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Estimates Near Plane Portions of the Boundary
for Discrete Elliptic Boundary Problems

By C. G. L. Johnson

Abstract. We consider an elliptic difference operator together with certain boundary
difference operators near a plane portion of the boundary parallel to some coordinate
direction. We prove discrete analogues of known estimates in Lp and Schauder norms
for elliptic boundary problems. The discrete estimates are then used to prove results
about convergence near plane portions of the boundary of difference quotients of so-
lutions u, of a discrete elliptic problem to the derivatives of the solution u of the
corresponding continuous problem, when it is known that u, converges to u in the
maximum norm or in a discrete Lp norm as h tends to zero.

0. Introduction. Denote the coordinates in E4*! by x = x> x') =
(g X1, * 0", xg), let = (ap, &), &' = (o), **,a;) be multi-indices (¢; non-
negative integers), lal= 24 i, lo/1= x4 o;, and set D* = (3/0x4)"0 - -+ (3/0x,)d
and D* = (/dx,)" - -+ (3/0x,)"d.

Let © be a bounded domain in the half space H9*! = {x: x, > 0} such that
Q2 N {xo = 0} contains an open set I' in the plane x, = 0. Consider the boundary
problem

Au=f in 8,
0.1)

Biu=g, onT for k=1, ,m,

where 4 =2, _,, 4,D* and B, =% lal=rm br .o D* are differential operators

with constant coefficients and no lower order terms. If (0.1) is elliptic, i.e., if 4 is
properly elliptic and the B, satisfy a certain complementary condition, then one can
prove the so-called ‘““Schauder estimates up to the boundary” (see Agmon-Douglis-
Nirenberg [1]):

ProposITION 0.1. For any domain Q' CC Q and any noninteger s >
max(2m,m, *++ ,m,), one has
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m
©02) Ml g < CGs, ) JMAully_,, o + 3 WBu(, )l _,, 1+ lullgy-
k=1

Here, we write ' CC Q to denote ' C Q and Q' C Q UT. Furthermore,
I+l denotes the maximum norm over £,and Il - ll. o and M- Il ., for s
a positive noninteger, are Holder norms as usual given by

|D%u(x) — D*u
Mully o = lull ) o+ max  sup ) ol
y ’ lal=[s] x,yEQ ;x#y ]x _ yP“[S]

where lull oy o = max, 4 <5 1D%ullg, and analogously for M-Il .

Now let 4 be a positive parameter and introduce the set of mesh points E9*!
= {x =(zoh, " -+ ,z4h): z; integers}. We denote by £2, the mesh points in Q.
Consider a consistent difference approximation of (0.1) in Q' CC £,

A,u=f on {x,=mh} NQ,,
©0.3) h 0 h

By pu =g, on {xg=01NQ, for k=1,+-+,m,

where 4, and B, , are difference operators of the form
Aju(x) =h=2m Y c,u(x + vh),
v

By yuG) =h""*Y d ulx + vh),
v

with constant coefficients and a finite number of terms.

The purpose of this paper is to prove discrete analogues of the Schauder esti-
mates (0.2) and similar estimates in discrete L, norms (1 <p <) for the problem
(0.3) under the assumption that A, and the By , satisfy conditions which are
analogous to the conditions in the continuous case. Such estimates can then be used
to prove results about convergence up to the plane boundary I' of difference quo-
tients of solutions u, of (0.3) to derivatives of solutions u of (0.1) when it is known
that u, converges to u in the maximum norm or in a discrete L, norm as h
tends to 0.

Note that we assume that the number of boundary conditions in the difference
approximation (0.3) is exactly m. This means that we do not consider very accurate
difference operators A, involving many mesh points and requiring extra boundary
conditions. Discrete Schauder and L, estimates for such more general problems can
be found in [8] from which the material of this paper is taken.

The basic work is concerned with the discrete problem
04) Ayu=f on {x,=mh},
By yu =g, on {xg =0} for k=1,+-,m,
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in the half space H), = {x €ES*': x, >0} in the case 4 = 1. In Section 1, we
give a definition of an elliptic discrete boundary problem in a half space which is
modelled after the corresponding definition in the continuous case. If (0.4) is elliptic
in this sense and u is a solution of (0.4) such that u(x) is sufficiently small for Ix|
large, then, as shown in Section 3 one can construct a representation formula expres-
sing difference quotients 3%u of u for lal>2m in terms of 4,u and

By 2u0,°) =g, k=1, ,m. Let us describe this construction in some detail
and, for simplicity, let us then assume that A,u = 0. The general case is handled by
using a discrete fundamental solution corresponding to A4,. We introduce a discrete
Fourier transform defined by

Fug)=0@E)= X e i, ek,
x'ee?
where I, ¢ pd lux')| < . For we& L (Q%), where Q9 = {£ €E%: 1§| <}, we

also introduce an inverse Fourier transform,

F—1w=€v(x')=(2n)~df dw(g’)e“i"x" dg, x €E8.
Q

We recall that, if we€ L l(Qd), then (wd)" can be written as a convolution

WY )=wxox)= Y wk -yHe).

y'eEii
Taking discrete Fourier transforms in (0.4) (with # =1 and f= 0) with respect to
x' we obtain, for fixed &', a boundary problem for certain ordinary difference oper-
ators. Under our ellipticity assumptions, this problem has a unique bounded solution

given by
U(xg, £)= 2 M(xq, &) 8, E),
k=1

where the M, are certain functions given in Section 2. In principle, we then obtain
the desired representation by inverse Fourier transformation. For technical reasons, we
shall use a representation of the form

(0.5) 0%u = Z Z F—I[M,?j §kj] = Z Z M%j * 8xjo
k k=

=17 1j

where the My, are certain functions constructed starting with the M, and the g;
are certain difference quotients of the g,. We note that the M,‘z‘]- act as Fourier
multipliers.

In Section 4, we prove some basic estimates for convolution transforms of the
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form (0.5) taking functions defined on E f. into functions defined on H,. We then
use some discrete Besov spaces equipped with seminorms analogous to the seminorms
for the homogeneous Besov spaces given in Peetre [11]. In Section 2, we prove estimates
for the M, which allow us to apply the results of Section 4 to the representation (0.5)
to prove discrete Schauder and L, estimates in the case of a half space.

The discrete Schauder estimates are proved in Section 5 where we also give complete
analogues of the continuous estimates (0.2), the proofs of which are based on a weighted
norm technique. The discrete L, estimates are given in Section 6. Finally, in Section 7,
we prove results about convergence of difference quotients and we also give some examples.

The results of this paper are related to earlier results by Bondesson [3] and Thomee
and Westergren [15], who obtained interior discrete L, estimates, and to results by
Thomee [14] who proved interior Schauder estimates. L, estimates near plane portions
of the boundary for certain difference operators approximating second order differential
operators under Dirichlet boundary conditions were derived by Thomée [14], and
Grigorieff [6] proved similar estimates for certain difference operators under general
boundary conditions. For some results in the case when the boundary plane is not parallel
to the grid, see Schaeffer [12].

