allow us to apply the results of Section 4 to the representation (0.5) 
to prove discrete Schauder and Lp estimates in the case of a half space. 

The discrete Schauder estimates are proved in Section 5 where we also give complete 
analogues of the continuous estimates (0.2), the proofs of which are based on a weighted 
norm technique. The discrete Lp estimates are given in Section 6. Finally, in Section 7, 
we prove results about convergence of difference quotients and we also give some examples. 

The results of this paper are related to earlier results by Bondesson [3] and Thom~e 
and Westergren [15] , who obtained interior discrete Lp estimates, and to results by 
Thome'e [14] who proved interior Schauder estimates. L2 estimates near plane portions 
of the boundary for certain difference operators approximating second order differential 
operators under Dirichlet boundary conditions were derived by Thome'e [14] , and 
Grigorieff [6] proved similar estimates for certain difference operators under general 
boundary conditions. For some results in the case when the boundary plane is not parallel 
to the grid, see Schaeffer [12] . 

Let us also remark that the results can be extended to the case of smoothly varying 
coefficients and operators with lower order terms. 

I want to thank Professor Vidar Thome'e for suggesting the problem treated in this 
paper and for his encouragement and criticism during its preparation. I also want to thank 
Professor Jdran Friberg for critically reading an early version of the manuscript. 

1. The Discrete Boundary Problem. Preliminaries. We recall the definition of an 
elliptic boundary problem in the special case of a half space and differential operators 
with constant coefficients and no lower order terms (cf. [1], [2], [9] for example). 

Definition 1.1. The boundary problem 

Au= a DauJ=f inHd~l, 
(1.1) Ial=2m 

Bku= U E bk, aDa =* on {xo 0} for k= 1,* ,m, 

is said to be elliptic if the following conditions are satisfied: 
(a) ellipticity of A: 

A(t)= E2 aa TO for Q( , ,d)Ed+I\f}. 
Ial=2m 

Here U0 = to... ***d 

(b) root condition: The equation As (r) = 
Y-IU=2m aj(i$'),r TO = 0 has m 

roots T',, * Tm with negative real part (counted with multiplicity) for #'= 

Q1' * 
*'d) CEd\{O}. Here 1. = . . Ad 
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(c) complementary condition: The polynomials 

Bk*'t(Tr) = A, bk a(iQ') O, k = 1,* , 

I 0tImk 

are linearly independent modulo A- (,r) = HV 1 (r - Tit,) for C' EEd\ {O}, i.e., if 

B t(,r)= Bk 0(r) (mod A- (r)), 

mr- 
B r= E s( 

s=O 

then 

det(BkS(')) / 0 for #' E Ed\ {O}. 

Remark 1.1. A differential operator A = II aI=2m au Du is said to be properly 
elliptic if A satisfies conditions (a) and (b). 

We now turn to the formulation of a discrete analogue of the boundary problem 
(1.1). For complex-valued mesh functions we introduce the translation operator Th' 
defined by Th'u(x) = u(x + vh), where v = (vo, v') = (O, V **,d)) IV in- 
tegers, and the forward difference quotients, 

ahIjU = h- (Thl - I)u for j=O., ,d, 

where I is the identity operator and e1 the unit vector in the direction of x;. We 
also set, for an arbitrary multi-index a, 

auu = au?o * *- aah d and ah u =a ah *.*- aad u. h hO h~and hu = h, d 

In the sequel, we frequently omit the index h and write Tv, a' and a' instead of 

Th, a' and a. 
We shall consider difference operators of the form 

(1.2) Ph = h q- n , q, Tv, n a positive integer, 
v 

with constant coefficients and a finite number of terms. Such a difference operator 

Ph is said to be consistent with the differential operator P if for all u E C-(Ed+1) 
and xeEd+1 

Phu(x) = PU(x) + o(l) as h -O. 

The following proposition gives an alternative way of expressing the consistency 
of Ph with P. 

PROPOSITION 1.1 (CF. [15]). The difference operator Ph = h n2v qv Th' is con- 
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sistent with the differential operator P = Ia ln aa. D' if and only if there are con- 
stants a' such that 

Ph- a Th' 3"' 
lai=n 

where I, a V =aa for laI = n. 

Consider now a discrete analogue of the boundary problem (1.1) of the form 

(1.3) Ahu = f on {x0 > mh} n Hh, 

Bkhu = g* on {xo = o} n Hh for k = 1,* ,m, 

where Ah = h-2m 2 c, TTh' and Bkh = h *kEvdk*, Th, k= 1, ,m, are 
difference operators of the form (1.2) consistent with A and Bk, k = 1, - - *, m, 
respectively. We shall assume that cV = 0 if v0 < - m and dk*v = if Vk < 0, 

so that no points with x0 < 0 enters in the formulation of (1.3). 
According to Proposition 1.1, there are constants av and bM such that 

Ah= Z a Th a ha 
Ic-f=2m v 

Bkh = Z b Th~a' for k= 1,* ,m, 
I ol=mk v) 

and 

E av =a~e for lal = 2m, 
v 

Mb C =b~f for lIl=m*,k=1,---,m. 

Using the notation 

aa! (Q) =(eit 1)?t .. (e Id_ )ad, (,V ) j = Vi, 

we introduce the following functions of the complex variable r: 

a, (r) = ? c1,e'~ >(1 ? 
p 

= EI Za ei Q ,v'(1 ?+ 7)Oaa'Q(')TaO, 
IoI=2m v 

bk*{r) = E dk, vei( ,v' )(I + Tr)0 

= Z ZbU ei'(t',v'>( + T)vOa (t') T 0 for k = 1,***, m. 
I0l=mk V 

Further, we introduce the symbol of the difference operator Ah, 
d 

a(Q) = cve'("t,v where (Q, v) = Y 
V f=~~~0 
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We now give our definition of an elliptic discrete boundary problem in a half 
space. Here, En = En\E E for n = d, d + . 

Definition 1.2. The discrete boundary problem (1.3) is said to be elliptic if the 
following conditions are satisfied: 

(a') ellipticity of Ah: a(Q) *O for eEd+l. 

(b') root condition: The equation (1 + r)ma (,r) = 0 has exactly m roots 
t , r', such that II + r I < I for ' E Ed. 

(c') complementary condition: The polynomials bk,'Q(T), k = 1, * , m, are 
linearly independent modulo ad' (r) = IT= 1 (r - ,r) for $' E Ed, i.e., if 

rn-i 

be T be r ) (mod a- (,r)), bI , (,r) = E b r~')r, 
s= 0 

then det(bkS(Q')) # 0 for d' E Ed. 

Remark 1.2. Using only the assumption about ellipticity of Ah, we obtain that 
the number of roots of the equation (1 + r)ma, (T) = 0 in the disc {I1 + r I < 1} 
is constant for $' E Ed. This holds because, by the ellipticity, there are no roots with 

11 + TI = 1 for $' E Ed. Assume now that the coefficients cV of Ah satisfy the 

following condition: 

(1.5) cl = 0 if IV0I >m. 

Then there are at most 2m roots of the equation (1 + r)ma (,r) = 0. Since Ah is 

consistent with the properly elliptic differential operator A of order 2m, there are 
(cf. the proof of (ii) in Lemma 3.2) m roots of the equation (1 + T)mat'(T) = 0 in 
the half plane {Re r > O} and m roots in the disc {I1 + TI < 1} if It'I is small. 
It follows that there are exactly m roots in {I1 + TI < 1} if I 'I is small. Thus, 
if (1.5) is valid, then the root condition is a consequence of the ellipticity of Ah and 

the consistency of Ah with the properly elliptic operator A. 
We assume that the continuous problem (1.1) and the corresponding discrete 

problem (1.3) are elliptic. 
Let us conclude this section with the introduction of some discrete (semi) norms. 

For Q C Ed+ 1, let Fh(Q) be the set of complex valued mesh functions defined on 

Qh = Q n Eh and, for x, y E Ehl, let [x, y] be the set of mesh points z in 

Ed+ l such that x; < z, < y, for j=O., ,d. For 0 < 0 < 1, 1 < p < oo and 

/ a nonnegative integer, we then define 

IaC'u(x) - a'ju(y)I 
lle h = ) IX Kyl Y1oe, ~ xy 

[xI x + h- XU [y, y + hc ] C &h 4 

IUIpk h = max (hd + 1 ace U(X)I p)>13p 
Iolzj 
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where we sum over x such that [x, x + oh] C Rh with the usual modification if 
p = oo. If j = 0, we shall frequently write HluIpn h instead of iuI Ip ,h and, in 

particular for the maximum norm, Hu II instead of I u I0 0 . We also introduce 

corresponding norms for mesh functions defined on subsets of Eh = - {X' = 

(zih, - , z-h): z1 integers}. We define 1 = {u E Fh(E2): IU"Ipna < ?O}, 

1 ?puro. 

Throughout this paper, C and c will denote large and small positive constants, 
respectively, not necessarily the same at each occurrence. 

2. Estimates for a Boundary Problem for Ordinary Difference Operators. Con- 
sider the elliptic discrete boundary problem (1.3) in the case h = 1 and f 0. 
Formally, taking discrete Fourier transforms with respect to x', we get 

au(x, ') = S ce et ' Tv~e:u(XO t') = 0 for x0 > m 
v 

(2.1) 
bkt4(O vo)=oA d* ei',')TVoeOu(O t')=gkQ') for k= 1, ,m, 

v 

where, for fixed A', at and the bk t are difference operators in the single variable 
x0. We have the following lemma concerning existence and uniqueness of solutions of 
(2.1). Here ek(Q'), k = 0, * - , m, are defined by 

m m 

a(r) =H (T-it)= E Ck( )Tmk, 
j1l k=O 

and 

aj-t(T= E2 k()T k for j = 0, , m. 
k=O 

LEMMA 2.1. For given complex numbers Ck, k = 1, * * , m, and any G' EEd, 
there is a unique bounded solution of the problem 

(2.2) at ow(xo~', for x0>m, 

bkt w(O,)= ck for k = 1, , m. 

The solution is given by 

(2.3) ?(X' t ) 27 Ir 
I- 

qsQ') } a( (1 + -)X Od-r rn-iE a (s,tr)x 

where {g5(s')} m 01 is the solution of the system of equations 

(2.4) mE~ 
1 

'q()c k 
s-i 

and r is any closed rectifiable Jordan curve in the complex plane enclosing the roots 
* , XT~. The functions bkS(Q') are given in Definition 1.2. 
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Proof By the complementary condition (c'), it follows that (2.4) has a unique 

solution. The verification of the fact that (2.3) gives the unique bounded solution of 
(2.2) can be found in [9, p. 143] where the corresponding result for the continuous 
problem was proved. 

Let now M1(x0 h'), / = 1, * * *, m, denote the solution of (2.2) in the special 

case when Ck = 8kj' k = 1, - - *, m. Here Sk; = 0 if k * j and 8kj = 1 if 
k = j. Then I'1 Mk(xo, t )gk(t ) is the unique bounded solution of (2.1) for 

E Ed. We shall need the following estimates for the functions Mk. Here Qd - 

Qd\ {O} and N is the set of natural numbers. 
LEMMA 2.2. For any a = (ao, a'), there are constants C and c such that 

IaODI Mk(xo, #')I < C(1 - c ' j)Xo 1j1?1a0j Il-mk 

(I) for k =1,* ,m, xo E N. 'EQd . 

a OD IMk(XO ' - aODa IMk(yO, ,')I _s CIx0 - y0 I ItI'uo+ l-I I c mk 

(ii) for k = 1, * , mx, Yo eN, ' E Qd. 

To prove this lemma we need estimates for the derivatives of the functions 

ek(Q) and the functions q,(Q') associated with the Mk. We start with the following: 

LEMMA 2.3. (i) ek(0'), k = 1, - - * , m, are analytic functions of #' in Ed, 

(ii) there is a constant 6 and an open disc A with i C {r: Re T < O} such 
that 

i, CZ I A' A for O < I'I<, < 1,* ,m, 

(iii) with a suitable numbering, one has 

' = T', +o(Il'I) as I 'I 0 for j= 1, ,m, 

(iv) ID' ek Q) 1 CO, | k l o' for 'E cQd, k = 1, . . . , m. 