Let us also remark that the results can be extended to the case of smoothly varying
coefficients and operators with lower order terms.

I want to thank Professor Vidar Thomeée for suggesting the problem treated in this
paper and for his encouragement and criticism during its preparation. I also want to thank
Professor Joran Friberg for critically reading an early version of the manuscript.

1. The Discrete Boundary Problem. Preliminaries. We recall the definition of an
elliptic boundary problem in the special case of a half space and differential operators
with constant coefficients and no lower order terms (cf. [1], [2], [9] for example).

Definition 1.1. The boundary problem

Au= 2 a,D*u=f in HOT!,
=2
(1.1 al=2m
Buu= 2 b, D*=g, on {xg=0} for k=1,++,m,

lal=m k
is said to be elliptic if the following conditions are satisfied:
(a) ellipticity of A:
AB)= 2 aE*#0 for £=(%, -, E) EEHI\ 0.

la|=2m

Here £ =£00++- ézd. ,

(b) root condition: The equation A,/(7) = Z|, =5, 2,GE)* 770 =0 has m
roots Tsl,, -+« ,T{" with negative real part (counted with multiplicity) for & =
(E;,** . Eg) €EEN}. Here £ =51 -+ £2d.
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(c) complementary condition: The polynomials

Bk,E'(T) = Z bk,a(igl)a,faos k= 1, cec,n,

lal=m,

are linearly independent modulo A4 () = l'l]."; , (7 Té/) for £ € EA\ {0}, ie., if
By ¢(1) = By ¢(r) (mod A7(7)),
! m —l !
Bk’E,(T) = Z Bks(g )Ts,
§=0

then
det(By (8') #0 for & €E\{0}.

Remark 1.1. A differential operator 4 = X, ,|_,,, @, D% is said to be properly
elliptic if A satisfies conditions (a) and (b).

We now turn to the formulation of a discrete analogue of the boundary problem
(1.1). For complex-vatued mesh functions we introduce the translation operator Ty
defined by Tju(x) = u(x +vh), where v = (vy,v") = Vg, ¥y, *** , Vy), v; in-
tegers, and the forward difference quotients,

8y 0 =h~YT,) — Du for j=0,++-,d,

where [ is the identity operator and e; the unit vector in the direction of x;. We

also set, for an arbitrary multi-index o,
=370 ... 5% =301 ... 5%
AU =29y, dyq and Oy u=29,, 3y ql-
In the sequel, we frequently omit the index % and write T%, 8% and 8% instead of

T, .0} and 6}’2".
We shall consider difference operators of the form

1.2) P,=h""%"q,T,, n apositive integer,
v

with constant coefficients and a finite number of terms. Such a difference operator
P, is said to be consistent with the differential operator P if for all u € C*(F a+ly
and x € E4+1

P,u(x) = Pu(x) + o(1) as h — 0.

The following proposition gives an alternative way of expressing the consistency
of P, with P.

PROPOSITION 1.1(CF.[15]). The difference operator P, = h™"Z, q, Ty is con-
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sistent with the differential operator P = Z, -, a, D% if and only if there are con-
stants ay, such that

Py= 3 24T, %,
|ai:n v
where T al =a, for lal=n.
Consider now a discrete analogue of the boundary problem (1.1) of the form
Ayu=f on {x,=>mh} NH,,

Byyu=g, on {xo=0}NH, for k=1,+-+,m,

(1.3)

where 4, =h~?"3,c, Ty and B, , = h_m"Ede’,,T;,’, k=1,--+,m,are

difference operators of the form (1.2) consistent with A and By, k=1, ,m,
respectively. We shall assume that ¢, =0 if vy <-m and d , =0 if v, <O,
so that no points with x, < 0 enters in the formulation of (1.3).

According to Proposition 1.1, there are constants a, and by , such that

A4, = 2 2 a4 T, 9%,

la|=2m v
Bin= 2 2 biaTpay for k=1,-++,m,
|a|=mk v ’

and

Z a =a for lal=2m,

¢4 a
v

;bi,a =byo for lal=m, k=1 m
Using the notation
, : , u
0% (E’) = (elgl _ 1)0‘1 [P (elgd _ l)ad, <E,, V’) _ Z Ejv.,
1
we introduce the following functions of the complex variable 7:
aEI(T) = Z cvei(s’,l)' )(1 + T)Vo
14
= ¥ T a4 0¥ @),
lal=2m v
by @ =3 d, e €1 +1)0
14

= ¥ Th LT+ )00 #) 0 for k=1,--,m..

|a|=mk v
Further, we introduce the symbol of the difference operator 4,,

. d
a(®) = Y c, e 8"’ where (¢, v) = > g,
. v j=0
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We now give our definition of an elliptic discrete boundary problem in a half
space. Here, E™ = E™EJ for n=d,d+ 1.

Definition 1.2. The discrete boundary problem (1.3) is said to be elliptic if the
following conditions are satisfied:

(') ellipticity of A, a(()#0 for §€EI*

(b") root condition: The equation (1 + T)magf(T) = 0 has exactly m roots
TEI', oo ,Tg’,’ such that 11 +71<1 for ¢ € E“.

(") complementary condition: The polynomials by (M), k=1, ,m,are
linearly independent modulo 4 (1) = H;"zl T - T';) for £ €E9, ie.,if

m—1
by () = by (M (modagm), by (M= 3 beE)r,
§=0

then det(b, (£)) #0 for ¢ €E<.

Remark 1.2. Using only the assumption about ellipticity of A,, we obtain that
the number of roots (?f the equation (1 + T)maE'(T) =0 inthe disc {I1 +7|<1}
is constant for £ € E<. This holds because, by the ellipticity, there are no roots with
[1+7]=1 for £ € E9. Assume now that the coefficients c, of A, satisfy the
following condition:

(1.5) c, =0 if lyyl>m.

Then there are at most 2m roots of the equation (1 + T)'"agf(f) = 0. Since 4, is
consistent with the properly elliptic differential operator A of order 2m, there are
(cf. the proof of (ii) in Lemma 3.2) m roots of the equation (1 + 7)ag/(7) =0 in
the half plane {Re 7> 0} and m rootsin the disc {l1 4 7I< 1} if [£'| is small.
It follows that there are exactly m rootsin {I1 + 71< 1} if |£'| is small. Thus,
if (1.5) is valid, then the root condition is a consequence of the ellipticity of 4, and
the consistency of A4, with the properly elliptic operator A.

We assume that the continuous problem (1.1) and the corresponding discrete
problem (1.3) are elliptic.

Let us conclude this section with the introduction of some discrete (semi) norms.
For Q C E9*1 et F,(8) be the set of complex valued mesh functions defined on
Q, =QNEZ* and, for x, y €EEZ*! let [x, y] be the set of mesh points z in

EZ*! such that x; <z;<y; for j=0,+-+,d. For 0<8<1, 1<p<e and

j a nonnegative integer, we then define

[0%u(x) — 0%u(y)l .

Iul].+19,nh=max lal=j,x#y,

e — yl?

[x. x +ah] Uy, y +an] CQ,}.

lulp0, = max (9+! 3 18%u(x)(P)L/e,
lal=j
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where we sum over x such that [x, x + ak] C £, with the usual modification if
p =oo. If j =0, we shall frequently write Hullp’ﬂh instead of I'uloyp,ﬂh and, in
particular for the maximum norm, Hullnh instead of lulo,w,nh~ We also introduce
corresponding norms for mesh functions defined on subsets of Ej, = E,‘f ={x'=

@zh, e 0,z h): z; integers}. We define Ip(ﬂh) ={ue Fh(SZ): "“"p,nh < oo},
1 <p<oo.

Throughout this paper, C and ¢ will denote large and small positive constants,
respectively, not necessarily the same at each occurrence.

2. Estimates for a Boundary Problem for Ordinary Difference Operators. Con-
sider the elliptic discrete boundary problem (1.3) in the case A =1 and f=0.
Formally, taking discrete Fourier transforms with respect to x', we get

agfi(xy, £) =2 c, e €V 7000 (x £ =0 for xy >m,
t4

@.0) .
b B0, €)= X dy €O TR0, £) = £,F) for k=1, m,
14

where, for fixed £, ag: and the by ¢ are difference operators in the single variable
Xxqo. We have the following lemma concerning existence and uniqueness of solutions of
(2.1). Here € (¢'), k=0, -+, m, are defined by

w@=1II @~ )= 2 )™k,

k=0
and
d Nk ,
a]T,_E'(T) = Z Gk(‘é )T] for j=0,+*°,m.
k=0
LEMMA 2.1. For given complex numbers ¢, k=1, - ,m, and any fe Ed,

there is a unique bounded solution of the problem

aywix,, £€)=0 for xy=m,
(2.2) o 0

by ¢ w(O, E)=c, for k=1,-++,m.
The solution is given by

! 1 m:l ' a;l—s—l,g'(T)
2.3 Fy=—L1 B —s—1,£'(7)
( ) W(xO E ) 2m r sé(,) qs(g) a;, (7-)

where {qs(s')};";ol is the solution of the system of equations

(1 +7)"dr,

m—1
@9 Y b E)=c, k=1, ,m,
s=0

and T is any closed rectifiable Jordan curve in the complex plane enclosing the roots
Té:, *++ 7. The functions by (£') are given in Definition 1.2.
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Proof. By the complementary condition (c"), it follows that (2.4) has a unique
solution. The verification of the fact that (2.3) gives the unique bounded solution of
(2.2) can be found in [9, p. 143] where the corresponding result for the continuous
problem was proved.

Let now M]-(xo, £'),j=1,+++,m, denote the solution of (2.2) in the special
case when ¢, =5kj, k=1,+++,m. Here Bki=0 if k#j and 8kj= 1 if
k=j. Then ZJ_, M,(x,, £)8,(¢") is the unique bounded solution of (2.1) for
ge E9. We shall need the following estimates for the functions M, . Here Qd =
09\ {0} and N is the set of natural numbers.

LEmMMA 2.2. Forany o= (a, o), there are constants C and c¢ such that

' ' ' —la'|—
180D My (xo, EN < C(1 — clt o lg ol I=my

@ for k=1,---,m,x0€N,§'€Qd.

135°D% M, (xo, &)~ 350D My(vo, €)1 < Clixg — yoIg1%0F 112 1=m

(i) for k=1,+++,m x5y, EN, £ €09

To prove this lemma we need estimates for the derivatives of the functions
ek(g") and the functions qs(é') associated with the M, . We start with the following:
LEMMA 23. (i) €.(§'), k=1, +++ ,m, are analytic functions of £ in E,
(ii) there is a constant & and an open disc A with A C {r: Re 1 < 0} such
that

Té/e IE'IA for 0<|EI<S, j=1,2+,m,

(iii) with a suitable numbering, one has

r§,=T£,+o(lz'l) as |E1—0 for j=1,+-+ m,

)  ID¥eE)<C Y for £ €0 k=1, ,m.

Proof. Let A be an open disc with A C {7: Re 7 < 0} such that the m roots
Tslv, see Tg'/' of the equation A.(7) = Z5/=,, aﬁ(ii;")ﬁ o= belong to A if
J€1=1 and let I, be the boundary of A. Let us now write

IE'172m(1 + 1)"ay(7)

o P @) i\ T \Po
_ v votm (g p')y (== —
o BTG (i) G

iE\F o \fo
B a5 (iz7) Uop) = Aepsn@/ED,
|ﬂ|;2m “ (‘E |> (IE ¥ £/IE
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where
@y = @y(r, ) = Tag(L+ )"0 "0 o8 yrg)
v
By consistency, we then have for |8l = 2m
(7, £ —ag as I7l+ [£'l— 0,
so that if & is sufficiently small,

g g GNED) = gy g GEDI < Agy o @/1ET)

for 7/1§'leT,,0<|£1<5.
By Rouché’s theorem,we may now conclude that equation (1 + T)magr(r) =0 has
exactly m roots in the disc |§'IA for 0 < [£'1< 8. Since IE'1AC {1 +7I< 1}
for 0 < |£'1<6 if & is sufficiently small, these roots must be the roots 7'51/, cee
Tg':l and (ii) of the lemma is proved. Further, since the T é depend continuously on
the coefficients a; and Zl};(Té/, gy — ag as [£'| — 0, we obtain (iii).
To prove (iv) note that, by the residue theorem, we have

(@/dr) Ay ¢, (1)

Agrjjen (1)

m I',|'|S=2~—l .
];(Tg/é ) = (2mi) f T5dt

ry

for 0<|E1<8,s=1,2,++-.
Since

ID* [@y(r1E'1, £)Ge /g0 I<clg el if rery,
we therefore obtain by routine computations that

’ m . r
D* 3 (r]y| <CG, a)Ig sl for s=1,2,+++,0<I£1<5.
=1

But €,(¢') can be written as a sum of terms of the form

C Ik'I 3 iy)’s
I(z )
for k=1, ,m, where the p  are natural numbers such that Ele sp, =k It
follows that (iv) is valid for 1£'| small.
To prove (i), we argue as follows: For any given small positive number € > 0,

we may choose a contour I', in the disc {I1 + 71< 1} enclosing the roots Tgl,

=+, for I§'I>e, & €Q7 By the residue theorem, we then have for [£'1>
e, £€09,

@/dr) (1 + 1)"a, (1)