Proof. Let A be an open disc with A C {'r: Re r < O} such that the m roots 

Tt * **, TCm of the equation At (r) = Z191=2m ag(iQ,)I 'T? = 0 belong to A if 

~' I = 1 and let r1 be the boundary of -A. Let us now write 

1' 1-2m(1 + T)ma,'(T) 

= L12 z ad ( 1 ? ~T)vo +mei (t v ) a_ ()i (T) 
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where 

a, = af3(T, a') = ?( )v m e la' 
v 

By consistency, we then have for 1(31 = 2m 

a(T, ag3 as IrI?+ 1'1I- 0, 

so that if 6 is sufficiently small, 

Itvl't T /| Ifl'I) - At,, xl,I(/t'j <At, xlt (11 t 

for r/l I 'Ie , 0< tI'I<6. 

By Rouche's theorem,we may now conclude that equation (1 + r)ma,,(T) = 0 has 
exactly m roots in the disc I 'IA for 0 < I 'I < 6. Since I'I A C {11 + T I < 1} 
for 0 < < 6 if 6 is sufficiently small, these roots must be the roots T * 
at, and (ii) of the lemma is proved. Further, since the T', depend continuously on 

the coefficients ag3 and ad(Tr, >') a,3 as I' -.0, we obtain (iii). 
To prove (iv) note that, by the residue theorem, we have 

E ('Tt I I )' = (27ri)' C , d| 

for O< <'<6, s 1,2,*. 

Since 

IDA [ar'I I'(t/tI <T Icwr'Il?a if Te rj, 
we therefore obtain by routine computations that 

I m 

IDa E ('T 1)5 
< 

C(s, a') I 'S~I for s = 1, 2, 0. , 
< I ~'I <6. j= I 

But ek(0') can be written as a sum of terms of the form 

C H E (i )s ) 

for k = 1, , m, where the ps are natural numbers such that ES*= 1 sps = k. It 

follows that (iv) is valid for 1 I small. 
To prove (i), we argue as follows: For any given small positive number e > 0, 

we may choose a contour r' in the disc { II + TI < 1} enclosing the roots T , 

.. , * Srm for Jt' J> C , Qd. By the residue theorem, we then have for It'I> 
E, t EQd, 

m (dldT) (1 + T)mat,(T) 
5 (.1, )S - (2ri)r T a(T)Sd. 

1= 1 tCa,( 
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This proves that T=L 1 (T, ,)S is analytic in Ed and (i) follows as above. Finally, (i) 

obviously implies that (iv) is valid for 1'I bounded away from 0, #' E Qd, and the 

proof is complete. 
We next have 
LEMMA 2.4. Let {q~j(Q')} =} be the solution of the system of equations 

m 1 ~ S= 

(2.5) Z b = 6kj' k = 1, * ,m 
s=0 

Then there is a constant C such that 

(2.6) IDa qs(t)l) ? Clflsm i for j = 1, ... , m, s 0, *- - m - 1, 'Qd 

Proof. By the division algorithm we obtain that if 
rn-i 

= E r 4( Q)r (mod aR,(T)), 
j=0 

then each rkI(Q') is a sum of terms of the form ClIm 1 e5(')Ps, where 

s=1 s k - I. Using this fact and Lemma 2.3 (iv) for each term in the sum 

bk E(T) = E bv*, (I + r)vOeiQ',V')ao'(,)TOr 
lod=mk V 

it follows that 

IDce' b~(t)J< C.,J'l * I I1' 

(2.7) for k=l,** ,m,S=O,*,m ,EQd. 

To estimate the modulus of det(bkS(0')) from below, we recall the complemen- 

tary condition (c) in the continuous case. The functions Bks(Q') given there are 

homogeneous of degree mk - s and we thus have for some positive constant c that 

(2.8) Idet(Bks(Q'))I >'c I' Hfor #' E Ed 

where H = I'm= 1 m* - (m). 

Using the consistency of the Bk h with the Bk and Lemma 2.3(iii), we may 

conclude that 

bksQ()=Bks ()?o(It'hmk S) as It-O. 

It then follows from (2.8) that there are positive constants c and 6 such that 

(2.9) Idet(bks (t')) I > c I 'l H 

for 0 < I < K 6. By the complementary condition (c'), it is clear that (2.9) holds, 

possibly with a smaller constant c, also for t' E Qd, I 1> 6. 

Solving the system of equations (2.5) with Cramer's rule, we finally obtain (2.6) 

by combination of (2.7) and (2.9). 
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We now can give: 
Proof of Lemma 2.2. Let A' be a disc such that A C A' C i\' C {Re T < 0}, where 

A is the disc given in Lemma 2.3. Let F' be the boundary of A', pick 6 > 0 such 
that I '11'C {II+rI<I} if 0<It'I<26 and take r= It'Ir in(2.3). ByLem- 
ma 2.3, we then have for 0 < I < 6, T E 'I r', x0 G N, 

IDAa7t'(T)I ?QI2'I'-1 1 for j=0, Im 
, at (r) Icl< Ca, 

13,0o(1 -- )X?I = I 7?C(I + T)X? I < (C ~It' 0t(1 - c It' l)Xo. 

Combination of these estimates, Lemma 2.4 and the fact that fl ' Or dl Ti = 0(0 ' I) 

as 0'I > 0 now proves that (i) of Lemma 2.2 is valid for 0 < I 'I < 6. Further, 
choosing a fixed contour in {I1 + TI < 1} enclosing the roots Tr, * , T for 
I~' I bounded away from 0, #' E Qd, we conclude that (i) is valid also for such d'. 

Finally, to see that (ii) is satisfied, it is sufficient to make the additional observa- 
tion that if x0 > Y0 and II + TI < 1, then 

I(1 + T)0 -(1+ )YOI 1(1 + T)XYO - 1 I < I I(X0 -yO). 

This completes the proof. 

3. A Representation Formula. Let Dh denote the set of functions defined on 
Hh with finite support. Assume that u E D1 and that 

(3)A1u=f for x0 >m, 
(3.1) 

Bk,1U =gk for x0 =, k = 1, ** *, m. 