]; (Té/)s = (2mi)~! fFe ™) 75dT.
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This proves that 2}’;1 (Té,)s is analytic in E? and (i) follows as above. Finally, (i)
obviously implies that (iv) is valid for |¢'l bounded away from 0, £’ € Q9 and the
proof is complete. '

We next have

LeEMMA 24. Let {qu(é')} ;”:_01 be the solution of the system of equations

m-—1
@) S @0y E) =By k=L,
s=0

Then there is a constant C such that
(26) ID¥q ) <CIET™ for j=1,--+ ,ms=0,+-- ,m—1,¢€Q%
Proof. By the division algorithm we obtain that if

m—1

™ =3 ry@)r (mod . (7)),

j=0
then each rk].(s') is a sum of terms of the form CIIJZ, es(‘g")ps, where
L sp, =k — j. Using this fact and Lemma 2.3(iv) for each term in the sum

bk g’(T) = Z Z blljc o (1 + T)voei(t',v')aa’(E:)Tao,
' lal=my o

it follows that

IDafbks(g,)l < Ca' Ié’lmk_s—la |
2.7 for k=1,+++,m,s=0,+-,m—1,§€0%

To estimate the modulus of det(b, (£')) from below, we recall the complemen-
tary condition (c) in the continuous case. The functions B S(S') given there are
homogeneous of degree m, — s and we thus have for some positive constant ¢ that
(2.8) ldet(B, (') > c1E'1" for & € E9,
where H =2ZF m, — (7).

Using the consistency of the By , with the B, and Lemma 2.3 (iii), we may
conclude that

bio(E) = By () + o(IE17,7%) as IE'1—0.
It then follows from (2.8) that there are positive constants ¢ and & such that
(2:9) ldet (b, (£')! > cl£'1"

for 0< |£'1< 8. By the complementary condition (c"), it is clear that (2.9) holds,
possibly with a smaller constant c, also for &' € Qd, [E'1>6.

Solving the system of equations (2.5) with Cramer’s rule, we finally obtain (2.6)
by combination of (2.7) and (2.9).
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We now can give:

Proof of Lemma 2.2. Let A’ bea disc such that AC A’ C A’ C{Re 7 < 0}, where
A s the disc given in Lemma 2.3. Let I'" be the boundary of A’, pick § > 0 such
that [§'I1"C {11 +71<1} if 0<|£'1< 25 and take T'= |£IT"" in (2.3). By Lem-
ma 2.3, we then have for 0<|£'1<8,7€ IEIT, x5 €N,

ID“'ajTE'(T)l < Callé'lj_lo‘ll for j=0,+-,m,
lag (1)l > cl€'1™,
1950(1 + 1) 0| = |7°0(1 + Py el < (Clg'N) 01 — clg'ly 0.

Combination of these estimates, Lemma 2.4 and the fact that [ £ T dl7l = 0(| E'I)
as |£'l— 0 now proves that (i) of Lemma 2.2 is valid for 0 < |¢'| <. Further,
choosing a fixed contour in {|1 + 71 < 1} enclosing the roots Tg', s, Tg',' for
I&'l bounded away from 0, £ € Q9, we conclude that (i) is valid also for such £'.

Finally, to see that (ii) is satisfied, it is sufficient to make the additional observa-
tion that if x, >y, and |1 + 7/ <1, then

A+ -1+ |A+ 1) 0770 — 1< Irl(xy — yy)-
This completes the proof.

3. A Representation Formula. Let 0, denote the set of functions defined on
H, with finite support. Assume that u € D, and that

Awu=f for x4 =>m,
3.1)

B u=g; for xg=0,k=1,++-,m.

For a given integer S > max(2m, m,, + -+ ,m,,), we shall give in this section a
representation of 9% for lal=S in terms of f and the g,.

The following uniqueness lemma will be needed.

LEMMA 3.1. Assume that w is a solution of (3.1) with f=0 and g, =0,
k=1,+++,m, such that lw(x,, ')“1,51 <C for xy €N. Then w =0 in H,.

Proof. Taking discrete Fourier transforms with respect to x', we obtain from
Lemma 2.1 that W(- ,£)=0 for £ €EY. Since w(xg, * )= (W(xy, )", this
proves the lemma.

We shall further need the discrete fundamental solution corresponding to the
difference operator A4, which was given in [13]. We collect some results from [13].

PROPOSITION 3.1. There is a function G defined on EZ*1 with the following
properties:

(@) *Gkx) = (21r)_(d'"1)de_H %(®)a®) e X dt  for lal = 2m, where
9%(¢) = (eigo — 10 ... (eigd —1)*9 and a(}) is the symbol of A,
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() A, (G*f)=[f if f has finite support.

(c) For any multi-index o with lal>2m — (d + 1), there is a constant C
such that
(3.2) [0°G(x)I < C(1 + Ix)2m—@+D=lel g x € g+l

Remark 3.1. Let f have finite support in EZ*!. Then (3.2) is valid, possibly
with another constant C, if G is replaced by G =* f.

We also need to extend f= A,u to a function f, defined on E ld *1 in such
a way that f; has finite support and

(33) [folk+o,891 < Cp o f(meq + *)lgyom,>

(3.4 Ifolk,p,E‘f"'l S Gy plf(meg + ')IkerH{

As in the continuous case (cf. [1]), this can be achieved by setting

o) = f(x) if xo=m,
(3) o
fooy= 2 Nf(j(m —xg) +m x") if xo<m,
=
where the 7\]. are constants such that

k+1
> (—j)"?\j=1 for n=0,1,+*°,k
=1
Let us now define v =G * f;, and w; =By (0, ) for k=1,--+,m. By
(3.1) and Proposition 3.1, we then have

A u-v)=0 for x, = 0,

B, ((u—v)=g,—w, for xo =0, k=1, ,m.