For a given integer S > max(2m, ml, *. , mm), we shall give in this section a 

representation of Pu for la1 = S in terms of f and the gk. 
The following uniqueness lemma will be needed. 
LEMMA 3.1. Assume that w is a solution of (3.1) with f = 0 and gk = 0, 

k=1, ,m, such that IIW(XO 1)I1lE < C for xTEN. Then w=0 in H1. 
Proof. Taking discrete Fourier transforms with respect to x', we obtain from 

Lemma 2.1 that w( , #') = 0 for #' Ed. Since w(xo, -) = ((x0, - )), this 

proves the lemma. 
We shall further need the discrete fundamental solution corresponding to the 

difference operator Ah which was given in [131. We collect some results from [131. 
PROPOSITION 3.1. There is a function G defined on Ed+1 with the following 

properties: 
(a) a?G(x) = (217)-(d+1)f d+ 1 3" )aQ)-1e tx Xd for IaI = 2m, where 

att) = (eit? - 1)0 ?**(etd - I)ad and a(t) is the symbol of Ah. 
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(b) A 1 (G * f) = f if f has finite support. 
(c) For any multi-index a with la I> 2m - (d + 1), there is a constant C 

such that 

(3.2) la`G(x)I < C(I + jXJ)2m-(d+l)-Ic1 for x EEd+l. 

Remark 3.1. Let f have finite support in Ed+ t. Then (3.2) is valid, possibly 
with another constant C, if G is replaced by G * f 

We also need to extend f = A u to a function fo defined on Ed+ 1 in such 
a way that fo has finite support and 

(3.3) Ifolk+ ,Ed+1 < C*d If(meo + ? Ik+,H 

(3.4) Ifo lkpEd+ 1 < C*4p If(meo + ? k*pH 

As in the continuous case (cf. [1]), this can be achieved by setting 

fo(x) = f(x) if x0 > m, 

(3.5) k+I 

fo(x) = E Xjf(j(m - x0) + m, x') if xo <i, j 1 
where the Il are constants such that 

k+ 1 

E (-1j)nX=1 for n=0,1, ,k. 
j=1 

Let us now define v = G * fo and wk=Bk, 1 v(O,) for k =1, - , m. By 
(3.1) and Proposition 3.1, we then have 

A,(u-v)0= for x0 >0, 

Bk,(u- v) = - W for x0=0,k1, ,m., 

By the construction of the functions Mk in Section 2, we thus have formally, 

m 
a-(u - v) = a 

u F-' [Mk(xo, * )(9k - W 0] 
k =1 

for any multi-index a. However, the expression on the right-hand side may be unde- 
fined and, in order to obtain a well defined expression, we do the following: For a 
given integer S > max(2m, m1, . .. , mm) let 2n be the smallest even number not 

less than S. We may then choose constants ckl, multi-indices O'j and T'j with 

(3.6) 10'ji = 2n- m* I'Y~jl = S- Mk, 

and, finally, d-vectors V with integer components, such that 

ACke kj a pkj()a k -(,) = 2(1 - cos W)J = ) 
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Now set 

(3.7) gki = a 
- kj(k - wk), 

(3.8) Mk(j (X, 0 ) -= aa ')a0Mk(xo, )o2nl(Q)'lckIe' kj 

and define for Icd S, 
m m 

hot = i If'rE Mkjgkj Mkj * gkj 
k=l Lj J k=l i 

Note that, by Lemma 2.2, we have 

(3.9) ID'Mk0j(x0' ')I < C(1 1 c 14 Ila'-5-1e I for 'E Qd, X 0EN, 

so that in particular M' (xo, i') is bounded on N x Qd if IaI > S. Further, by 

Remark 3.1, we have 

aYk (Wk(x')) < C(1 + IXI)-d-l-S+2m for ' 
E E. 

Since gk has finite support, it follows that gkj E ll(E1). Thus, h. is well defined if 

Ial = S and it is clear that we have formally, aYu = a'fv + ha. 
LEMMA 3.2 (THE REPRESENTATION LEMMA). If the mesh function u E D1 is a 

solution of the discrete problem (3.1) and S > max(2m, mi, ... ,mm), then 

aou = aov + hoe for la =S. 

Proof If a? +6 = a +, IaI= Il = S, then a MkMj =a 'Mk~tj so that 

a he = OAh_ As in the continuous case, these compatibility relations imply that there 

is a function h defined on H1 such that ah = ha if Iao I = S. 

Let now A'd= (zip * , -d) be any multi-index with 1y'l = S + 2. We shall 

apply Lemma 3.1 on a (u - v - h). It is then easy to prove the full result: 

a`(u - v - h) = 0 for lcl = S. First, a (u - v - h) is a solution of the problem 

(3.1) with f = 0 and gk = 0. By Remark 3.1 and the fact that u has finite support, 

it is further clear that Ila (u - v)(x0, *)1 IE I C for x0 EN. To prove that 

V (u - v - h) = 0, it is thus sufficient to verify that l Vt h(x0, *)I 1E < C for x0 EN. 

Writing y' = a' + f3' with US' 1=2, we have since Mk, = agMa kj kj- 

aY h = EZ Mkj *gkj 
k=l j 

where as noted above, gkj E I1(El). By (3.9) and Proposition 4.3 below, one easily 

verifies that 

11F'(MZI(xo, ))Il1E <C for x EN. 

Since lau1 * U2111,E1 < Iu 1 II1,E1IIU2II1,E1, this completes the verification. 



DISCRETE ELLIPTIC BOUNDARY PROBLEMS 923 

Finally, to prove that a'(u - v - h) = 0 if IaI = ,S we note that, since 

k~tj~xo) C 12(E1) and gkj (E1), we have h(x,* ) C 12(E1), so that, by 

Remark 3.1, a'?(u - v - h)(xo, * ) C 12(E1) for x0 E N. But, by the first part of 

the proof, 3P a(u - v - h) = 0 if ly'I = S + 2 and therefore a'(u - v - h) = 0 

if IaI = S. This completes the proof. 

4. Basic Estimates in Discrete L and Holder Norms. We shall use the following 

well-known partition of unity (cf. [10]). Let J C C-(Ed), (P') > 0 if ?i < 

lt'l < 2, and 4(I') = 0 otherwise. Define A( ') = b(D'y)I,. F(2k#') and 

p(*) = (2kt') for k = 1, 2, , * ' Qd 

00 

p') = 1 -Q $pk(k') for t' E Qd\{0}, fO(0)=0. 
1 

Then SUpp pk= {2~-k-1 < l '?2-k+l} for k>0, 0(g')= 1 if I>'I> 1, 

#'CQd, and Ap() = 0 if 1'1l<%/2. 

We now introduce discrete analogues (see Lbfstrdm [10]) of the seminorms for 

the Besov spaces B P given in Peetre [11]. For s positive, 1 ? p < - and u E 

p(EI ), we define with epk = (P*), 

lul (S (2 -kSllU * PkI 
pE1 )P) if p < 

and 

lul S = sup 2 kllu i* Sk 'E 

We also introduce discrete analogues of the seminorms for the homogeneous Sobolev 

spaces H'. For s > 0, 1 p <oo and u E l1(El), we define 

I S=11 (WS UA , lul hs =p, E~2)ll 
p 

where 

s(g ) = (i (2 sin42k)2 ) 
jz= 1 

The aim of this section is to prove, under pertinent assumptions on a function b 

defined on N x Ed, the following two inequalities: 

A. For a given t with 0 < t < 1, 

lb * ul1, H < CIUI9,E1 for u G ll(E1)- 

B. Foragiven p with 1 <p<oo, 

lb 
*uIpH1 ?Clu 1_ 1 /p for u 

GEP(E1). 

Here, b * u(x) = (b(xo, -)) * u(x'). 

We start with the Holder case. We shall then rely on the following four results. 
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PROPOSITION 4.1. For any i with 0 < i < 1, there are constants C and c 

such that, for u E l), 
CIUle < IuI6,E bCIu 

PROPOSITION 4.2. Let a E L1(Qd) and let i1 and t52 be any numbers such 

that 0 < i1 < i2 < 1. Assume that there is a constant C such that, for u E 

l(El), i = 1, 2, 

ll'a * u 11l < C t5ilul . 
1 

ho0 

Then, if i1 < 6 < 62, there is a constant C1 independent of C such that for u E 

11(E1),1Ia * uE1 < C1C' uI bo. 

The continuous versions of these two results are well known (cf. [10, [11] ). 
The proofs in the discrete cases are essentially the same. 

We say that a function is 27r-periodic if it is periodic with period 27r in each 
variable. 

PROPOSITION 4.3 (CF. L6FSTR6M [10]). Let a be a 27r-periodic function de- 
fined on Ed such that the derivatives D 'a exist for any a' with I a'I < [d/2] + 
1 = d. Then there is a constant C independent of a such that 

Iay il E < CIlIa 1d/2d( max D alla )d2d 
I\ IcI=d / 

where 11auL = (f d Ia(Q')I2dt')/2. 
2 Q 

Let C2, be the set of 27r-periodic functions f defined on Ed such that for 
any a' with Ia' I < d the derivative D f is continuous on Ed. 

COROLLARY OF PROPOSITION 4.3. Let a E Cd and assume that there are 2 ir 

constants Ck and X such that 

Du aQ )I < Ck for A u Eu SUPP 'e Qd, kI 'Id, k N. 

Then there is a constant C such that 

Il Ok a 1A ,E1 II(<ka)y 1,E,< CCk2 for k E N. 

PROPOSITION 4.4 (CF. [11]). Let a C C d' and assume that there is a constant 
C such that for ' EQd, Ia'Il< d, 

ID' at) I <C It cam. 

Then, for any i with 0 < i < 1, there is a constant C1 such that for u E 

11(El), lat *p of nCeullul A, I 

In the proof of inequality A, we shall also refer to the following lemma. 
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LEMMA 4.1. Let b be a function defined on N x Ed such that b(s, ) E 

C~d for s C N. Assume that there is a constant C such that for d' e Qd l'll < 

d, s EN, 

ID' b(s, ') I < C I '1-1 " I min(1 , s Il) 

Then, for any 0 with 0 < i < 1, there is a constant C1 such that for s E N, 
11(b(s, )c 1) E 1C1s 

Proof By routine computations, we obtain for d' E Qd, I a' 1 ? d, s E N, 

lDc (b(s, ')w- 1 ) I < C I #'1l-1 ?" I- min(1, s lI1 l), 

so that by Proposition 4.3, for s, k E N, 

(4.1) 11(b(s, 
_ 
)W-l 

A 
k 1 < C min(2k6,1 s2 -k(l -)). 

For a given s e N, s > O, we now choose J C N such that 2J- 1 < s < 2J. Using 
(4.1) we then obtain 

J-- 1 OC 
lb(s, *- l) <, 

) 
111 ElSEI(b(s, ), ) I E + lI (b(s, )X k)c 

III 
0J 

< C 2k5 +Es2-k(l-t5) C(6)S6 

which proves the lemma. 
We can now prove: 
LEMMA 4.2 (THE H6LDER MULTIPLIER LEMMA). Let b be a function defined 

on N x Ed such that b(xo, * ) C d for x0 C N. Assume that there is a constant 
C such that for I a, I < d, x0, yo C N, #' C Qd 

(i) IDa b(xo ,'r)l< Cwl -I aI, 

(ii) IDa (b(x0, t') - b(y0, t')) l< C lx - y0 I ,$'1- 1. 

Then, for any 6 with 0 < 6 < 1, there is a constant C1 such that for u C 

11(E1), lb * uIH1 < Cl IuItE1. 

Proof. It is sufficient to prove that 

l(b * u)(x, t)ItE1 < CIUlt E for x0 cN, 

and 

I(b * u)(xo, x') - (b * u)(yo, x')I/ Ix0 - y010 < CIUI6E1 

for x0,yo CN, x0 yo, x' ECE1. 

The first inequality follows from Propositions 4.4 and 4.1. In order to prove the 

second inequality, we take any two numbers t01 and 62 such that O < 61 < i < 

62 < 1. We then obtain, for i = 1, 2, xOyo 0N, 
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II(b*u)(xo, -)- (b* u)(yo, ')"E 

- II([b(x0, )- b(y0, )] w- )lj)V.11 

S 11 ([b(xo, * )b(yo, )] w-i ) I1 1,E1 
I (U CJi) IEl 

S C Ix0 - Yol 6liIul Io.3, 
h 00 

by Lemma 4.1. Application of Propositions 4.1 and 4.2 then finishes the proof. 
We now turn to the lp case. The following discrete variant of the Hormander- 

Mikhlin theorem will be needed. 
PROPOSITION 4.5 (BONDESSON [31). Let the function a satisfy the hypothesis 

of Proposition 4.4. Then, for any p with 1 < p < oo, there is a constant C1 such 
that for any u E I), 

ll ay * u lip, El < CC 1 I U IP, El'. 