By the construction of the functions M, in Section 2, we thus have formally,

3w —v)=03% 3 F 7 Mylxq, ) (& — W1,
k=1

for any multi-index «. However, the expression on the right-hand side may be unde-
fined and, in order to obtain a well defined expression, we do the following: For a
given integer S = max(2m, m,,+++ ,m,,) let 2n be the smallest even number not
less than S. We may then choose constants Crj multi-indices 6;q. and 'y,'q- with

(3.6) 1Bl =2n— S +my, |'y;cjl=S—mk,
and, finally, d-vectors V;q. with integer components, such that
d

Z ijei(E,,Vlkﬁaﬁ,kj(zér)a'yllcj(sl) — [Z 2(1 — COS E])] — w2n(51)-

J =1
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Now set

(37) gk] —_ a7ki(gk - Wk)s
' ) ' ’N— 1 ', i B, 184
(G8) M (xo, £') = 8% (FD0gOM, (o, £ Yoy () Ly’ "1 3 HI(E),

and define for lal=

m

«= 2 _l[sz]gk]] fl: ZJ: kj * 8kj-

k=1

Note that, by Lemma 2.2, we have
3.9) ID“"]l/I,‘c“j(xo, EY<C = clg Iy orglel=8=17"l for '€ Q9 x, EN,

so that in particular M}?j(xo’ ') is bounded on N x Q¢ if lal>S. Further, by
Remark 3.1, we have

10 ki, ()| < C(1 + Ix')=d=1=5+2m for x' € E,.
Since g, has finite support, it follows that g, €1 L(E}). Thus, h, is well defined if
lal =S and it is clear that we have formally, 0%u = 8%v + h,,.
LEMMA 3.2 (THE REPRESENTATION LEMMA). If the mesh function u € D, isa
solution of the discrete problem (3.1) and S = max(2m, m,+++ ,m,), then

%u = 8% +h, for lal=

Proof. If a+f=a + B8, lal= lal =S, then BBM,‘}]. =0 EM,fj so that
ofn, = 0Ph_. Asin the continuous case, these compatibility relations imply that there
isa functiona h defined on H, such that 3%h = h, if lal=

Let now y' = (v,,***,7,) be any multi-index with Iy'| =S + 2. We shall
apply Lemma 3.1 on B7l(u — v — h). It is then easy to prove the full result:
%w —v—h)=0 for lal=S. First, 3 (u — v — h) is a solution of the problem
(3.1) with f=0 and g, = 0. By Remark 3.1 and the fact that u has finite support,
it is further clear that [|18Y(u — v)(x,, *)Il; E, < C for x, €N. To prove that

37 (u — v — h) =0, it is thus sufficient to venfy that 1187 h(xo, Ny, E, <C for x, EN.
Writing 7' =o' + ' with 18"l =2, we have since M7 = aﬁM“

Y h= Z Z'ng * 8>
k=1]

where as noted above, g,; €1,(E;). By (3.9) and Proposition 4.3 below, one easily
verifies that

IF =17 (xgs = Dy g, SC for xo EN.

Since lu, * “2“1,51 < llu, "1,51"“2“1,51’ this completes the verification.
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Finally, to prove that 8% — v — h) =0 if lal =S, we note that, since
Mii(xg, =) ELL(E,) and gy; €1,(E,), we have 3%h(x,, *) € 1,(E,), so that, by
Remark 3.1, 3%(u — v — h)(xq, * ) €1,(E,) for x, €N. But, by the first part of
the proof, 37 9%u — v — h) = 0 if ly'l=S+2 and therefore 3% — v — k) =0
if lal=§. This completes the proof.

4. Basic Estimates in Discrete L, and Holder Norms. We shall use the following
well-known partition of unity (cf. [10]) Let deC™ ~E 9, cp(g )>0 if ¥ <
|£'1<2,and ®(t') =0 otherwise. Define o(¢') = q)(g Y2 <I>(2k$ ) and

8 () = 3(2¥¢" for k=1,2,-+-, ¢ €09,
PoE)=1-23,() for £ €Qi\{0}, $5(0)=0
1

Then supp @, = 275 1 <Ig1<27%+1} for k>0, goE)=1 if 1£1>1
e and g,(t)=0 if I£I<u%.

We now introduce discrete analogues (see Lofstrom [10]) of the seminorms for
the Besov spaces B“’ given in Peetre [11]. For s positive, 1 <p <o and u €
1,(E,), we define w1th O = («pk) ,

- 1/p
= ( > @ Fluxgl, g )P) if p<oo,
b, k=0 C e
and

lul ¢ = sup 2755y % ¢, I
s .
b k>0 kTEy

We also introduce discrete analogues of the seminorms for the homogeneous Sobolev
spaces Hzf' For s20, 1<p<vco and u €/,(E,), we define

A\Y
lulhs = Il (wysit) Ilp’El,
P

wy(E) = (2 sm;) )

=1

where

The aim of this section is to prove, under pertinent assumptions on a function b
defined on N x E ¢, the following two inequalities:
A. Foragiven 9 with 0<49<1,

)ﬂl’wkulﬁ,]_l1 <Cl”'0,El for u €1,(E)).

B. Foragiven p with 1 <p <oo,
Io *ull, <C|uib1~1/

P

Here, b * u(x) = (b(xy, *)) * u(x ).
We start with the Holder case. We shall then rely on the following four results.

p for u€l (E)).
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ProrosITION 4.1. For any & with 0 <3 < 1, there are constants C and c
such that, for u €1,(E,),

clulb19 < |“|19,E1 <C|u|b6.

PrOPOSITION 4.2. Let a ELI(Q") and let &, and O, be any numbers such
that 0 <9, <98, <1. Assume that there is a constant C such that, for u €
LEY, i=1,2,

v 9.
la*ully <C™ilul 4 .
1 n i

Then, if &, <9 <98,, there is a constant C, independent of C such that for u €

ll(El)s
Iz * ullEl < ClC‘slulbﬂ.

The continuous versions of these two results are well known (cf. [10], [11]).
The proofs in the discrete cases are essentially the same.

We say that a function is 2n-periodic if it is periodic with period 27 in each
variable.

PROPOSITION 4.3 (CF. LOFSTROM [10]). Let a be a 2n-periodic function de-
fined on E? such that the derivatives D¥a exist for any o with la'l< [df2] +
1 =d Then there is a constant C independent of a such that

lal, 5 < cuau;—d/“( max_ | D*gl )"/2‘;,
1 2 la'|=d Ly

where llall, = (f,a la(")|%ag' Y.
Let C"f,, be the set of 2n-periodic functions f defined on’ E9 such that for
any o« with la'I<d the derivative D is continuous on E<.

COROLLARY OF PROPOSITION 4.3. Let a € Cf,, and assume that there are
constants C, and N such that

ID* ag) < C 111 for & €supp 3, £ €09, lI<d, kEN
Then there is a constant C such that
lgp xally g = 1@, g <CC27** for kEN.

PROPOSITION 44 (cF. [11]). Let a € C{ and assume that there is a constant
C such that for £ € 09, ld'I<d,

ID¥ag)l < ClE'T!e,

Then, for any ¥ with 0 <9 < 1, there is a constant C, such that for u €
L(E)), la = ul o SCylul .

oo oo

In the proof of inequality A, we shall also refer to the following lemma.
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5 LEMMA 4.1. Let b be a function defined on N x E? such that b(s,*) €
ézd,, for s €N. Assume that there is a constant C such that for £ € 09, ld'I <
d,s €N,

1D b(s, &) < CIE'171%  min(1, s1£']).