Our lp result is then the following: 
LEMMA 4.3 (THE Ip MULTIPLIER LEMMA). Let b be a function defined on 

N x Ed such that b(xo, -) C Cd for x0 G N. Assume that there is a constant C 
such that,for a-'lId, x0 GN,I EQd, 

(4.2) IDc b(x0, #')l < C l1'K I min(l'I ,(x0 ? 1)-i). 

Then, for any p with 1 < p < oo, there is a constant C1 such that for u C Ip(El), 

llb *ullp, <1SC1 lul 1-1/p, 
I 

p 

Proof. Since 11(El) is dense in lp(El), it is sufficient to prove the inequality 
for u C 11(E1). We shall use basic interpolation theory arguments and introduce 

(cf. [10], [11]), 

K(xo, U) = inf (11Uo IIpE + x Iul Ihl ) 
u=uO+u1 p 

where u, ul and uo belong to 11(E,). We note that 

(4.3) K(xo, u) = K (X0 L u * Pk), < E K(x0, u * f 
\ k-O k-O 

By the discrete Hormander-Mikhlin theorem (Proposition 4.5) and (4.2), we have, 
if u = u0 + ul, 
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Ib(x0 ) UIIPE1 < iib((x0 ) * UOP E1 ? Ii(b(x0, .)CO(iU1- l) IIPE 

< C[(X0 + 1 11 U0IIPE1 + lul Ihl] 
p 

= C(x0 + if 1(IU~oIpE1 + (X0 ? l)ulu I h) 

so that by taking infimum, p 

(4.4) llb(x0 ) * UllpE1 < C(xO + i) 1K(xo + 1, u) for x0 E(N. 

Below we will use the following simple consequence of (4.4): 

(4.5) Ib(x0, .) *ulp E ? C2'jK(2', u) if 2 - 1 x < 22+ 1 - 2, j eN. 

We will also need the following inequality: 

(4.6) K(2j, u * ) < Cmin(l,2 i)llu * kllpE for j, kCN. 

This follows easily if we observe that by Proposition 4.3, 

Iu * Pklh1 |(lf k I SI k?1l 1) |PE 

1=+1 =+1 

< IIU *PkI1pE 1I(Pk+1CUl) "1 E1 < C2 kIU*pk|ip E 

Here s?_ 0. 
We can now prove the lemma. Using (4.3), (4.5) and (4.6), we find 

v oo v oo ~~~~~~~ ~~~2i 12 It 
llb *ullP = b(x ) * UP, 1 b(xo) * UIIpE1 

xO - 0 j=? X =2j- 1 j0 

00 .00 00 P 

< C E 2'[2-'K(2', u)P < CJ [2-/(1 /1P) E K(2j, u *k) 
j=0 i=O k=O 

< C E z 2-j(1-l/p) min(1, 2j-k)lIu * k lipEl 
j=O k=O 

= C Y[ 2 2- (j- k)(l 1/p) min(l, 2i-k)2-k( 11IP)lu * 1 PklIpEj 

j=Oi k=O 

w C E n We - k) G(k)hv 
j=O0 k-O_ 

with obvious notations. We clearly have 



928 C. G. L. JOHNSON 

IF(j)I<2-IIlmin(l-l/pl/P) for iEZ=El. 

Extending G to Z by setting G(k) = O if k < 0, we therefore obtain 

t E [ I, gP Al/p (I , ( ) ( )l~ 1plp 2: F (j - k) G~~k) < F(j - k) G(k) 
l/ 

\ j=O k=O /Z ki L p 

< 
I 

F 
(j) G(k) )P Cl lul 1-1/p~ 

which completes the proof. 
For later use, we also note the following consequences of Propositions 4.4 and 

4.5. Here G is the discrete fundamental solution of Section 3. 

PROPOSITION 4.6. For any noninteger s > 2m, integer S> 2m and p with 

1 <p < "O, there exists a constant C such that for any mesh function f with finite 

support, 

IG *f I d+l < CIf I d+1' 
s,E1 s-2m,E1 

IG *ff d+l < CIf I d+l- 
S~,E1 S- 2m,p,E 1~ 

5. Discrete Schauder Estimates. By combination of the results of Sections 2, 3 
and 4, we can now prove discrete Schauder estimates. We start with estimates for mesh 

functions with finite support. For 2 C Hd +, we define 2h, m = {X E Qh X0 > 

mh}. 
THEOREM 5.1. For any noninteger s > max(2m, mi, l , mm), there is a 

constant C such that for any mesh function u C Dh, h > O0 

(5.1) I uIsHh 6 C IAhuIs-2mHhH m + E lBkhU(O, )Is-mkEhV 

Proof. Inequality (5.1) is homogeneous in h. We may therefore take h = 1 in the 

proof. Let now u E D1 and let a be a multi-index with I a! = S = [s] . By Lemma 3.2, 

we have the representation aclu = aclv + hol where 

=a 
= ? F, * [aki(Bk,lu(0, )-Bklv(O, ,,)). 

k=1 j 

and ykj 1I = S - Mk. Further, v = G *(A 1u)0, where (A 1u)0 is the extension of A1u, 

x0 > m, obtained by taking k = S - 2m in (3.5). 

By Proposition 4.6 and (3.3), we have 

(5.2) Iv, Ed+l 
< CI(Alu)0I s 2mEd+l <CIAluIs-2m,Hl'm 

so that in particular, 

(5.3) lBk,l V(O, )Is-mkEl < CIAluIs-2m,Hl ma 

Now, by the estimates for the Mk given in Lemma 2.2, one easily verifies that the 

M'1 satisfy the hypothesis of the Holder Multiplier Lemma (Lemma 4.2) and so, using 
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also (5.3) and setting 0 = s - [s], 

m 
Iho 10H < C E E | a (Bk ) Bk,l V(0, )IoE O,1 

k=l 
(5.4) 

< C A1uIs-2m,Hlm + E 1BklU( )Is-mk.El} 

Together, (5.2) and (5.4) prove the theorem. 

Using a weighted norm technique following the arguments in [13] , where interior 

estimates were proved, it is now possible to prove the following discrete analogue of the 

continuous Schauder estimates given in Proposition 1.1. We omit the proof (see [8] for 

details). Here, for j, k nonnegative integers, 0 < 0 < 1, 

IIIUIIlk+O,Eh =maxlul., ? IUlk+O~,E + h = k h h 

where 

luIUjah =max {I a u(x)I 1Ia = I, [x, x + ah] C 2h} 

and Illulllk+ r is defined similarly. 