Then, for any 9 with 0 < ¥ < 1, there is a constant C, such that for s € N,
I(B(s, - )wﬁl) Iy E, <c;s®
Proof. By routme computat1ons we obtain for £ € Qd lo | < d SEN,

ID® (b(s, £ )z I < CIE =0 min(1, sIg')),
so that by Proposition 4.3, for s, k €N,
4.1) 16, )y 8Ny g < Cmin(2F?, 527 ¥0I=),

For a given s €N, s> 0, we now choose J €N such that 27/~! <5< 2’. Using
(4.1) we then obtain

J-1

Ib@s, - )ws g < 3 M6, H)wz 3 g + 306, )wg )1, g
1 ) o | 7 1

J-1 oo
<c(2 2+9 +Zs2‘k(1“"> = C(9)s°,

0 J
which proves the lemma.

We can now prove:

LeEMMA 4.2 (THE HOLDER MULTIPLIER LemMA). Let b be a function defined
on N x E9 such that b(xo, )E C21T for xo €N. Assume that there is a constant
C such that for l'1<d, x4 y4 EN, £ €09,

(i) 1p¥ blxq, gHl<elg=lel

(i) 1D (b(xq, &) —b(yg» & ))I < Clxy - yol 1117190

Then, for any & with 0 <9 <1, there is a constant C, such that for u €
LB, b xuly,y <Cluly g .

Proof. 1t is sufficient to prove that
I * w)xg, g, < CIuI'ﬂ,E1 for x, €N,

and
(b * u)(x,, x)=® *u) (¥, x)/ Ixgy - yol‘9 < Clulﬁ’E1

for xo, 9 EN, X4 # ¥y, x' e E,.
The first inequality follows from Propositions 4.4 and 4.1. In order to prove the

second inequality, we take any two numbers ¢, and ¢, such that 0 < ¢, <4<
¥, < 1. We then obtain, for i =1,2, x4,y €N,
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1B * u) (g +) = (B * W) (Yor g,
= I([bCxg, *) = b(¥g, *)] wgilﬁwﬂi)”;;El
< I([b(xg, *) = b(¥g» *)] wgil)vlll,El l@w, )lg,
< Clx, —yola"lul 8,

by Lemma 4.1. Application of Propositions 4.1 and 4.2 then finishes the proof.

We now turn to the lp case. The following discrete variant of the Hormander-
Mikhlin theorem will be needed.

PrOPOSITION 4.5 (BONDESSON [31). Let the function a satisfy the hypothesis
of Proposition 4.4. Then, forany p with 1 <p <o, there is a constant C, such
that for any u € lp(El),

la = ullp’E1 <CCillul, g

Our [, result is then the following:

LEMMA 4.3 (THE I MuLTIPLIER LEMMA). Let b be a function defined on
N x E9 such that b(xo, )E Cz,T Jor x, €N. Assume that there is a constant C
such that, for la'|<d, X EN, £ €09,
4.2 1D b(xy, £ < Clg1 ™' T min(I€'], (o + 1)~ 1).
Then, for any p with 1 <p <o, there is a constant C, such that for u € lp(E s

v
Il < Clulyy g

Proof. Since I,(E,) is dense in lp(E 1), it is sufficient to prove the inequality
for u €1,(EF,). We shall use basic interpolation theory arguments and introduce

(cf. [10], [11]),

K(xy u)y= inf (IluOIIP’,31 + xqlu, lhl),
u=ugtu, p

where u, u; and u, belong to I,(E,). We note that
(4.3) K(xg, u) =K (xo, D oux ¢k> < X K(xg u * 9p).
k=0 k=0

By the discrete Hormander-Mikhlin theorem (Proposition 4.5) and (4.2), we have,
if u=uy+u,
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hg v _1'\ v
Ib(xg, *) * ullp,E1 < lb(xg, ¢) * uOIIP,E1 + I(B(xg, * w7 Hitwy) ||p’E1

< Cl(xq + 1)—1|1u0l|p,El + Iullh;]

= Clxg + )7 (Nugly £ + (xg + Dyl 1)
so that by taking infimum,

4.4 llb(xo, °) % ullp'E1 <C(xg + 1) 'K(xy + 1,u) for x5 EN.
Below we will use the following simple consequence of (4.4):

@5) Nbxg. ) *ul, g <C2KQ W) if 21— 1<x,<27*1 —2, jEN
We will also need the following inequality:

@60 K@ uxp)<Cmin(, 2" ")ux g, p  for jkEN.

This follows easily if we observe that by Proposition 4.3,

<L?$k _Z Ak+lw>

P;El

A~ v _k
<l:Z_:1 o = ‘Pk“p,Elu(‘Pkle) "1,51 <02 Flu * ‘Pk"p,El-
Here ¢_, =0.

We can now prove the lemma. Using (4.3), (4.5) and (4.6), we find
S+l

Ip s ul? = 5 by, ) #ull? o Z. 2 1BGeq, ) % ullh £,

Xo=0 =

Y
x02-1

<C Z 21[2 ’K(2 w)]? <CZ [2-]'(1—1/17) f: K@ u* ‘pk)]l’

j=0 k=0

oo oo p
<CcX [Z 2710 =1/P) min(1, 277 F) llu = cpk“p'El]

k=0

oo oo p
=cX [ S 2-G-RU=1/p) pin(1, 2/~ Fp =k 1P)|ju = wkllp,El]
j k=0

= o P
—c¥ [z F(J'~k)G(k)] ,
=0

with obvious notations. We clearly have



928 C. G. L. JOHNSON
IF(j)|<2—Iilmin(1—1/P:1/P) for j€Z=E11

Extending G to Z by setting G(k) = 0 if k <0, we therefore obtain

<i [ > F- k)G(k)]p)l/p < <Z [E F(j - k)G(k)] ,,)1,,,
=0 Lk=0 j€Z | kEZ

< T IFMDI[ Z 6w )P =cylul 1y,
j€z kez P
which completes the proof.

For later use, we also note the following consequences of Propositions 4.4 and
4.5. Here G is the discrete fundamental solution of Section 3.

PROPOSITION 4.6. For any noninteger s > 2m,integer S = 2m and p with
1 <p < oo, there exists a constant C such that for any mesh function f with finite
support,

fs,E?-'_l S-2m,E?+1
IG * f1 <ClIfl .
fs,p,E‘{F"1 s—2m,p,EqH!

5. Discrete Schauder Estimates. By combination of the results of Sections 2, 3
and 4, we can now prove discrete Schauder estimates. We start with estimates for mesh
functions with finite support. For @ C H?*!, we define Q, ,, = {x € Q,: x, >
mh}.

THEOREM 5.1. For any noninteger s > max(2m, m,, *++ ,m, ), there is a
constant C such that for any mesh function u € D,, h >0,

m
G0 lulg, <C {IAhuls_Zm’Hh,m + L 1B, .)|s~mk,Eh} .