ThEOREM 5.2. For any noninteger s > max(2m, mi1, * ,mm) and any domain 

2' CC Q. there are positive constants C and ho such that, for any u E Fh(2), h < ho, 

IIIu IIIs 6 C I I IAhu IsI2m I h ? + IIIBi U(O, )IIs- mkslh + IIUIlh} 

6. Discrete Lp Estimates. In this section, we shall prove discrete analogues of some 

Lp estimates (1 <p < oo) for the elliptic boundary problem (1.1) given by {A, B1, 

* , Bm }, the basic form of which is given in the following proposition. Here 

Juljp a = max (J4n IDcu(x)IPdx , 

j nonnegative integer, 1 < p < oo. 

PROPOSITION (CF. [1], [2]). For any integer S with 

S>max(2m, m1 + 1, mm + 1), 

there is a constant C such that, for any infinitely differentiable function u with com- 
pact support in the closed half space {x: x0 > O}, one has 

(6.1) IuI d+1 ?C IAu I d+l + 
E IB~kU(O, )l d 

For two equivalent definitions of the seminorm I l d for s positive, see [1] 

and [2]. In the discrete analogue of (6.1), we will use the discrete Besov seminorms 

1 s introduced in Section 2; for u E P(Eh), O < s < 1, 1 < p < oo and h > O, 

we set, with uh(x') = u(hx') for x' CE1, 
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JUIspE (hd (2-ksh-sIUh * k "PIE 
k=O tkpJ 

and, for s noninteger, s > 1, 

lulSIIE max laceuIs[l~, IU ISp Eh = IcIa=[s] s[ s ,p,En 

Remark. If O < s < 1 and h = 1, then IuIs, PEh = lulbs Also, one can 

show that, for s noninteger, s > 1, there are positive constants c and C such that 

C lu ISWPE1 S IuIbs < s CIul,pE1 for u e lp(E1). 
p 

The following result of trace type will be refered to (cf. [11] ). A proof can be 
found in [8]. 

PROPOSITION 6.1. For any p with 1 < p < oo, there is a constant C such 
that, if IUll pHh< o? and u(x) =O(IXI-d) as IxI oo, then 

(6.2) 1u(O, * )I 1-1 p,p,Eh < C Iu lpHh. 

We can now prove discrete L estimates for functions with finite support. 
THEOREM 6.1. For any integer S > max(2m, m1 + 1, * * , mm + 1) and any 

p with 1 < p < oo, there is a constant C such that, for u C Dh, h > 0, 

(6.3) IUIpUHh S C pIAhUIS-2mpHh ? BkhU(O )IS-mk-lippEh }- 

Proof. Since (6.3) is homogeneous in h, we may take h = 1 in the proof. For 
u C D1 and lcl = S, we have, by Lemma 4.2, the representation (cf. the proof of 
Theorem 5.1) Pu = acPv + hc,. Using Proposition 4.6 and (3.4), we find 

(6.4) lVI. d+1 <?CIAiUS-2m ,p,H 

Consider now hx = k * a'kI~g -wk), where gk = Bu( * ), 9 = 

Bk, 1 v(O,) and lk'yl= S- mk > 1 - Writing aIq = + f3j with lI a 
S - mk-1, I Ij3= 1 and y = a + f3j, we obtain by summation by parts 

Mk * a ki(gk - Wk) = Mkj* a 9k - wk) 

Proposition 6.1 and (6.4) yield 

(6.5) 1e a kwk 11 - 1 lp, p,E 1< C IA 1 U IS- 2m pH 1, 

By Lemma 2.2 (ii) we have 

IDk9i~xo $')I MS < Cfl,(I - ) C IX'I0 fr1 

CCf,B(X0 + )- 1l'-I for x0 CN, #'Qd. 
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Thus, Mt'y satisfies the hypothesis of the 1, Multiplier Lemma and therefore using kj 

also (6.5), 

Ik1i * akl(gk - Wk)IpIH1 ?Ca '(gb - Wk)I1-1/p,p,E1 

(6.6) ? { k IA uI 
(6.6 SC1k s-imk- 1/p,p,E + 1 s-2mpHi m 

The theorem now follows from (6.4) and (6.6). 
Using again a weighted norm technique (cf. [3], [15]), it is possible to prove a 

localized version of Theorem 6.1 similar to Theorem 5.2 for arbitrary mesh functions. 
See [8] for details. 

7. Convergence of Difference Quotients. Consider solutions u of the elliptic 
boundary problem 

Au=f in Q2 
(7.1) 

BkU=g9k on r for k = 1,5 .., m, 

and for &' CC Q solutions uh of the discrete elliptic boundary problem 

Ahuh = Mh f on Qhm 
(7.2) 

Bkwhuh=Gkwh(f 9k) on Qh n {xO =} for k = 1, ,m, 

where Mh is a difference operator consistent with the identity operator and with 
2mmk respect to the examples given below, we assume that Gk h(f, gk) = ?k + Ckh-m kf, 

Ck constant. In this -section, we shall apply the results of Sections 5 and 6 to examine 
convergence in the maximum norm near the plane boundary portion r of difference 
quotients of uh to the derivatives of u when it is known that uh converges to u 
in the maximum norm or in a discrete Lp norm as h tends to zero. Below we 
follow the arguments employed by Thome'e and Westergren [15] in the case of in- 
terior estimates. 

We say that (7.2) approximates (7.1) with order of accuracy N, if for any 
smooth function v and x C Ed +1, 

Ahv(x) -MhAv(x) = O(hN) as h > -O 

(7.3) 

Bkh(x) -Gkh(Av, BkV)(x)--0(hN) as h -0, k 1, ,m. 

It is clear by Taylor's expansion that (7.3) implies that, for any noninteger s > 0, 
Qi" CC &', 

IAhv - MhAvls, Qh <? ChN III V III2m +s+N, Q 

IBk hv - Gkh(Av, BkV)ls F" A ChN IIVIIImk+s+Nn 5 

for h < ho0 where r" = anf n {xo = O}. 

Further, a difference operator Qh is said to approximate the differential oper- 
ator Q with order of accuracy N if, for any smooth function v and any x C 
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Ed+l, one has Qhv(x) - Qv(x) = O(hN) as h . 0 
We have the following convergence results. 
THEOREM 7.1. Let (7.2) approximate (7.1) with order of accuracy N and 

assume that u is a solution of (7.1) and that uh is a solution of (7.2). Let Qh be 
a difference operator approximating the differential operator Q of order n with 
order of accuracy N, and choose i so that Th Qh v(x) is determined by the values 
of v in Hh if x C Hh. If &" CC &?' CC Q we then have the following: 

(i) for any noninteger s > max(2m, n) there exist positive constants ho and 
C independent of u and uh such that for h < ho, 

IhI (QU -QhUh)I In C{hN IIIUIIIS+N ,' + Il U - Uh II1 }, 

(ii) for any p with 1 < p < oo and any integer 

S >max(2m, [(d + 1)/p] + 1 + n), 

there exists positive constants ho and C independent of u and uh such that for 
h ?h0, 

ThP(Qu - Qhuh)II < C C{hN IIU IIS+N ,? + 1 u-Uhl' QP. }. 

Proof Let us prove (i). Since Qh is accurate of order N we have 

IITh(Qu - QhUh)IIn" < 1I Th(Q - Qh)UIIn" + 1I ThAQh(U - Uh)ll" 

< ChN II UII n +N, a + 1 Th Qh (U -h) uh ) I . 

For the last term, we have by Theorem 5.2 and (7.4), for Qi" CC &?(1) CC &?(2) CC 

Q', h < ho0 

ITh Qh(U - Uh) II" < IIIU - UIII (1) 

< C {IIIAh u - MhAuIII s-2m (2) 

m \~~~~ 

+ E IIIB u(O, 
) 
)- Gkwh(Au, BkU)(0, * )III (2) 

? u 
-h h (2) 

k= 1 S- Mk,F]hh 

< {hNlIIIUIII s+N, ' + Iu - uh II'}, 

thus completing the proof of (i). 
The proof of (ii) which we omit is based on a localized version of Theorem 6.1. 

A discrete Sobolev inequality is used to pass from the discrete Lp estimates to the 
maximum norm estimates (cf. [8]). 

We now exemplify the application of Theorem 7.1 on some special difference 
approximations for which estimates of II u - uh II are known as h tends to 0. 
We define aj = h- 1(I - Th-e). 
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Example 7.1. There are many results in the literature (cf. [5] ) for difference 
approximations of the Dirichlet problem in a plane domain Q, 

(7.5) Au = f in Q, u = g on a Q, 

which near r reduce to the following difference approximation: 

AhUh =Mhf for x0D h, 
(7.6) B1,huh uh=g for xO- 

Here, either Ah is the five point operator A(5) = a a ? a a andM=Iso h ~~ ~~~h 00+ la 11 d h=Is 
that (7.6) approximates (7.5) with order of accuracy 2, or Ah is the nine point "box 
operator" 

AM =(1/6) [(5I+ 1T 1 + 
1/2Tel)aOaO 

+ (5I+ 1?2TeO + 1/2T eO) ala,] 

and Mh = I + h2LA5 )/12 so that (7.6) is accurate of order 4. If the boundary aM 
is sufficiently smooth, one can set up the difference equations in the rest of the region 
so that, if Ah Ah- 

IIU - OUhII = 0(h 2) as h > O 

and, if Ah= A II U-uI = 0(h 4) as h >O. 
We now check that (7.6) defines a discrete elliptic boundary problem. First, Ah 

is elliptic in either case and by Remark 1.2 the root condition is then satisfied. Second. 
since here b1 (T)-b (X) 1-, the complementary condition is also satisfied. If 
Q is an arbitrary differential operator and Qh approximates Q with order of 
accuracy 2, we may therefore conclude from Theorem 7.1 that 

1I Thp(Qu - QhUh)IE' = 0(h ) as h . 0, 

if Ah = h5 and make an analogous statement if Ah h 
Example 7.2. Bramble and Hubbard [4] have studied a difference approximation 

of the Neumann problem in a plane domain Q 

(7.7) Au = f in Q, au/an = g on a Q, 

u suitably normalized, which has the following form near F: 

Ah5u -f for x0 > h, 
(7.8) 1 

B hu h(12T( h 
1) +2Th(l~l)-I)uh=g- f for x0=O. 

It was proved in [4] that if the boundary a? is sufficiently smooth the difference 
equations can be set up in the rest of the region so that 
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(7.9) IIU-Uh IIh =0(h2ilog hl) as h-o. 

Now, (7.8) approximates (7.7) with order of accuracy 2. Further, in this case we have 
(1 + T)a 1(T) =T - 2(1 + T)(1 - cos t) and b1 (1(X) = T cos -(1-cos 

so that 
b'1,1(7) b1(t)=Tt1 Cost1 -(1-cost1) 

where 

= -coss1 C(1 ?1)2 + 2(1 -cos 1). 

It is an elementary task to show that b1 o 1) < 0 for C CE1. We may thus apply 
Theorem 7.1 to prove that the rate of convergence in (7.9) holds also for difference 
quotients. 

Example 7.3. Zlamal [17] has proposed a difference approximation of the 
Dirichlet problem for the biharmonic operator 

A2U=f in Q, 

u=g, on a E2, 

au/an =g2 on a ?, 

where E? is a region composed of rectangles. This difference scheme involves mesh 
points outside E? of distance h from a?. For convenience, we therefore assume 
that F is contained in the plane x0 = h. The difference scheme of accuracy 2 con- 
sidered by Zlamal then has the following form near F, 

Ah5)Ah5)Uh for x > 2h, 

B1,huh = T Uh =g1 for x0 = 0, 

B2,huh = 1/2 (a0+ ao) T ?Uh = 92 for x0 = O. 

Zlamal proved that Ilu - uh i - 0(h312) as h ,where u is asmoothex- 

tension of the exact solution u to the region &?h = {x: dist(x, ?) < h}. 
The difference operator A(5)A(5) is elliptic and satisfies the root condition. h h 

Further, an easy computation gives 

1 1 
det(bkS(tl)) = 

t 2 /2 1 + ?2(T7- + T72 

=1/2[(1 +Tt)(1 +T_) +1]. 

Since II + ?rk I < 1 for C E 1, k = 1, 2, the complementary condition is ful- 

filled and Theorem 7.1 applies. 
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