Proof. Inequality (5.1) is homogeneous in %#. We may therefore take # =1 in the
proof. Let now u € D; and let a be a multi-index with lal=S= [s]. By Lemma 3.2,
we have the representation 9%u = 8%v + h,, where

v ’Y’ .
ho = X X M * [87 (B, u(0, +) = By 10 (0, )],
k=1 j
and I'y;cjl =S — m,. Further,v=G *(4,u),, where (4,u), is the extension of 4,u,
X, = m, obtained by taking k =S — 2m in (3.5).

By Proposition 4.6 and (3.3), we have

LS ClAul

<
(5.2) |v|s,}‘:‘1z,+1 \CI(Alu)oIs'_zm,}‘:‘;,_F s—2m,H
so that in particular,
(53) 1By 190, N £, SClAUl_2mm -

Now, by the estimates for the M, given in Lemma 2.2, one easily verifies that the
Mg; satisfy the hypothesis of the Holder Multiplier Lemma (Lemma 4.2) and so, using
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also (5.3) and setting 6 =s — [s],

m . ! .
lh, Ie,Hl <C Z Z |a7kl(Bk,1u(0, ©) - Bk’lU(O, : )le,El
k=1 j
(5.9)

m
<C {'Aluls—2m,H1,m + 1;1 lBk,lu(O’ ) )Is"mk’El} ’

Together, (5.2) and (5.4) prove the theorem.

Using a weighted norm technique following the arguments in [13], where interior
estimates were proved, it is now possible to prove the following discrete analogue of the
continuous Schauder estimates given in Proposition 1.1. We omit the proof (see [8] for
details). Here, for j, k nonnegative integers, 0 <6 <1,

IIIuIIIk_l_o,Qh = I;gl)c( Iulj’ﬂh + |u|k+0,gh,
where

lul = max {[0%u(x)!: lal=7j, [x, x + ah] C ,}

i,
and i, , r, i defined similarly.

THEOREM 5.2. For any noninteger s> max(2m, m,*++ ,m,) and any domain
Q' CC Q, there are positive constants C and hg, such that, forany u € F,(Q), h<h,,

.m
lully g, < C {ulA,,unls_zm,th + 3 B0 M0, IIuIIQh} .

6. Discrete L, Estimates. In this section, we shall prove discrete analogues of some
L, estimates (1 <p <o) for the elliptic boundary problem (1.1) given by {4, B,,
**+, B, }, the basic form of which is given in the following proposition. Here

l/p
= o P
lul; , o |fxnla=)§ (fn [D*u(x)! dx> ,

j nonnegative integer, 1 <p <o,
ProposITION (CF. [1], [2]). Forany integer S with

S = max(m,m; +1,-++ ,m, +1),

there is a constant C such that, for any infinitely differentiable function u with com-
pact support in the closed half space {x: x, = 0}, one has

2m,p,H

’

m
6.1) Iuls g <C {lAuIS_ a1 T kgl |B, u(0, )|S

dr-
-my—1/p,p,E }

For two equivalent definitions of the seminorm |- | q for s positive, see [1]
5, P,
and [2]. In the discrete analogue of (6.1), we will use thepdiscrete Besov seminorms
|- Ibs introduced in Section 2; for u € lp(Eh), 0<s<1, 1<p<e and h >0,

P
we set, with u,(x") = u(hx") for x' €E,,
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) 1/p
Juls,p,Eh - <hd kz—:o @ on “n * Vi "p’El)p> ’

and, for s noninteger, s > 1,

o
lul max |9 uls_[s}’p,En.

E, — 1
s,p,Lp la'1=[s]

Remark. If 0<s<1 and h =1, then lul

= Iulbs. Also, one can
p .
show that, for s noninteger, s > 1, there are positive constants ¢ and C such that

s,p,Ep

clul <|u|bs<C|u|s,p,E1 for u €1,(E,).

s,p,Eq
P
The following result of trace type will be refered to (cf. [11]). A proof can be
found in [8].
PROPOSITION 6.1. Forany p with 1<p <o, there is a constant C such

that, if |u|1’p, Hh< % and u(x)=0(x1"%) as |x|— o, then
(6.2) lu(0, - )Il—l/p,p,Eh < Clull,p,Hh'

We can now prove discrete L, estimates for functions with finite support.
THEOREM 6.1. For any integer S = max(2m, m; +1,+++ ,m,_ + 1) and any
p with 1 <p <o, there is a constant C such that, for u € D,, h >0,

m
©3) lulg,, < C{IAhu 52ty + 2 Bent Nis—my-1ipip }

Proof. Since (6.3) is homogeneous in %, we may take 4 = 1 in the proof. For
u €7D, and lal =S, we have, by Lemma 4.2, the representation (cf. the proof of
Theorem 5.1) 9% = d%v + h,. Using Proposition 4.6 and (3.4), we find

(6.4) lvl <Cldule
s,pE*! 14ls

Consider now h, = Ek,ijl},ﬁ‘j * 37ki(g, — w,), where g, = By u(0, ), w, =

2m,p,H m’

By (0, ) and ly;l=S—m, > 1. Writing Yej = a; + By; with lg ;1 =
S—m, —1, IB;U.I= 1 and y=a+ B;q-, we obtain by summation by parts

M3 % 3 k(g — wy) = My, * 3%Ki(g, — wy)-
Proposition 6.1 and (6.4) yield
(6.5) 10" Wil 1 jpp., < CLAVS g piry -
By Lemma 2.2 (ii) we have
IDF MY (xo, £ < Cyr(1 — clg Y 0lg [71#1+1

< CCyplxy + DML for xy €N, £ €0
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Thus, M,;’j satisfies the hypothesis of the L, Multiplier Lemma and therefore using
also (6.5),

v o o'y s
My, =2 ki(g, — wk)llp’H1 <Clo k(g ~ wk)'l—l/p,p,El

(6.6)
<C{ ng Is—m x—1/p.p.E, + 14 14 Is— 2m,p,.Hy }.
The theorem now follows from (6.4) and (6.6).

Using again a weighted norm technique (cf. [3], [15]), it is possible to prove a
localized version of Theorem 6.1 similar to Theorem 5.2 for arbitrary mesh functions.
See [8] for details.

7. Convergence of Difference Quotients. Consider solutions u of the elliptic
boundary problem
Au=f in £,
(7.1)

Byu=g, onI' for k=1, ,m,

and for Q' CC Q solutions u n of the discrete elliptic boundary problem
Ayu, =M, f on

h,m?>
(7.2)
By pup = Gk,h(f, g) on £, N{x,=0} for k=1, ,m,

where M, is a difference operator consistent with the identity operator and with
respect to the examples given below, we assume that G, ,(f, &) = &; + Ckh2m_m"f,
C, constant. In this section, we shall apply the results of Sections 5 and 6 to examine
convergence in the maximum norm near the plane boundary portion I' of difference
quotients of u, to the derivatives of u when it is known that u, convergesto u
in the maximum norm or in a discrete L, normas h tends to zero. Below we
follow the arguments employed by Thomeée and Westergren [15] in the case of in-
terior estimates.
We say that (7.2) approximates (7.1) with order of accuracy N, if for any
smooth function v and x € 4%,
A,v(x) — MAv(x) = O(WY) as h — 0,
(7.3)
By yu(x) = Gy (Av, BLo)(x) = O(Y) as h—0, k=1,+++,m.
It is clear by Taylor’s expansion that (7.3) implies that, for any noninteger s > 0,
Q" cc Q,
a4 l4,v — MhAvls’Q;l‘m < Cthllvlllzm_,_s_,_N,n',

By n? = Gy w(Av, Bo)lg o <CEV M, 4 o0y 05
for h <hg, where I =03Q" N {x, = 0}.
Further, a difference operator Q, is said to approximate the differential oper-
ator Q with order of accuracy N if, for any smooth function v and any x €
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E?*1 one has Q,u(x) — Qu(x) = O(WN) as h — 0.

We have the following convergence results.

THEOREM 7.1. Let (7.2) approximate (7.1) with order of accuracy N and
assume that u is a solution of (7.1) and that u, is a solution of (1.2). Let Q, be
a difference operator approximating the differential operator Q of order n with
order of accuracy N, and choose u so that T} Q,v(x) is determined by the values
of vin Hy if x€H, If Q" CC Q' CCQ we then have the following:

(i) for any noninteger s > max(2m, n) there exist positive constants h, and
C independent of u and u, such that for h <h,,

I T3 (Qu — Quup)lqr < CURMIlullyyy o + Tu —u,lg: 3,
(i) forany p with 1<p <o and any integer
’ S Z max(2m, [d + 1)/p] + 1 +n),

there exists positive constants h, and C independent of u and u, such that for
h<h,,

1T Qu — Quylqr <CVlulg,y o + lu—u, Iy}
Proof. Let us prove (i). Since Q, is accurate of order N we have
I T4 (Qu — Qhuh)“n;, < ITHQ - Qh)uIIQ;l + 1T} Q,u - uh)llﬂ;l

N
<O Null, gy g + ITEQ, @ — w)lgy

For the last term, we have by Theorem 5.2 and (7.4), for Q" cC Q1) cc Q) cc
Q' h<h,,

175 On — wplay < llu — uyll 1y
58,

<c {mAhu M A )

m
n kgl By ,u(0, ) — G, ,(Au, B,u)(O, )ms—mk,r‘§12) + lu — u, IIlez)}

< W Mullyyy o + lu =l 3,

thus completing the proof of (i).

The proof of (ii) which we omit is based on a localized version of Theorem 6.1.
A discrete Sobolev inequality is used to pass from the discrete L, estimates to the
maximum norm estimates (cf. [8]).

We now exemplify the application of Theorem 7.1 on some special difference

approximations for which estimates of llu — u, | q, are known as A tends to O.
We define 8, = h='(1 — T, /).
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Example 7.1. There are many results in the literature (cf. [5]) for difference
approximations of the Dirichlet problem in a plane domain £,

(7.5) Au=f in Q, u=g on 0%,
which near T' reduce to the following difference approximation:

Ayu, =M, f for x, >h,
(7.6) B, yu,=u, =g for x5 =0.
Here, either A4, is the five point operator Agf) = 8050 + 8151 and M, =1 so
that (7.6) approximates (7.5) with order of accuracy 2, or 4, is the nine point “box
operator”

AG) =(1/O)[(ST+ KT + KT 1)3,3,
+ (ST + BT + KT %0)3,3,]

and M, =1+ h2A,(15)/ 12 so that (7.6) is accurate of order 4. If the boundary 9§
is sufficiently smooth, one can set up the difference equations in the rest of the region
so that, if 4, = A{S,

lu — “h"nh =0Mh? as h—0

and, if 4, = A, lu — u, lg, = 0(*) as h—o.

We now check that (7.6) defines a discrete elliptic boundary problem. First, 4 n
is elliptic in either case and by Remark 1.2 the root condition is then satisfied. Second,
since here b, (1) = b;,g’(T) = 1, the complementary condition is also satisfied. If
Q is an arbitrary differential operator and (), approximates Q with order of
accuracy 2, we may therefore conclude from Theorem 7.1 that

174 (Qu - Qhuh)llﬂfh =0(h*) as h— 0,
if A, = A, and make an analogous statement if A4 p = A

Example 7.2. Bramble and Hubbard [4] have studied a difference approximation
of the Neumann problem in a plane domain

7.7 Au=f in Q, 0du/don=g on 39,
u suitably normalized, which has the following form near I':

Ay, =f for x, > h,

(7.8)
By pup E;T(%T,fl"l) + BT I, =g — ;if for x, = 0.

It was proved in [4] that if the boundary 992 is sufficiently smooth the difference
equations can be set up in the rest of the region so that
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(7.9) lu — u, ||Qh = O(h?llog hl) as h — 0.

Now, (7.8) approximates (7.7) with order of accuracy 2. Further, in this case we have
1+ ag (1) =72 —2(1 + 7)(1 — cos £,) and by, (1) =T cos & — (1 —cos &)
so that

blg, (D =byoE;) =15 cos gy — (1 —cos &),

where

rho=1—cos — /(1 —cos ) +2(1 —cos ).

It is an elementary task to show that b,,(%,) <0 for &, € E'. We may thus apply
Theorem 7.1 to prove that the rate of convergence in (7.9) holds also for difference
quotients.

Example 7.3. Zlamal [17] has proposed a difference approximation of the
Dirichlet problem for the biharmonic operator

AW =f in Q,
u =g, on 9fl,
ou/on = g, on 092,

where 2 is a region composed of rectangles. This difference scheme involves mesh
points outside £ of distance 4 from 9. For convenience, we therefore assume
that I' is contained in the plane x, = . The difference scheme of accuracy 2 con-
sidered by Zlamal then has the following form near T,

Afls)Ag,s)uh =f for x, = 2h,
By puy = T 0u, =g, for x, =0,
By pup = %0, + 3,)T %, =g, for x,=0.

Zldmal proved that Il — u, ”n n = O0M3?) as h — 0, where u is a smooth ex-
h

tension of the exact solution u to the region Q" = {x: dist(x, Q) <h}.
The difference operator Agf)A,(f) is elliptic and satisfies the root condition.
Further, an easy computation gives

1
det(b,4(%,)) = L 1 .
151151/2 1+ 1/2(151 + TEI)
=% +T§1)(1 + rgl) +1].
Since 11 + T’é’l I<1 for & € E 1k =1, 2, the complementary condition is ful-
filled and Theorem 7.1 applies.
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